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ABSTRACT 

The complete dynamics model of a four-Mecanum-wheeled robot considering mass eccentricity and friction uncertainty 
is derived using the Lagrange’s equation. Then based on the dynamics model, a nonlinear stable adaptive control law is 
derived using the backstepping method via Lyapunov stability theory. In order to compensate for the model uncertainty, 
a nonlinear damping term is included in the control law, and the parameter update law with σ-modification is considered 
for the uncertainty estimation. Computer simulations are conducted to illustrate the suggested control approach. 
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1. Introduction 

In 1973, BengtIlon invented the Mecanum wheel (also 
called Ilon wheel) when he was an engineer with the 
Swedish company Mecanum A.B. [1,2]. The Mecanum 
wheel is designed with passive rollers mounted around 
the wheel circumference at an angle of 45 degrees to the 
wheel plane, thus it allows for in place rotation with 
small ground friction and low driving torque. Usually the 
mobile robots using Mecanum wheels, such as an intel- 
ligent wheelchair, a forklift, or the URANUS omni-di- 
rectional robot, are designed with four wheels to provide 
agile mobility in any direction without changing its ori- 
entation. This omni-directional capability provides greater 
flexibility in congested environments. Ould-Khessal [3] 
applied it in a robot soccer team design. 

Although the benefit of omni-directionality of a stan- 
dard Mecanum wheel, it has an unfortunate side effect of 
reducing the motor effective driving force through the 
rollers by projecting a portion of the motor force into a 
force perpendicular or at an angle to that produced by the 
motor. Thus, it may be inefficient when the platform 
travels in a straight line, especially when travels diago- 
nally. Diegel et al. [4] proposed an improved Mecanum 
wheel design with a “twist” mechanism for adjusting and 
locking the angle of the passive rollers to best suit the 
direction the platform is traveling in. Since a planar mo- 
bile robot consisting of four Mecanum wheels has only 
three degrees of freedom (DOF): two translational mo- 
tions along X- and Y-axes, and one rotation about Z-axis, 

it has one redundant degree of freedom. Asama et al. [5] 
proposed a transmission mechanism such that four wheels 
can be driven by only three actuators, each of which 
drives wheels to move the robot for a certain DOF, re- 
spectively. 

The most popular approach to the control of an omni- 
directional robot considers the kinematic control relying 
only on the kinematics model of the platform [e.g. 6,7]. 
The kinematic control neglects the dynamics effect and 
thus lowers the effective moving speed that could be ob- 
tained. Based on the Newton’s second law, Tlale and de 
Villiers [8] developed and verified a dynamic model for 
the omni-directional robot with four Mecanum wheels 
using the resolved force method. In their developed mo- 
bile platform, each wheel was fitted with encoder for 
measuring the wheel rotation/velocity, and 3D gyrometer 
and accelerator are also installed in the platform for 
measuring its orientation and translation motion. Vi- 
boonchaicheep et al. [9] presented a position rectification 
method including symptomatic and preventive rectifica- 
tions during the position and orientation control. Their 
control system is based on kinematics and joint-space 
linear dynamics model. Recently, Han et al. [10], Park et 
al. [11], and Tsai and Wu [12] proposed fuzzy control 
systems for Mecanum wheeled robots based on kine- 
matic model or joint-space dynamic model. 

In this work, we will propose a more complete kine- 
matics and dynamics modeling of an omni-directional 
mobile robot with four Mecanum wheels considering 
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both the friction and load eccentricity effects. After es- 
tablishing the kinematics model, the 3-DOF dynamics 
model in the Cartesian space is derived using the La- 
grange’s equation, which can be used for arbitrary trans- 
lational and rotational dynamic control. Then an adaptive 
control is constructed using the backstepping method via 
Lyapunov stability theory. The derived adaptive control- 
ler with uncertainty compensator has excellent three-axis 
arbitrary trajectory tracking performance, even the plat- 
form is encountered a not small eccentricity uncertainty. 
Finally, simulation results are presented to illustrate the 
suggested control system performance. The suggested 
nonlinear controller is more complex than traditional PID 
control, however it could have more satisfactory and 
faster arbitrary-trajectory tracking capability. 
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2. Kinematics and Dynamics Modeling of a 
Mecanum-Wheeled Mobile Robot 

As shown in Figure 1, a Swedish wheel consists of a 
fixed standard wheel with passive rollers attached to the 
wheel circumference. The Mecanum wheel is a type of 
Swedish wheels with , where 45    is the angle 
between the passive-roller rotation axis and the wheel 
plane. Complete kinematics and dynamics modeling of 
an omni-directional robot with four Mecanum wheels 
will be considered in this section. 

