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ABSTRACT 

The replacement problem can be modeled as a finite, irreducible, homogeneous Markov Chain. In our proposal the pro- 
blem was modeled using a Markov decision process and then, the instance was optimized using dynamic programming. 
We proposed a new functional that includes a reward functional, that can be more helpful in processing industries be- 
cause it considerate instances like incomes, maintenance costs, fixed costs to replace equipment, purchase price and 
salvage values; and this functional can be solved with dynamic programming and used to make effective decisions. Two 
theorems are proved related with this new functional. A numerical example is presented in order to demonstrate the 
utility of this proposal. 
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1. Introduction 

The machine replacement problem has been studied by a 
lot of researchers and is also an important topic in opera-
tions research, industrial engineering and management 
science. Items which are under constant usage, need re-
placement at an appropriate time as the efficiency of the 
operating system that uses such items suffer a lot. In this 
proposal we include a reward functional, that is more 
helpful in processing industries because it considerate 
instances like incomes, maintenance costs, fixed costs to 
replace equipment, purchase price and salvage values; 
and this functional can be solved with dynamic pro- 
gramming and used to make effective decisions. 

In the real-world the equipment replacement problem 
involves the selection of two or more machines of one or 
more types from a set of several possible alternative ma- 
chines with different capacities, cost of purchase and 
operation to produce efficiently. When the problem in-
volves a single machine, it is common to find two well- 
defined forms of this; the quantity-based replacement, 
and the time-based replacement. In the quantity-based re- 
placement model, a machine is replaced when an accu- 
mulated product of size q is produced. In this model, one 
has to determine the optimal production size q. While in 
a time-based replacement model, a machine is replaced 
in every period of T with a profit maximizing. 

When the problem involves two or more machines this 
problem is named the parallel machine replacement pro- 
blem, and the time-based replacement model consists of 
finding a minimum cost replacement policy for a finite 

population of economically interdependent machines. 
A replacement policy is a specification of “keep” or 

“replace” actions, one for each period. Two simple ex- 
amples are the policy of replacing the equipment every 
time period and the policy of keeping the first machine 
until the end of a period N. An optimal policy is a policy 
that achieves the smallest total net cost of ownership over 
the entire planning horizon and it has the property that 
whatever the initial state and initial decision are, the re- 
maining decisions must constitute an optimal policy with 
regard the state resulting from the first decision. In prac- 
tice, the replacement problem can be easily addressed 
using dynamic programming and Markov decision proc- 
esses. 

The dynamic programming uses the following idea: 
The system is observed over a finite or infinite horizon 
split up into periods or stages. At each stage the system is 
observed and a decision or action concerning the system 
has to be made. The decision influences (deterministical- 
ly or o stochastically) the state to be observed at the next 
stage, and depending on the state and the decision made, 
an immediate reward is gained. The expected total re- 
wards from the present stage and the one of the following 
state is expressed by the functional equation. Optimal 
decisions depending on stage and state are determined 
backwards step by step as those maximizing the right 
hand side of the functional equation [1]. Howard [2] 
combines the dynamic programming technique with the 
mathematically well established notion of a Markov 
chain, creating the new concept called the Markov Deci- 
sion processes and developing the solution of infinite 
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stage problems. The policy iteration method was created 
as an alternative to the stepwise backward contraction 
methods. The policy iteration was a result of the applica- 
tion of the Markov chain environment and it was an im- 
portant contribution to the development of optimization 
techniques [1]. 

In this document, a stochastic machine replacement 
model is considered. The system consists of a single 
machine and this is assumed to operate continuously and 
efficiently over N periods. In each period, the quality of 
the machine deteriorates due to its use, and therefore, it 
can be in any of the N states, denoted 1, 2, ···, N. In our 
proposal we modeled the problem using a Markov deci- 
sion process and then, the instance is optimized using 
dynamic programming. We propose a new functional 
that includes a reward function, also helpful information 
as incomes, maintenance costs, fixed costs to replace 
equipment, purchase price and salvage values. Two 
theorems are proved related with this new functional. 

