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ABSTRACT 

This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through 
electric networks for optimization problems with continuous design variables. The CS algorithm possesses two power- 
ful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the de- 
rivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested 
against several unconstrained optimization problems. The results obtained are compared to those obtained by the popu- 
lar search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu 
search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a 
constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the 
CS has been successfully applied to the speed control of the dc motor. 
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1. Introduction 

Over the last five decades, many metaheuristic algorithms 
have been developed to solve combinatorial and numeric 
optimization problems. They have been also successfully 
applied to solve various real-world engineering optimiza- 
tion problems. Most metaheuristic algorithms are based 
on the stochastic process. This means that the derivatives 
of the objective function is unnecessary. Unlike the con- 
ventional or classical algorithms, they are usually based 
on the deterministic process commonly using the deriva- 
tives (or gradient information) to find the optimum solu- 
tion. By literatures, metaheuristics can be classified in 
many ways depending on their nature, for example, evo- 
lutionary; nature-inspired, bio-inspired, and physic-in- 
spired; population-based and single-solution (trajectory-) 
based [1,2]. The most powerful metaheuristics should 
have at least two major properties, i.e., exploration (or di- 
versification) and exploitation (or intensification). Explo- 
ration or diversification means to generate diverse solu- 
tions to explore the search space on the global scale. Ex- 
ploitation or intensification means to focus on the search 
in a local region by exploiting the information to reach 
the best local solution within this region [2,3]. Popula- 
tion-based metaheuristics algorithms, such as genetic al- 
gorithm (GA) [4,5], ant colony optimization (ACO) [6], 
particle swarm optimization (PSO) [7], harmony search 
(HS) [8], firefly search (FS) [9], hunting search (HuS) 
[10], cuckoo search (CuS) [11,12], and bat-inspired search 

(BS) [13], have strong explorative property, while sin- 
gle-solution based metaheuristics algorithms, such as si- 
mulated annealing (SA) [14,15], tabu search (TS) [16,17], 
and adaptive tabu search (ATS) [18,19], have strong ex- 
ploitation characteristics. 

In 2012, the current search (CS) metaheuristics was 
proposed to solve optimization problems [20]. The CS 
algorithms are conceptualized from the electric current 
flowing through electric networks. It has been success- 
fully applied to design the PID controllers for unstable 
systems [21], and the PIDA controllers for hard-to-be- 
controlled systems [22]. This paper consists of five sec- 
tions. The CS algorithms are explained in senses of ex- 
ploration and exploitation properties as appeared in Sec- 
tion 2. The CS metaheuristics is conducted to evaluate its 
performance via testing against several well-known un- 
constrained optimization problems. Results obtained are 
compared among the genetic algorithm (GA), the particle 
swarm optimization (PSO), and the adaptive tabu search 
(ATS) as presented in Section 3. The CS is applied to a 
constrained design of the optimum PID controller for the 
dc motor speed control. The experimental setup, results, 
and discussions are illustrated in Section 4, while con- 
clusions follow in Section 5. 

2. Current Search Algorithms 

Algorithms of the CS metaheuristics are conceptualized 
from the electric current flowing through electric net- 
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works. The behavior of electric current is like a tide that 
always flow from higher to lower places. The less the re- 
sistance of blanch in electric networks, the more the cur- 
rent flows. All blanches connected in networks represent 
the feasible solutions in search space. The local entrap- 
ment is occurred when the current hits the open network 
connection. The optimum solution found is located at the 
end of the optimum current path. Algorithms of the CS 
are described as follows. 

Step 1. Initialize the search space , iteration counter 
k = j = l = 1, maximum allowance of solution cycling jmax, 
number of initial solutions (feasible current path in a net- 
work) N, number of neighborhood members n, maximum 
objective function value , search radius R, and set  =  
=  = . 

Step 2. Uniformly random initial solution Xi, i = 1,···, 
N within . Evaluate the objective function f(Xi) of X 
Rank Xi, i = 1,···, N giving f(X1) <···< f(XN), then store 
ranked Xi into set . 

