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ABSTRACT

This paper presents a method to deal with an extension of regional gradient observability developed for parabolic sys-
tem [1,2] to hyperbolic one. This concerns the reconstruction of the state gradient only on a subregion of the system
domain. Then necessary conditions for sensors structure are established in order to obtain regional gradient observabil-
ity. An approach is developed which allows the reconstruction of the system state gradient on a given subregion. The
obtained results are illustrated by numerical examples and simulations.
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1. Introduction

For a distributed parameter system evolving on a spatial
domain Qc IR", the notion of regional observability
concerns the reconstruction of the initial state on a sub-
region @ of Q. Characterization results and appro-
aches for the reconstruction of regional state are given in
[3,4]. Similar results were developed for the state gradi-
ent of parabolic systems in [2]. This led to the so-called
regional gradient observability and concerns the possibil-
ity to reconstruct the gradient on a subregion @ without
the knowledge of the system state. The study of gradient
observability is motivated by real applications, the case
of insulation problems, also there exist systems for which
the state is not observable but the state gradient is ob-
servable, example is given in [1].

In this paper we present an extension of the above re-
sults on regional gradient observability to hyperbolic
systems evolving on a spatial domain Q . That is to say
one may be concerned with the observability of the state
gradient only in a critical subregion @ of Q. More
precisely let (S) be a linear hyperbolic system with suit-
able state space and suppose that the initial state y°and
its gradient VY’ are unknown and that measurements
are given by means of output functions (depending on the
number and structure of the sensors). The problem con-
cerns the reconstruction of the state gradient on the sub-
region @ of the system domainQ without taking into
account the residuel parton Q\w@.

Here, we consider the problem of regional gradient

Copyright © 2012 SciRes.

observability of hyperbolic systems and we establish
condition that allows the reconstruction of the initial gra-
dient on such a subregion. And the paper is organized as
follows.

The second section is devoted to definitions and char-
acterizations of this notion for hyperbolic systems. In the
third section we establish a relation between regional
gradient observability and sensors structure. The fourth
section is focused on regional reconstruction of the initial
gradient. In the last section we give a numerical approach,
extending the Hilbert Uniqueness Method developed by
J.L. Lions [5], and illustrations with efficient simulations.

2. Regional Gradient Observability

Let Q be an open bounded subset of IR" with a re-
gular boundary 0Q.Fix T >0 and let denote by
Q=0Qx]0,T[ and X =0Qx]0,T[.

Consider the system described by the hyperbolic equa-
tion

62y(x,t)_
ot> —Ay(x,t) Q
oy(x0) |
y(x,0)=y°,%=y Q. (1)
y(£.t)=0 »

where A is the second order elliptic linear operator
with regular coefficients.
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Equation (1) has a unique solution
yeC(0.T:Hy(@))NC'(0.T;L(Q)) (6]

Suppose that measurements on system (1) are given by
an output function:

z(t)=Cy(t). 2

where C: H(') ( Q ) — IRY is a linear operator depending
on the structure of  sensors.

Let us recall that a sensor is defined by a couple
(D, f),where DcQ is the location of the sensor and
fel (D) is the spatial distribution of measurements
on D. In the case of a pointwise sensor, D=beQ
and f =0, is the Dirac mass concentrated in b see
[7].

Let y=(y,0y/ot) and CY=(Cy,0) then the sys-

tem (1) may be written in the form
YR o
ot 3)

= (01
with A= .
A0

A has a compact resolvent and generates a strongly
continuous semi-group (S (t) )1>0 on a subspace of the

Hilbert state space L*(Q)x L*(Q) given by

Zi{<yl,wmj>cos I t

m>1 j=1

+ﬁ<y2 ’ij>5in\/%tjwmj
Z‘;i(_m@l ,ij>sin At
m>1 j=

{3y, oos T 0

W, ;) is a basis in Hy( Q) of eigenfunctions of A,
orthonormal in L*(Q) and A,<0 the associated ei-
genvalues with multiplicity r, . Then (3) admits a uni-
que solution y=S(t)y’.

Let us define the observability operator

K:Hy(Q)xHy(Q)—L(0.T:IRY)
h—>CS(.)h

sof}) -

which is linear and bounded with its adjoint denoted by
K" andlet V be the operator

ViH(Q)x Hy (@) = (L (@) x(2(Q))
( Yis yz)_>§( Yis y2)=(Vyl,Vy2)

where
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ViHL(Q) > (L (Q))

oy dy oy
ox 0%,  ox,

y—>)’[

while their adjoints are denoted by V' and V
tively.

respec-

2.1. Definition 2.1

The system (1) together with the output (2) is said to be
exactly (resp. approximately) gradient observable if

m( VK ) =(C(Q)) % (*(Q))',
(resp. Ker( K€*)={o})

Such a system will be said exactly (resp. approximately)
G-observable.