In this proposal is assumed that for each new machine 
it state can become worse or may stay unchanged, and 
that the transition probabilities pij are known, where 

next state will be curr

0, if

ijp P j

j i



 

ent state is i
 

also be assumed that the state of the machine is known at 
the start of each period, and we must choose one of the 
following two options: a) Let the machine operate one 
more period in the state it currently is, b) Replace the 
machine by a new one, where every new machines for 
replacement are assumed to be identical. 

2. Literature Review 

There are several theoretical models for determining the 
optimal replacement policy. The basic model considers 
maintenance cost and resale value, which have their 
standard behavior as per the same cost during earlier pe- 
riod and also partly having an exponential grown pa- 
ttern as per passage of time. Similarly the scrap value for 
the item under usage can be considered to have a similar 
type of recurrent behavior. In relation to stochastic mod-
els the available literature on discrete time maintenance 
models predominantly treats an equipment deterioration 
process as a Markov chain. 

Sernik and Marcus [3], obtained the optimal policy 
and its associated cost for the two-dimensional Markov 
replacement problem with partial observations. They 
demonstrated that in the infinite horizon, the optimal 
discounted cost function is piecewise linear, and also 
provide formulas for computing the cost and the policy. 
In [4], the authors assume that the deterioration of the 
machine is not a discrete process but it can be modeled as 
a continuous time Markov process, therefore, the only 

way to improve the quality is by replacing the machine 
by one new. They derive some stability conditions of the 
system under a simple class of real-time scheduling/re- 
placement policy. 

Some models are approached to evaluate the inspect- 
tion intervals for a phased deterioration monitored com- 
plex components in a system with severe down time 
costs using a Markov model (see [5], for example). 

In [6], the problem is approached from the perspective 
of the reliability engineering developing replacement 
strategies based on predictive maintenance. Moreover in 
[7] the authors formulated a stochastic version of the 
parallel machine replacement problem. They analyzed 
the structure of optimal policies under general classes of 
replacement cost functions. 

Another important approach that has received the 
problem is the geometric programming [8]. In its pro- 
posal, the author discusses the application of this tech- 
nique to solving replacement problem with an infinite 
horizon and under certain circumstances he obtains a 
closed-form solution to the optimization problem. 

A treatment to the problem when there are budget 
constraints can be found in [9]. In their work, the authors 
propose a dual heuristic for dealing with large, realisti- 
cally sized problems through the initial relaxation of 
budget constraints. 

Compared with simulation techniques, Dohi et al. [10], 
propose a technique based on obtaining the first two 
moments of the discounted cost distribution, and then, 
they approximate the underlying distribution function by 
three theoretical distributions using Monte Carlo simula-
tion. 

The most important pioneers in applying dynamic 
programming models in replacement problems are: 
Bellman [11], White [12], Davidson [13], Walker [14] 
and Bertsekas [15]. Recently the Markov decision proc- 
ess has been applied successfully to the animal replace- 
ment problem as a productive unit (see [16-18], for ex- 
ample). 

Although the modeling and optimization of the re- 
placement problem using Markov decision processes is a 
topic widely known [19]. However, there is a significant 
amount about the theory of stochastic perturbation ma- 
trices (see [20-23], and references therein). Considering 
all the references, the problem is presented in the next 
section. 

3. Problem Formulation 

We start by defining a discrete-time Markov decision 
process with a finite state space Z states z1, z2, ···, zz 
where, in each stage s = 1, 2, ··· the analyst should made 
a decision d between ξ possible. Denote by z(n) = z and 
d(n) = di the state and the decision made in stage n re-
spectively, then, the system moves at the next stage n + 1 
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in to the next state j with a know probability given by 

   1k ,zjp P z n j z n   n kz d d   

k
zjr

1

zk k k

    (1) 

When the transition occurs, it is followed by the reward 
and the payoff is given by  

z zj zjj
p r


 

 , , ,

  

at the state z after the decision dk is made. 
For every policy 1 2 Zk k k

, 1, 2, ,z i Z 

  the corresponding 
Markov chain is ergodic, then the steady state probabili-
ties of this chain are given by  

 limz
n

p P z n


     

and the problem is to find a policy   for which the 
expected payoff is  

1

Z
k

z z
z

p 


  

  1 2 Replace

               (2) 

is maximum. In this system, the time interval between 
two transitions is called a stage. 