Step 3. Let x0 = Xk as selected initial solution. 
Step 4. Uniformly random neighborhood xk,l, l = 1, ···, 

n around x0 within radius R. Evaluate the objective func- 
tion f(xk,l) of x. A solution giving the minimum objec- 
tive function is set as x*. 

Step 5. If f(x*) < f(x0), keep x0 in set k and set x0 = x*, 
set j = 1 and return to Step 4. Otherwise keep x* in set k 

and update j = j + 1. 
Step 6. If f(x0) < , adjust radius R = R,   [0, 1] to 

speed up the search process. 
Step 7. If j < jmax, return to Step 4. Otherwise keep x0 

in set  and update k = k + 1. 
Step 8. Stop the search process when termination cri- 

teria (TC) are satisfied. The optimum solution found is x0 
Otherwise return to Step 3. 

The CS algorithms can be summarized by the pseudo 
code as shown in Figure 1 and can be represented by the 
flow diagram in Figure 2. In Step 1, the search space  
performs the feasible boundary where the electric current 
can flow. The maximum allowance of solution cycling 
jmax implies the local entrapment occurred in the selected 
path. The number of initial solutions N is set as feasible 
paths of the electric currents. The number of neighbor- 
hood members n provides the sub-directions of the elec- 
tric currents in the selected path, and the search radius R 
is given as the sub-search space where the electric cur- 
rent can flow in the selected path. , , and  are pro- 
vided as the memory lists to store ranked initial solutions, 
solutions found in each search path, and the best solution 
in each search path, respectively. 

The uniformly random approach is conducted in Step 
2 to perform the feasible path of the electric currents wi- 
thin . These paths will be ranked by the objective func- 
tion to arrange the signification of paths from most to 

 

Figure 1. Pseudo code of the CS algorithms. 
 

least. This operation is regarded as the exploration prop- 
erty to generate diverse solutions to explore the search 
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Figure 2. The flow diagram of the CS algorithms. 
 

space on the global scale. The more the numbers of ini- 
tial solutions, the more the diverse solutions are gener- 
ated over the search space. Once the most significant 
path of the current is selected in Step 3 - 5, the search 
process will consecutively find the optimum solution wi- 
thin the sub-search space. 

In Step 6, the search radius R is gradually decreased 
when the search comes close to local or global solutions. 
In this situation, the shorter the search radius, the greater 
the probability of the optimum solution can be found. 
This operation is regarded as the exploitation property 
focusing on the search by exploiting the information to 
reach the best local solution within a local region. 

In Step 7 - 8, each feasible solution will be evaluated 
via the objective function until the optimum solution is 
found. The local entrapment in the selected path will be 
identified via the maximum allowance of solution cy- 
cling. If occurred, the second, the third, and so on, of the 
significant paths ranked in Step 2 will consecutively em- 
ployed, until optimum solution will be found or the TC 
will be met. 

Generally, the TC can be defined in many ways de- 
pending on the particular problems. One TC can be de- 
termined as the maximum number of search iterations 
which can be defined from the ratio of search space to 
search radius. There are other TC approaches, such as 
maximum number of objective function evaluation, maxi- 
mum iteration without improvement in solution quality, 
and maximum CPU time, for example. In engineering 
optimization problems, TC usually used is the sufficient 
solution quality concept represented by the cost J. The 
value of the cost J depends on applications and can be set 
from design specifications, component tolerances, and so 
on. 

According to CS algorithms, exploration and exploita- 
tion properties can complement each other and make the 
CS most powerful. Algorithms of the CS are elaborately 
described for the readers to follow and general enough 
for applications to various optimization problems. 