For a positive Lebesgue measure subset @ of Q,
we also consider the operators

7, (2 () x(12(Q)) - (L (@) x(L (@)’

(V> ¥2) = (Y15 20Y5)
where
2L (@) > (L (o))
and
;Z[O:LZ(Q)—> Lz(a))
y—vl,

while their adjoints, denoted by 7., z. and %,
respectively and given by
n 2 n
() > (L (@) x(1 ()

Zo (L (@) (L

(y17 Y, %(Z;ylﬂzmyZ)

where
7 (E (@) > (2 (Q))
e y onw
Y= XY= 0 onQ\w
and
Zo Ll (0)>(Q)
sty y on®
Yy 2= 0 onQ\w

We finally introduce the operator

H=7,VK 1 2(0,T:IR") - (L () x(L (e)) .
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2.2. Definition 2.2

1) The system (1) together with the output Equation (2)
is said to be exactly regionally gradient observable or
exactly G-observable on @ if

m(H)=((@)) x((@))

2) The system (1) together with the output equation (2)
is said to be approximately regionally gradient observ-
able or approximately G-observable on @ if
Ker(H*ﬁ)z{ 0}.

The notion of regional G-observability on @ may be
characterized by the following results.

2.3. Proposition 2.3

1) The system (1) together with the output Equation (2)
is exactly G-observable on @ if and only if one of the
following propositions is holds. )

a) For all z° e(L2 (@ )) x <L2 (@ )) , there exists
¢ >0, such that

b) Ker 7, +Im(VK')=(12(Q)) (L (Q))
2) The system (1) together with the output Equation (2)

is approximately G-observable on @ if and only if the
operator N, =HH" is positive definite.

*

z

i < c||K Vizr

(Lz(m)) "X(Lz(m

LZ(O‘T;IRq )

2.4. Proof

1) a) let us consider the operator h=Id
and g=7,VK.

Since the system is exactly G-observable on @, we
have Imh cImg, and by the general result given in [8],
this is equivalentto 3 ¢>0 such that

(Lz(w))”x(Lz(w))”

Vz*e(Lz(a)))nx(Lz(a)))n;

h"z"

i SC"g*z*

(Lz(w))nx(Lz(a)
b) Let ye(Lz(Q ))n x (LQ(Q ))n , then
Zye(l (o)) x(2(o)),
since the system (1) is exactly G-observable on @, there

exists ZeLZ(O,T;qu) such that Zw<y—§K*z)=O.
Letput y=Y,+Yy, where y,=y—VK'z and

LZ(O,T;IRq ) :

y,=VK'z,then y, e Kerz, and vy, eIm(?K*).
Conversely, lety e (L2 (@ ))n x (L2 (@ ))n , then

7y e((Q)) x(2(Q)), there exist y, eKerZ,
and Y, e Im(ﬁK*) such that Z;y: Y, +Y, and
;?w/?wy = /?wyl +/?(uy2 = /?a)yZ :
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Since y, € Im(?K*), there exists ze LZ(O,T ; IRq)

such that y, = VK'z. Thus 7,7.y=%,VK'z, which
gives y=7,VK'zelmH.

2)Let 7' e(Lz(a)))nx (Lz( a)))n such that
=0.

<N“’Z*’ Z*>(L2(w))n><(L2(w))n

So <H z ,Hz >L2(0,T;|Rq) =0 which means that
Z" e Ker H' and since (1) is approximately G-obser-

vable then 2 =0, thatis N, is positive definite.
Conversely, let z" (L2 (@ ))n x (L2 (@ ))n such

that H'z" =0, then <Nwz*,z*> =0 , there

(Lz( w))nx (Lz( w))n
for z' =0, that is the system is approximately G-obser-
vableon .

2.5. Remark 2.4

1) If a system is exactly (resp. approximately)
G-observable on @, , it is exactly (resp. approximately)
G-observableon o, cw,.

2) There exist systems which are not G-observable on
the whole domain but may be G-observable on some
subregion.

2.6. Example 2.5

Let Q=1]0,1[x]0,1[, we consider the two-dimensional
system described by the hyperbolic system

7Y (X, Xy, t
y(TZ):Ay(X]!XZ!t) Q
Y (X, %,0) =y’ (X,%,) Q
oY (X, X%,,0
( lat2 ):yl(xnxz) Q
y(&mt)=0 z
2 2
The operator A= v +7, which the eigenvalues
1 2

are ;= —( i’ + j2) n’ associated to the eigenfunctions

W, (X, %, ) =2sin (ixx, ) sin( jrx, ).
Measurements are given by the output function

2(t)=[y(%.%.1) (%.%,) dx dx,
D

where D= { % }x] 0,1[ is the sensor support and

f(x.%,)=sin(mX,) is the function measure.
. 11 .
Let the subregion @ = 0,1 x} 53 [ and we consider

the initial state
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S.BENHADID ET AL. 81

y’ (X, %, )=sin(nXx )sin(2mx,),
y' (Xl, X2) = cos(n X ) cos(3n X2)
Then the initial state gradient to be observed is

ncos(mx )sin(2mx, ) t
2msin(mx )cos (27X, )

gO(X],X2)=(

—nsin(mX, ) cos(3mX,) '
—3mcos(nx )sin (37mX,)

gl(xlsxz):[

We have the result.