An optimal policy is defined as a policy that maxi- 
mizes (or minimizes) some predefined objective function. 
The optimization technique (i.e. the method to obtain an 
optimal policy) depends on the form of the objective 
function and it can result in different alternative objective 
function. The choice of criterion depends on whether the 
planning horizon is finite or infinite [1]. 

In our proposal we consider a single machine and 
regular times intervals whether it should be kept for an 
additional period or it should be replaced by a new. By 
the above, the state space is defined by 

 Keep ,Z z z

 
1

π ,
Z

i i
z

h r

 , 

and having observed the state, action should be taken 
concerning the machine about to keep it for at least an 
additional stage or to replace it at the end of the stage. 

The economic returns from the system will depend on 
its evolution and whether the machine is kept or replaced, 
in this proposal this is represented by a reward depending 
on state and action specified in advance. If the action 
replace is taken, we assume that the replacement takes 
place at the end of the stage at a known cost, the planning 
horizon is unknown and it is regarded infinite, also, all 
the stages are of equal length. 

The optimal criterion used in this document is the 
maximization of the expected average reward per unit of 
time given by 

 


 

πi

              (3) 

where   is the limiting state probability under the pol- 
icy. 

Traditionally dynamic programming is recognized as a 

method to solve complex problems based on their de- 
composition in simpler models. By the way of operate, 
this technique is applied in cases where problems have 
optimal substructure. 

The basic model contains two main elements: a) a dis- 
crete dynamical system that evolves over time, b) a cost 
function that is additive over time [15]. The system 
evolves under the influence of pro decisions expressed 
through state variables and has the form 

 1 , , , 1,2, , 1k k k k kx f x u w k N          (4) 

where 
k is the discretized time index. 
xk is the state of the system and keep the past infor- 

mation that is relevant to future optimization. 
uk is the decision variable that must be choose in time 

k. 
wk is the decision random parameter (or noise). 
N is the planning horizon. 
And fk is a function that describes the system. The cost 

function is additive because the cost of time k,  
 , ,k kk kg x u w

   
1

0

, , ,
N

N N k k k k
k

g x g x u w




 

 is accumulated over the time. The total 
cost is 

        (5) 

  ,N Ngwhere x

   
1

0

, ,
N

N N k k k k
k

g x g x u w




 is the final cost in the end of the proc- 
ess. Although, because the presence of wk, this cost is 
generally a random variable and don’t have any sense to 
optimize it as a punctual value, in this case, the expected 
cost is used 

   
 

       (6) 

the expected value is applied over the join distribution of 
the random variables involved in the process. The opti- 
mization is over the decision variables u0, u1, ···, uN–1. In 
turn, the random variables uk are selected with updated 
information on the current state variable xk either exact or 
approximate values. This section proposes to use the 
methodology of dynamic programming to solve replace- 
ment problem using a reward function constructed from 
the functions of cost and incomes. 

4. A Functional Associated with the Reward 

In this section we presented the replacement problem as a 
dynamic system that evolves certain laws that are in- 
cluded in the transition probability matrices. In this case, 
the cost function of the system in the state i is g(i) and 
satisfies that 

     1 2g g g Z            (7) 

this means that the cost is state i is less than the cost in 
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the state i + 1 and the state 1 corresponds to best equip- 
ment condition, Z represents all the states in the system. 
Generally, between each operation period the equipment 
may worsen or remain unchanged. Then, for the stochas- 
tic case the transition probabilities are 

 next state will be curr

0, if

ijp P j

j i



 

ent state is i

  K p q s   
d

 (8) 

It is suppose that in the beginning of the next period, 
the state of the equipment is known and the following 
two decisions must be chosen: a) maintain the operation 
of the equipment for a next period and b) repair the 
equipment to take the state 1 at a cost R. Another impor-
tant hypothesis is that after the equipment is repaired, the 
state 1 is guaranteed for at least one period, and in the 
following periods, the equipment may be worsen ac-
cording to the transition probabilities pij. 