3. Performance Evaluation 

This section presents the performance comparison stud- 
ies among genetic algorithm (GA), particle swarm opti- 
mization (PSO), adaptive tabu search (ATS), and current 
search (CS). Algorithms of the GA, the PSO, and the 
ATS are omitted. Readers may refer to good sources [4,5] 
for the GA, [7] for the PSO, and [18,19] for the ATS, 
respectively. GA, PSO, ATS, and CS are tested against 
eight well-known unconstrained optimization problems 
[23] including Bohachevsky function (BF), the fifth func- 
tion of De Jong (DJF), Griewank function (GF), Mi- 
chaelwicz function (MF), Rastrigin function (RF), Salo- 
mon function (SalF), Schwefel function (SchF), and She- 
kel’s fox-holes function (SF). Table 1 summarizes these 
test functions in which Jmin is the minimum values of 
objective functions required to terminate the search. 

Algorithms of PSO, ATS, and CS were coded by 
MATLAB running on Intel Core2 Duo 2.0 GHz 3 Gbytes 
DDR-RAM computer, while GA is used from the MAT- 
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Table 1. Summary of the unconstrained optimization problems. 

Test functions Equations, optimum solutions, and search spaces 3D Surfaces 

BF 

     4cos 4π 0.7y 2 2, 2 0.3cos 3π 0.f x y x y x     global minimum located 

at x = 0, y = 0 with f(x, y) = 0， search space:    2, 2 ,x y   
6

min 1 10J  

2, 2 ,  and 

 

DJF 

       
1

6 6

2 ,jy a


    
0 16 32

32 32 32

 
 
 



25

11
, 1 500 1 jj

f x y j x a


   
32 16 0 16 32 32

32 32 32 32 32 16ija
  


     




 where 

 global minimum 

located at x = −32, y = −32, with f(x, y) = 0.9980, search space: 

  40, 40 , 40, 40 ,x y     and Jmin ≤ 0.9990 

GF 

          2 2, 1 1 4000 cos cos 2f x y x y x y     global minimum  

located at x = 0, y = 0 with f(x, y) = 0, search space:    40,40 , 40,40 ,x y   

and Jmin ≤ 1 × 10−6 

MF 

         20 2 20 2, sin sin π sin sin 2 πf x y x x y y  



 global minimum located at 

x = 2.20319, y = 1.57049 with f(x, y) = −1.8013, search space: 

  0, 4 , 0, 4 ,x y   and Jmin ≤ −1.80129 

RF 

     2 2, 10cos 2π 10cos 2π 20f x y x y x y      global minimum located at 

x = 0, y = 0 with f(x, y) = 0, search space:    5,5 , 5,5 ,x y     and Jmin ≤ 1 × 

10−6 
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Continued 

SalF 
   f 2 2 2 2, 1 cos 2π 0.1x y x y x y    



 global minimum located at x = 0, 

y = 0 with f(x, y) = 0, search space:   4,4 , 4,4 ,x y     and Jmin ≤ 1 × 10−6 

SchF 

      , 837.9658 sin sinf x y x  x y y



 global minimum located at  

x = 420.9687, y = 420.9687 with f(x, y) = 0, search space: 

  500,500 , 500,500 ,x y     and Jmin ≤ 1 × 10−6 

SF 

      2 230

1 21
, 1 j jj

f x y c x a y a


      ,j
 
  

4960 4.1380

8300 2.5620

 
 
 

 .6080 0.3260



 

where , 

  

global minimum located at x = 8.0241, y = 9.1465 with f(x, y) = −12.1190, search 
space: 

9.6810 9.4000 8.0250 9.

0.6670 2.0410 9.1520 4.ija 



0.8060 0.5170 0.1000 0.9080 0jc  

  0,10 , 0,10 ,x y   and Jmin ≤ −12.1189 

 
LAB-GA Toolbox [5]. Each of these algorithms per- 
forms search on each test function for 50 trials. Each 
search trial begins the search with different initial solu- 
tions, while search parameters are kept the same for all 
trials. This approach is commonly referred to as multiple- 
points-single-strategy (MPSS) in metaheuristic contexts. 
Search parameter settings for the GA follow MATLAB- 
GA Toolbox [5], for the PSO follow [7], for the ATS fol- 
low [18,19]. Tables 2 and 3 summarize the search pa- 
rameters of the ATS and the CS respectively. 