2.1. Kinematics of a Four-Wheeled Mecanum 
Robot 

Consider a Mecanum wheel mounted on a mobile robot 
with local coordinate frame {R}: R R RX Y Z , as shown in 
Figure 1, where point A is its center and the other geo- 
metric parameters are defined as follows.   is the an- 
gle of the vector , from the robot frame origin G to 
the wheel center A, with respect to the 
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Figure 1. Parameters of a mecanum wheel. 

 
is the angle between the vector  and the main wheel 
axis. The distance from the geometric center G to the 
wheel center A is l, and the main wheel’s radius is r. And 
  and SW

r

 are respectively the rotation speeds of the 
main wheel and the passive roller contacted with the flat 
floor. 

Assume that the contact point between the Mecanum 
wheel and the floor is an instantaneous rotation center, 
that is, the contact is in a pure rolling condition without 
slipping, then the corresponding velocity of the wheel 
center A is 

cosr

 along the tangential direction as shown 
in Figure 1. So the wheel center A’s velocity component 
along the contact roller’s axis is  

 T
. 

Let the robot’s instantaneous translation velocity in 
terms of local frame {R} be R Rx y  , and the rotation 
velocity about RZ  axis be 

, ,

. Then the wheel center 
A’s velocity can also be computed by summing the 
translational velocity vectors R Rx y 

l
 and the relative 

velocity   due to the rotation velocity shown in Fig- 
ure 1. Thus, the wheel center A’s velocity component 
along the contact roller’s axis can be expressed as fol- 
lows (computed via the platform’s velocity): 
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If no slipping occurs along the contact roller’s axis, the 

same velocity can also be computed from the wheel’s 
rotation speed 

     
T

cos cos cosR Rl x y r

 Hence, we have the following con- 
straint equation for a Swedish wheel: 

 

sin                       
                    (2) 

 
Since the rotation matrix representing the orientation of the inertia frame {I} with respect to the robot frame 
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{R} can be expressed as 
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where   is the angle between axes  and R IX X

T

R R Rx y

, and the 
robot’s velocity vector in terms of the robot frame {R},  

    ξ  



 can be computed as: 

R
R I Iξ R ξ 

T

I I Ix y

, 

where    ξ  

   

 is the robot velocity vector  

in terms of the inertia frame {I}, Equation (2) can be 
transformed to as follows [6]: 

 

   sin cos cos cosR
I Il r                    

 R ξ                 (3) 

 
In the direction orthogonal to the contact roller’s axis, 

the motion is not constrained because of the free rotation 
of the passive contact roller, thus we have the following 
velocity relation: 
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Thus, the above rolling condition can be transformed as: 

 

      cos sin sin sin 0R
I I sw swl R r r                    

                            (4) 

 
Consider the omni-directional robot with four Mecanum 

wheels shown in Figure 2. The angles , ,  and i i i  
1, 2,3, 4,i 

   

 of 
the mounted four Mecanum wheels,  are 

shown in Table 1. From Equation (3), we have the 
following four constraint equations for the centers of the 
four Mecanum wheels: 
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Figure 2. A four-Mecanum-wheeled robot. 

Assuming that each Mecanum wheel has equal radius  
and mounting distances,  and by  

substituting the parameters in Table 1 into Equation (5), 
we can obtain the inverse kinematics equation as follows: 

 
 
 
 
 

1

2

3

4

2 2 2 2 sin π 4

2 2 2 2 sin π 4
2

2 2 2 2 sin π 4

2 2 2 2 sin π 4

cos sin 0

            sin cos 0

0 0 1

I

I

l

l
r

l

l

x

y

    




   



         
 

      

 
 



 

   
       
      










 (6) 

where 1tan .b a   
Define the Jacobian matrix as: 
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Table 1. Parameters of the Mecanum wheels. 