Considering the above, the problem is to determine the 
deterioration level (state) where the lower cost of repair-
ing the machine is obtained, therefore, the best benefits 
in relation to the cost will be obtained in the future. 

Although the ease of dynamic programming to repre- 
sent the states is an advantage, it is also true that the 
computational complexity increases when more possibi- 
lities of the system are considerate. Our approach con- 
sists of a reward functional that includes the expenses 
and the benefits proportioned by the equipment with two 
states (keep and replace), although more than two states 
could be considerate. 

Formally, the reward function is 

   1d d
z zr g m s       (9) 

where zg  represent the incomes obtained when the 
process is the state z and the decision d is taken. Simi- 
larly, the expression 

      p q s   

1 replace

0 keep





1 m s K         (10) 

represents the outgoings made in the maintenance or the 
replacement of the equipment, when the equipment 
works s stages before its replacement. Here, m(s) repre- 
sents the maintenance cost when the equipment is in the 
stage s, K are the fixed costs to replace the equipment, p 
is the purchase price of a new equipment and q(s) is the 
rescue value when the equipment is in the stage s. The 
constant γ is  

               (11) 

Suppose now that the costs are bounded and ξ is such 
that 

, fd
z  or all andr z d

        

 
1

max 1

1 , 1, , ,

d
z d z

Z
d
ij j

j

 

Then, using the Equation (9) the next functional is pro- 

posed 

s g m s K p q s

p f s z Z

 





     




  


 

f

(12) 

to evaluate the expected reward of the process in all the 
stages. If can be proved (see [15],) that in this approach 
the discount factor β, 0 < β < 1, is used in order to ensure 
that the reward obtained in the future will be less than the 
reward obtained in the present. So, considerating the   
policy  

   


1zf s           (13) 
 

Let 

   maxz zf s f s




 *

for all 0z zf f s s

         (14) 

here, it is said that a policy is β-optimal. 

 

        

 
1

max 1

1 , 1, , ,

d
z d z

Z
d
ij j

j

 

Then, a policy is β-optimal is the reward β-discounted 
is maximum for every initial value. This proposal could 
be formalized in the following theorems 

Theorem 4.1: The functional  

s g m s K p q s

p f s z Z

 





     




  


 



f

 

fsatisfies the optimal value of z s

   
1

max 1 , 1, ,
Z

d d
z d z ij j

j

. 
Proof: The proof is trivial. This approach is a variant 

of the optimality equation proposed and demonstrated by 
Ross [24], where the functional is written through the 
reward function as 

s p f s z Z 


 
    

 
  .  f

Theorem 4.2: Let   a stationary policy, so if the 
process is in the state z, the decision d is chosen in order 
to maximize the function 

      

 
1

1

1 , 1, , ,

d
z

Z
d
ij j

j

g m s K p q s

p f s z Z

 




        


  


 

 

   zzfSo s f s   for all s > 0, then f is a function β- 
optimal. 

Proof: Rewriting the functional of the Equation (11), 
again we have a variant of the optimality equation of 
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Ross [24], that is demonstrated in this reference.  

5. Numerical Example 

Consider a variation of the example reported in [2], the 
incomes d

z  are in Table 1. g
The Table 2 shows the transition probabilities reported 

in [1], which represented a Markovian decision process 
with d = {K, R}. 

The maintenance costs are variable in every stage in- 
creasing at a rate of 1%, the maintenance cost in the 
stage s = 1 is m(1) = 10,000. The rescue value also 
changes in every stage decreasing at a rate of 10%, for 
the first stage is q(1) = 2000. In Table 3 are some main- 
tenance costs and rescue values for the first 40 stages. 
 