The averages results over 50 trials are summarized in 
Table 4. There are two groups of data, i.e., average 
number of objective function evaluations and average 
search time. Referring to the search time data in Table 4, 
the CS spends search time of 58.27% less than the GA 
does, 47.79% less than the ATS does, and 47.72% less 
than the PSO does as average. Referring to the number of 
objective function evaluations in Table 4, the CS evalu- 
ates the objective function of 58.26% less than the GA 
does, 47.49% less than the ATS does, and 47.72% less  

than the PSO does as, respectively. 
Table 5 summarizes the solutions obtained from those 

algorithms. It can be noticed that the CS outperforms 
other algorithms and provides solutions with the best 
quality within the shortest search time. This outstanding 
performance of the CS is achieved due to its explorative 
and exploitative characteristics. Figure 3 represents the 
CS movements over the search spaces of test functions. It 
was found that the large areas of all search spaces are 
explored by the explorative characteristic of the CS. In 
Figure 3, the CS can provide a high-quality solution ra- 
pidly because the elite search path can be provided. The 
search rapidly focuses the search to the solution with its 
exploitative characteristic. 

The CS metaheuristics has been applied to a con- 
strained parametric search problem, that is, design of the 
optimum PID controller for the dc motor speed control 
which is widely used in industries. In the next section, 
experimental setup and implementation results are illus- 
trated. 
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Table 2. ATS parameters. 

AR Test 
functions 

N R 
BT 

(n_re_max) 
Countmax 

Stage I Stage II 

BF 50 0.1 5 10,000 J < 1  10–2→R = 0.01 J < 1  10–4→R = 0.001 

DJF 100 5.0 5 10,000 J < 1  102→R = 1.00 J < 10→R = 0.50 

GF 100 0.5 5 10,000 J < 1  10–2→R = 0.01 J < 1  10–4→R = 0.001 

MF 50 2.0 5 10,000 J < 1→R = 0.01 J < 0→R = 0.001 

RF 100 0.5 5 10,000 J < 1  10–3→R = 0.001 J < 1  10–4→R = 0.0001 

SalF 100 0.5 5 10,000 J < 1  10–3→R = 0.001 J < 1  10–4→R = 0.0001 

SchF 100 10.0 5 10,000 J < 1  10–2→R = 0.001 J < 1  10–4→R = 0.0001 

SF 100 1.5 5 10,000 J < –2→R = 1.00 J < –5→R = 0.50 

Notes: N = number of neighborhood members, R = search radius, BT (back-tracking), n_re_max = maximum allowance of solution cycling before invoking BT, 
Countmax = maximum search iterations, AR (adaptive search radius) [18,19]. 

 
Table 3. CS parameters. 

R-adjustment Test 
functions 

n R N Imax 
Stage I Stage II 

BF 50 0.1 50 1000 J < 1  10–2→R = 0.01 J < 1  10–4→R = 0.001 

DJF 50 5.0 100 1000 J < 1  102→R = 1.00 J < 10→R = 0.50 

GF 100 0.5 100 1000 J < 1  10–2→R = 0.01 J < 1  10–4→R = 0.001 

MF 50 2.0 50 1000 J < 1→R = 0.01 J < 0→R = 0.001 

RF 100 0.5 100 1000 J < 1  10–3→R = 0.001 J < 1  10–4→R = 0.0001 

SalF 100 0.5 200 1000 J < 1  10–3→R = 0.001 J < 1  10–4→R = 0.0001 

SchF 100 10.0 100 1000 J < 1  10–2→R = 0.001 J < 1  10–4→R = 0.0001 

SF 100 1.5 50 1000 J < –2→R = 1.00 J < –5→R = 0.50 

Notes: n = number of neighborhood members, R = search radius, N = search (current) paths, Imax = maximum search iterations. 