Wheels i  i  i  

1  1tan b a   1tan b a   π 2 π 4  

2  1tan b aπ   1tan b a   π 2 π 4   

3  1tan b aπ   1tan b a   π 2 π 4  

4  1tan b a2π   1tan b a   π 2 π 4   
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The forward kinematics equation of the four-wheeled 
Mecanum mobile robot can be obtained as follows: 
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 is the pseudoinverse of J. Jwhere 

2.2. Dynamics of the Mecanum Robot 

Consider the four-wheeled Mecanum mobile robot 
shown in Figure 3, where G is the geometric center with  

position vector I x yr

G

 in terms of the inertia  

  is the mass center of the moving plat-  frame {I}, and 

form with relative position vector  T1 2
R

G G d d   r
R

Gv

 Tcos sin
cos sin sin cos

sin cos
IR

G I I I I
I

x
x y x y

y

 

 

in terms of robot frame {R}. The velocity  of point  

G, in terms of robot frame {R} can be expressed as 
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where  and I Ix y 
- and -

 are the velocity components of G 
along the I IX Y axes, respectively, and   is the 
orientation angle of the platform relative to the reference 

frame {I}. Hence the velocity  of the mass center R
Gv

G  in terms of robot frame {R} can be obtained as fol- 
lows: 
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The total kinetic energy T of the mobile robot includ- 

ing those of the platform and four Mecanum wheels can 
be computed as below: 
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where  is the mass of the platform, and  is the  
mass of the ith wheel, ; I  is the moment of  

inertia of the platform about RZ   axis ( parallel to RZ ) 
through point , and G iI  is the moment of inertia of 
the ith wheel about its main axis;   is the rotational 
speed of the platform, and i  is the rotational speed of 
the ith wheel about its main axis; and  is the radius of 
each Mecanum wheel. Since the mobile robot is assumed 
moving in a plane, the total potential energy 

r

0V  . As- 
sume that the four Mecanum wheels are identical and 
thus let wi w  and i,m m ,I 1, 2,3, 4.

L T V T   can be obtained as below: 

I i   After sub- 
stituting Equation (2) and some computations, the La-  
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Figure 3. Schematic of the Mecanum robot.     
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The dynamics model can then be derived using the 

Lagrange’s equations: 

d

d i i
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where  is the ith generalized coordinate, and 

the ith generalized force/torque. The generalized coordi-
nate vector of the mobile robot can be defined as: 

1 2 3 I I   T T
q q q x y  q . Refer to Figure 3, 

where if  is the contact friction force of the ith Me-
canum wheel with the floor, the generalized force/torque 

,  1,2,3iF i  , can be derived as follows [13]:F  is  
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After some straightforward computations, the equa- 

tions of motion of the mobile robot can be expressed in 
matrix/vector form as: 
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3. Stable Adaptive Control of a  

Mecanum-Wheeled Robot 

3.1. Modeling Uncertainty 

In practice, the mass of the platform carrying payload, 
and the contact friction forces may be varied, thus we can 
model their uncertainty by letting , and ˆb b bm m m  
f f f , where  and ˆ bm
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are the nominal platform mass and friction vector, re- 
spectively. Here g  is the gravitational constant, and 

,rr i , are the nominal rolling friction coeffi- 
cients of the four wheels. Substituting into Equation (18), 
the dynamics of the mobile robot considering uncertainty 
can be summarized as follows: 
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3.2. Stable Adaptive Control of a 
Mecanum-Wheeled Robot 

3.2.1. Nominal Control Law Derivation 
In order to synthesize the adaptive control law, we can 
first neglect the uncertainty effect, i.e., let 1 2 D D  
in Equation (20), and consider the following nominal 
dynamics model: 
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Defining the state vector as: 
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the state equation of the nominal system can be written 
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Based on the backstepping method, a stable nonlinear 
nominal control law can be obtained as follows. 

First consider the 1z  subsystem, 1 2.z z

1 1

 Let 

z v

v

1 1 d e z q

    T
 I d dt t  

1d d q v q  

                    (23) 

where 1  is a virtual input. Define the tracking error 
vector as 
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3.2.2. Adaptive Control of a Mecanum-Wheeled 
Robot with Uncertainty 

Consider the Mecanum-wheeled robot dynamics model 
with uncertainty D D : 

T T
1 2

1 ˆˆ
r

   Mq B B Sf D D 

1 1

2 2 1 1 1

d d

d

   

          (20) 

Using the error vectors defined before in the nominal 
control design, 

      

e z q q q

e z v q v q q e  

   

        (36) 

the system’s error dynamics can be obtained by direct 
differentiating Equation (36) as below: 

T
1 2

1
, ,t

r
     
 

e q q q B τ D D  

 
 

2 1

1 T
2 1

, , ,ˆˆ
d

t




      (37) 

where 

 
  

     

e e
q q

M B Sf q e e





 
1

0
.