Table 1. Incomes, d
zg . 

State/Action d = 1 (Keep) d = 2 (Replace) 

z = 1 (low) 20,000 20,000 

z = 2 (average) 22,000 22,000 

z = 3 (high) 24,000 24,000 

 
Table 2. Transition probabilities, d

zjp . 

Action d = 1 (Keep) d = 2 (Replace) 

State j = 1 (L) j = 2 (A) j = 3 (H) j = 1 (L) j = 2 (A) j = 3 (H)

z = 1 (L) 0.6000 0.3000 0.1000 0.3333 0.3333 0.3333

z = 2 (A) 0.2000 0.6000 0.2000 0.3333 0.3333 0.3333

z = 3 (H) 0.1000 0.3000 0.6000 0.3333 0.3333 0.3333

L: Low, A: Average, H: High. 

 
Table 3. Maintenance costs, m(s) and rescue values. 

s m(s) q(s) 

1 10000.00 2000.00 

2 10100.00 1818.18 

3 10201.00 1652.89 

4 10303.01 1502.63 

5 10406.04 1366.03 

6 10510.10 1241.84 

7 10615.20 1128.95 

8 10721.35 1026.32 

9 10828.57 933.01 

10 10936.85 848.20 

12 11156.68 700.98 

14 11380.93 579.32 

20 12081.08 327.01 

26 12824.32 184.59 

30 13345.03 126.07 

35 14025.76 78.28 

40 14741.22 48.60 

Equipment is K = 3000, and the purchase price of a 
new equipment is p = 10,000. A discounted factor of β = 
0.9 and a planning horizon of s = 40 are considered. 

In the Table 4 are showed the iterations from the first 
s = 40 stages. Note that from s = 1 to s = 25, the result is 
replace in the state z = 1 and keep in the states z = 2, 3. 
From s = 26 to s = 33, the result is replace in the states z 
= 1, 2 and keep in the state z = 3. From s = 34, the deci- 
sion is replace in the three states. These results are ob- 
tained because the maintenance costs are increasing and 
the rescue values are decreasing from one stage to an- 
other. 

6. Conclusions 

For replacement problems with finite planning horizon, 
dynamic programming has been the most widely used 
technique; this is because using this technique because it 
is possible to deduce the optimal solution naturally 
through functional forms. 

In our approach we explore the replacement problem 
solved by dynamic programming and we propose a new 
functional that includes a reward function, also helpful 
information as incomes, maintenance costs, fixed costs to 
replace equipment, purchase price and salvage values. 
Two theorems are proved related with this new func-  
 

Table 4. Numerical results. 

 Low Average High 

s Reward Action* Reward Action* Reward Action*

1 10,000 1 12,000 1 14,000 1 

2 19,800 1 22,700 1 25,600 1 

3 29,082 2 32,229 1 35,534 1 

4 37,556 2 40,731 1 44,204 1 

5 45,113 2 48,305 1 51,842 1 

6 51,820 2 55,027 1 58,587 1 

7 57,759 2 62,972 1 64,543 1 

8 63,009 2 66,218 1 69,793 1 

9 67,639 2 70,833 1 74,409 1 

10 75,286 2 78,420 1 78,456 1 

12 78,411 2 81,500 1 85,068 1 

14 83,488 2 86,465 1 90,021 1 

20 91,809 2 94,289 1 97,784 1 

26 93,675 2 95,675 2 98,891 1 

30 93,226 2 95,226 2 97,840 1 

35 91,795 2 93,795 2 95,795 2 

40 90,479 2 92,479 2 94,s479 2 

*1 Keep, 2 Replace. 
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tional. Future work could be to include more decisions 
(not only keep and replace), this decisions complicate the 
solution but is more similar to real life. Other contribu- 
tion could be increase the number of equipments, the 
incomes and costs related to the replacement problem. 

This model has been developed without considering a 
specific kind of industry, but can be used in the process- 
ing industry, now we are working to validate the model 
in some processing industries in our region. 
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