 
Table 4. Average results over 50 trials. 

Average number of function evaluations Average search time (seconds) Test 
functions 

GA PSO ATS CS GA PSO ATS CS 

BF 480,100 465,100 424,123 200,300 6.52 6.32 5.76 2.72 

DJF 358,400 352,520 375,485 114,222 20.50 18.75 19.67 6.07 

GF 902,150 780,464 752,260 501,500 11.67 10.10 9.74 6.49 

MF 200,375 145,680 126,450 50,100 3.01 2.18 1.89 0.75 

RF 495,560 474,725 468,526 240,150 9.80 9.39 9.27 4.75 

SalF 913,250 610,500 585,375 454,100 17.46 11.67 11.19 8.68 

SchF 405,345 248,654 286,140 150,250 5.69 3.49 4.12 2.11 

SF 685,450 545,120 601,150 320,300 12.07 9.60 10.59 5.64 
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Table 5. Results obtained from GA, PSO, ATS, and CS. 

Test 
functions 

Results GA PSO ATS CS 

Min 2.125010–8 10–9 10–9 10–10 

Max 3.461310–7 6.419710–8 4.021910–8 1.560210–9 

Average 1.0312 10–7 5.7490 10–9 6.0498 10–9 3.0564 10–10 
BF 

Std. 1.014010–7 5.687310–9 6.101210–9 1.110210–10 

Min 0.9980 0.9980 0.9980 0.9980 

Max 0.9989 0.9985 0.9982 0.9981 

Average 0.9984 0.9983 0.9981 0.9980 
DJF 

Std. 0.0003 0.0002 0.0001 0.0001 

Min 10–8 10–9 10–9 10–10 

Max 10–7 4.689410–8 1.821010–8 2.499210–9 

Average 10–7 7.0315 10–9 8.4010 10–9 4.6617 10–10 
GF 

Std. 10–7 6.514310–9 4.983410–9 1.465210–10 

Min –1.8013 –1.8013 –1.8013 –1.8013 

Max –1.8012 –1.8012 –1.8012 –1.8012 

Average –1.8012 –1.8012 –1.8013 –1.8013 
MF 

Std. 0.0002 0.0002 0.0001 0.0001 

Min 10–8 10–9 10–9 10–10 

Max 10–7 3.312710–8 1.038110–8 1.010310–9 

Average 10–7 6.9973 10–9 6.3967 10–9 3.8730 10–10 
RF 

Std. 10–7 2.997810–9 5.991010–9 1.919510–10 

Min 10–8 10–9 10–9 10–9 

Max 10–7 4.102710–8 4.287910–8 2.451010–8 

Average 10–7 7.9410 10–9 8.0693 10–9 4.0301 10–9 
SalF 

Std. 10–7 6.990110–9 7.990210–9 4.120710–9 

Min 10–7 10–8 10–8 10–8 

Max 10–7 3.453210–7 2.060410–7 2.002110–7 

Average 10–7 8.0831 10–8 6.8876 10–8 2.5654 10–8 
SchF 

Std. 10–7 7.657410–8 7.013010–8 1.998310–8 

Min –12.1190 –12.1190 –12.1190 –12.1190 

Max –12.1189 –12.1189 –12.1189 –12.1189 

Average –12.1189 –12.1189 –12.1189 –12.1190 
SF 

Std. 0.0002 0.0002 0.0002 0.0001 
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Figure 3. CS movements: (a) BF; (b) DJF; (c) GF; (d) MF; (e) RF; (f) SalF; (g) SchF; and (h) SF. 
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4. DC Motor Speed Control Design ducted for the identification of the motor model at the 

1860 rpm operating point as shown in Figure 5. It was 
found that the controlled plant gives the rise time of 2.50 
sec, steady-state level of 4 V (1860 rpm), and without 
overshoot. The identification using MATLAB and Sys- 
tem Identification Toolbox [25] provides the normalized 
3rd-order plant model expressed by Equation (2). Figure 
6 depicts the simulation step response obtained by the 
model. The simulation result agrees very well with the 
experimental one. Therefore, the identified model in 
Equation (2) is very good representations of the con- 
trolled plant. 