ˆ 

 

 
  
 

q
M

  

Consider the following Lyapunov function for adap- 
tive control design, 

T 1
2

1

2a m mV V   w w 

ˆ

          (38) 

where m m m w w w 

aV

 and  is a symmetric and posi-
tive definite matrix. And taking the time derivative of 

, we have 

    T2
1 2

T 1

1
, ,a

m m

V
V t

r


           
 

q q q B D D
e

w w

 

 

  
   (39) 

Copyright © 2013 SciRes.                                                                                  ICA 



L.-C. LIN, H.-Y. SHIH 

Copyright © 2013 SciRes.                                                                                  ICA 

173

By the definition of 2D  in Equation (20), we know 
that it is bounded, i.e., 2 2

law as 
D 0, 2 


. Since 
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dτ

n d is in linear parametrized form, we can in- 
troduce a compensating term  and choose the control  

   

 

               (40) 

with 
 

 

 
 

T

2

1 1T T
2

2
1

ˆd m m

V
q

r r
V

q c


 

 
    





e
B B B B B B H w

e






1 0c 

                            (41) 
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T T T 12 2
1 2

T

2

2

1 1
, ,a n d m m

m m

V V
V t

r r

V
V

                   

T 1 2
2 2

2
1

T

2

2
2 2 2

2
1

ˆ2

2

m m m mV
V

c

V
V

V
V

c







  
           
    

   q q q B τ q B τ

  
        

 


 

D D w w
e e

q
w D

  





e
w w q H w H

e
q

e

q
e

q D
e

q
e











 2
m m

V


   

  
 



q H w
e
 T 1

m m
   w w

              (42) 

 
Choose the parameter adaptation law as 

 

   
T

02ˆ ˆm m m m m

V
σ

           
w w q H w w

e
  

0,

                                   (43) 

 
 0w mwand  is the best guess for the unknown parameter vector . Since where  m

 

 
 

 

   

   

 

 
   

 

 

T T

2 2 2
1

2 2
2 2 2 2

2 2 2
1 1 1

2

( )

V V V
c

V V
D q D

V V V
c c c

 



                            
              



q q q
e e e

q
e e

q q q
e e e

  
 

  

1c

2 2

2 2
2 2 1 2 1

2 2
1 1

V V
V V

c c
V V

c c
  

  
 

                
 

q q
e e

q q
e e

q q
e e

 
 

 

 

 
Since 2V e  satisfies the following inequality equa- 

tion [14], 
we have 
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where we can choose    
1 2

T1
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, thus  

K  and 
2e  are class-  function, and  

  2 1eV   e e , we can obtain 
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by substituting ebe  and m  into the right 
side of Equation (49), we can define 
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and thus, 

    0 ,a rV V V1 maxe a  e  

Hence, we have 
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Define 

   ax 0 ,a rV V


 6 1

1: me eR    B e e     (52) 

and we thus have  ,t t e B
, , ,c

e

By properly choosing the parameters: 2 1

. 
 

, ,  and 
 

1 2 ,K K  constants eb  and w  can be made suf- 
ficiently small, and the norm of the tracking error 

b 
e  is 

bounded. And thus the adaptive control system is stable. 

4. Results and Discussion 

In this section, two computer simulation examples are 
given to illustrate the performance of the proposed adap- 
tive control for the Mecanum-wheeled mobile robot. 

The first considers a pure translation along a rectangu- 
lar desired trajectory in the I IX Y


 plane with fixed 

orientation  0.t d  The platform’s geometric center 
is planned to move forward from the origin of the inertia 
frame along 



IX  axis 1 m, then leftward along IY  axis 
1 m, and then backward along IX  axis 1m, and finally 
move rightward along IY

    and
 axis 1 m and return to the 

origin. The desired , ,I d I d x t y t

ˆ 0.25,u

 are obtained 
using the cubic spline method [15] and shown as the 
dashed lines in Figure 4(a). 