In this section, the CS is applied to design an optimum 
PID controller for the dc motor speed control system. 
This section can be divided into four parts, i.e., mathe- 
matical model, model identification, design of PID con- 
troller by the CS, and experimental results, respectively. 
Details are described as follows. 

4.1. Mathematical Model 

The schematic diagram of armature-controlled dc motor 
can be represented in Figure 4 [24], where Ra is an ar- 
mature-winding resistance, La is an armature-winding 
inductance, Rf is a field-winding resistance, Lf is a field- 
winding inductance, J is a moment of inertia, B is a vis- 
cous-friction coefficient, ea(t) is an applied armature vol- 
tage, ia(t) is an armature current, ef(t) is a field voltage, 
if(t) is a field current, eb(t) is a back emf (electromotive 
force) voltage, T(t) is a motor torque, (t) is an angular 
displacement, and (t) is an angular velocity (speed), 
respectively. 

  5 3 2plant

1

1 10 0.04534 0.5524 1pG s

Mathematical model of armature-controlled dc motor 
in term of the transfer function can be formulated by the 
differential equations and Laplace transform. The trans- 
fer function of armature-controlled dc motor speed con- 
trol is stated in Equation (1) [24], where Kt is a torque 
constant and Kb is a back emf constant. 

 
   2

t

a a a a

s K

E s a t bJL s BL JR s




  BR K K 
   (1) 

4.2. Model Identification 

The controlled plant consists of dc motor (LEYBOLD- 
DIDACTIC GMBH, Type 731-91, 0.3 kW, 220 V, 2.2 A, 
2000 rpm), an actuator (SCR full-wave controlled recti- 
fier), a speed sensor (tachogenerator LEYBOLD, Type 
731-09), and a lowpass filter circuit. Model identification 
process starts with testing the controlled plant by step 
input excitation. A step-transient response test was con-  

 

 
Figure 4. Schematic diagram of dc motor. 

s s s
   

   (2) 

4.3. Design of PID Controller by CS 

The CS-based PID controller design for the dc motor 
speed control system can be performed by the block dia- 
gram representation as shown in Figure 7. The theoretic- 
cal function of the PID controller is expressed in Equa- 
tion (3), where Kp is the proportional gain, Ki, is the inte- 
gral gain, and Kd is the derivative gain, respectively. The  

 

 

Figure 5. DC motor step response. 
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Figure 6. Step response of the plant model. 
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1.2

1

0.8

0.6

0.4
Figure 7. CS-based PID design. 

 
objective function, J, the sum of absolute errors between 
R(s) and C(s) as stated in Equation (4), will be fed back 
to the CS tuning block. J is minimized to find the opti- 
mum PID controller’s parameters, i.e., Kp, Ki, and Kd, 
giving satisfactory responses. 

 
PID
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     (5) 

Referring to Figure 7, the objective function J is mi- 
nimized according to inequality constraints in Equation 
(5), where tr is rise time, Mp is maximum percent over- 
shoot, ts is settling time, and ess is steady state error. The 
CS search parameters are priory set as follows: the ma- 
ximum search iteration of each path Imax = 200, the num- 
ber of initial solutions N = 10, the number of neighbor- 
hood members n = 20, and the search radius R = 20% of 
search spaces. Algorithms of the CS were coded by 
MATLAB running on Intel Core2 Duo 2.0 GHz 3 Gbytes 
DDR-RAM computer. The tests were conducted 20 trial 
runs to obtain the optimum PID controller for the dc mo- 
tor speed control system. 

After the search process stopped, the CS successfully 
provides the optimum PID controller for the motor con- 
trol system as stated in Equation (6), where Kp = 1.6501, 
Ki = 4.0986, and Kd = 0.0049, within 216.3504 sec of 
average search time consumed. The step input and the 
step disturbance responses of controlled system are de- 
picted in Figure 8. As results, the system without PID 
controller gives tr = 2.50 sec. and cannot be recovered 
once step disturbance of 0.3 (30% of unit step) is applied  
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system response without PID controller
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Figure 8. Response of the controlled system. 
 

at the 10th second. This causes the ess of 0.3 at steady- 
state response. For the system with PID controller ob- 
tained by the CS, the step input response gives tr = 
0.8506 sec, Mp = 4.04%, ts = 2.0104 sec, and ess = 0.0, 
while the step disturbance response, once the step dis- 
turbance of 0.3 is applied, provides the recovering time 
tre = 1.8542 sec, Mp = 8.24%, and ess = 0.0. It was found 
that the optimum PID controller can be successfully 
achieved by the CS according to inequality constraints 
stated in Equation (5). 

 
PID

4.0986
1.6501 0.0049cG s s

s
         (6) 

4.4. Experimental Results 

To obtain the experimental results, a closed loop dc motor 
speed control system with PID controller is a necessary 
test bed. The diagram in Figure 9 represents the experi- 
mental setup. The optimum PID controller obtained by 
the CS is realized by electronic circuits (op-amp LM335 
and RC network) to ensure real-time operation. Driving 
the motor requires a full-wave controlled rectifier control- 
led by IC-TCA785. Signal conditioning circuits including 
lowpass filter and zero-span circuits are also conducted. 
The experimental setup installed in the laboratory is 
shown in Figure 10, while the experimental results are 
depicted in Figure 11. 

Referring to Figure 11, it was found that the control- 
led dc motor speed control system with PID controller 
designed by the CS can provide the very satisfactory re- 
sults in both command following and load regulating 
(disturbance rejection) modes. In command following 
mode, the system response gives tr = 0.98 sec, Mp = 
5.01%, ts = 2.42 sec, and ess = 0.0, while in disturbance 
rejection mode once the step disturbance of 0.3 is applied 
the system provides the recovering time tre = 1.55 sec, Mp 
= 7.85%, and ess = 0.0. The system responses obtained 
from the test bed agree very well with those obtained 
from the model simulation. Very good agreement be- 
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Figure 9. Circuit diagram representing the experimental setup. 
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Figure 10. Experimental setup. 
 

 

Figure 11. Experimental results. 
 

tween the simulation results and the experiment ones can 
be observed from Figures 8 and 11. 

5. Conclusion 

The current search (CS) metaheuristics has been pro- 
posed in this paper. The CS algorithms have been con- 
ceptualized from the electric current flowing through 
electric networks for optimization problems. Algorithms 
of the CS have been elaborately described. Performance 
evaluation of the CS has been assessed by testing against 
eight well-known optimization problems. With two pow- 
erful strategies, i.e., exploration and exploitation, the 
proposed CS has provided superior search performances 
to GA, PSO, and ATS. The CS has been applied to de- 
sign the optimum PID controller for the dc motor speed 
control system. An experimental bed of a closed loop dc 
motor speed control system was constructed at the labo- 
ratory. As results, the optimum PID controller can be ob- 
tained by the CS. Very good agreement between the si- 
mulation and experimental results has been also proposed. 

This can be concluded that the optimum PID controller 
for the dc motor speed control system can be successfully 
obtained by the proposed CS metaheuristics. For the fu- 
ture trends of this work, the convergence proofs of the 
CS metaheuristics will be proposed. Moreover, the CS is 
still needed to be applied to various realworld engineer- 
ing optimization among discrete, combinatorial, as well 
as multiobjective Pareto optimization problems especially 
in control engineering domain including model identifi- 
cation, system stabilization, and control synthesis. 
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