The parameters of the mobile robot are selected as fol- 
lows: mb = 12 kg, I = 0.5 kg·m2, Iw = 4.0378 × 10−4 
kg·m2, a = 0.2 m, b = 0.3 m, l = 0.25 m, mw = 0.313 kg, r 
= 0.0508 m, rr   and And the ada- 
ptive controller parameters are chosen as: 

29.8 m/s .g 

 1 diag 9000 9000 100 ,K
 

 2 diag 2000 1800 3.25 ,K

0.002,

 

1 0.0001,c    

0.002 ,I  T0 0 0 0 ,w    

and 

 diag 8 2 4.75 .

1 2 0.02 m,d d

 

In the simulation, we consider the platform having ec-
centricity with  

3 kg.m
and the mass has varia-

tion b 

 T0.05 0.05 0.05 0.05 Nf 

 The wheels’ contact frictions are as-
sumed with uncertainty  

. 

The simulation results are shown in Figure 4. Figure 
4(a) depicts the tracking performance of the IX - and 

IY -axes translation, and the orientation   variation, and 
Figure 4(b) shows their tracking errors. We know that 
the tracking errors along the IX - and IY -axes are 
within ‒0.0063 - 0.0056 m and ‒0.0065 - 0.0062 m, re-
spectively, and the orientation error is within 0.57 - 
0.64

 
. The corresponding control torques of the four 

Mecanum wheels are shown in Figure 4(c). The adapta- 
tion processes of the uncertainty compensation term’s 
parameters vector  ˆ twm  are shown in Figure 4(d). 
And the geometric center’s moving trajectory in the 

I I  plane is shown in Figure 4(e). X Y
Considering the same uncertainties as the first case, a 

second simulation is considered to show the pure rota- 
tional control performance. The adaptive control pa- 
rameters are selected as below: 

1 0.0001,c  0.002, 

 1 diag 9000 9000 2000 ,K  

 2 diag 2000 900 1000 ,K  

 diag 0.0001 0.03 0.03 , 0 0,w  

and 

 diag 5 0.001 0.03 .  

Simulation results of the pure rotation case are shown 
in Figure 5. Figure 5(a) depicts the tracking perform- 
ances of the IX - and IY -axes translation, and the ori- 
entation  , and Figure 5(b) shows their tracking errors. 
We know that the undesired displacement along the -IX      
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Figure 4. Simulation results of the pure translational case. (a) and I Ix y, ,   responses; (b) Tracking errors; (c) Control 

torques,    1 4~ N m   ; (d) Compensator parameters adaptation ˆ
m t

    y t, m

w ; (e) Tracking results of geometric center, 

.  I Ix t

 
and IY -axes can be kept within ‒0.0257 - 0.0235 m and 
‒0.0143 - 0.0270 m, respectively, and the orientation 
 error is within ‒0.0574 - 0.0362 rad. The correspond-
ing control torques of the four Mecanum wheels are 
shown in Figure 5(c). The adaptation processes of the 
uncertainty compensation term’s parameters vector  ˆ twm  
are shown in Figure 5(d). And the geometric center’s 
displacement in I IY

-

 plane is shown in Figure 5(e). X

5. Conclusions 

In this paper, Cartesian-space dynamics modeling and  

stable adaptive control for a four-Mecanum-wheeled 
robot are considered. Based on the derived 3-DOF dy- 
namics model considering the platform mass variation, 
eccentricity, and friction uncertainty, a nonlinear stable 
adaptive control law is derived using the backstepping 
method via Lyapunov stability theory. A nonlinear 
damping term is included in the control law to compen- 
sate for the estimation error, and the parameters adapta- 
tion law with  modification is considered for the un-
certainty estimation. Computer simulations are pre- 
sented to illustrate the control system performance. Real     
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Figure 5. Simulation results of the pure rotational case. (a)  and I Ix y, ,   responses; (b) Tracking errors, (c) Control 

torques,    1 4~ N m   ; (d) Compensator parameters adaptation ˆ
mw t

    , m

; (e) Displacement of geometric center 

.  I Ix t y t

 
implementation study using the suggested control law 
with microcontroller deserves future consideration. 
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