2.7. Proposition 2.6

The gradient g is not approximately G-observable on
the whole domain Q , however it is approximately
G-observable on the subregion .

2.8. Proof

To prove that g is not approximately G-observable on
Q , we must show that g e Ker( K V*). We have

K 6*(go,gl):§[<v*g°,wij>cos\/—_ﬂ,,jt

ij=1

¥ J_%ﬁ(v*gl,wij)sm _&jt}mj,q

Since

0 for j>1

w., f =
< i > () sin(iﬁj for j=1
2
we have VieIN

(V0" W)z

1
f in® cos(mx, )cos(imx )dx,
0

I sin (27X, )sin(mx, ) dx,

0

1
+47t2j sin(nx, )sin(imx, ) dx
0

1
j cos(2mx, cos(nXx,)dx, =0
and
<V*g1,vv”>L )

—2in’sin(nx )cos(inXx )dx,

cos(3mx, )sin(mX, ) dx,

O — = O — —
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1

—67‘[2.[ cos(mx )sin(inx )dx
0

1

I sin(3mx,)cos( mx,)dx, =0

0
This gives K§*<g°,g1 =0, and then the system is
not approximately G-observable once Q.
On the other hand g may be approximately G-obser-
vableon ®.
Indeed, suppose that KV'7 7, ( 9,9 1) =0, then

2 (V9" ) cos (At

ij=1

F<Vg W,J>sm\/_t < i >=

Since for T large enough, the set
{sin\/—_ﬂﬁt,cos 4 }ijzl
setof L*(0,T),wehave

<Vg, 'J> ()<W'J’f> (D)
=(V'g'w), ()<wu,f> 0 =0V j21

butfor j=1 and ie2IN+1, we have

. (.m
<W|1, f > D) = s1n(|5j #0.
witch gives, Vie 2IN +1
(V'gw,), » =(V'g',w, ), vy =0

But for i=1, we have

<Vg, ,1> (o) —£(3ﬁ—£j¢0.

4 3
Thus KV'7,7,(9"9')=0

forms a complete orthonormal

3. Gradient Strategic Sensors

The purpose of this section is to establish a link between
regional gradient observability and the sensors structure.

Let us consider the system (1) observed by  sensors
(D;; fi)cieq  Which may be pointwise or zone.

3.1. Definition 3.1

A sensor (D, f) (or a sequence of sensors) is said to
be gradient strategic on @ if the observed system is
G-observable on @, such a sensor will be said G-stra-
tegicon .

We assume that the operator A is of constant coeffi-
cients and has a complete set of eigenfunctions in
Ho(€Q) denoted by (w;) orthonormal in L*(Q)
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82 S. BENHADID

associated to the eigenvalues 4 of multiplicity r, .
Assume also that r=supl; is finite, then we have the
following result.

3.2. Proposition 3.2

If the sequence of sensors (DI , i is G-strategic on

® ,then g>r and rank(M 2)
1<i<q and ISer

,Vm>1, where

Z i, point twise case
ko 0%
(Ma); =1, ow, )

> Zone case.
K=t 8Xk 2 (Dy)

Vo

my

and y) = y‘:o
Yo"

is the row vector the elements of which are y' = ( il ),
with yM :J'Wmiwjkdx sfor j=1,---00;k =1,--

3.3. Proof

The proof is developed in the case zone sensors.
The sequence of sensors (D, f;) is G-strategic on
o if and only if

e (L (@) (L (@) JHu.2) e oy

vuel*(0,T;IR%)}={0}

=0,

Suppose that the sequence of sensors (D, f;) is G-
strategic on @ and there exists m, >1 , with

rank (M oo, ) # 1, then there exists

;
Zp, =(0.++,2, ++-,0) such that
zino
Z,,=| + |#0 and M, yz, =0. )
zy
B
Let z; =| : €<L2 (a))) verifying
Zin
<Zl*k’Wm°j>L2(d)) :er;]O,Vj =1, Mg My » VK =1,
<zl*k,wmj>L2(m):0,Vm¢m0,Vj:1 et k=1,
(6)
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S
Let z,=| ! e(Lz(a))) verifying

ZZI‘I
<z§k,wmﬂj>Lz(w):zrino,vj'zl T s V=1,

_ - 7
mj>L2(m)_0,Vm¢mo V=11, 0

vk=1,---,n
and let z° :( zf,z;)e(Lz(a)))nx (Lz(a)))n
and 2720 then
(Hu.z >(Lz(a,))”x(a(m))" =(z.9Ku.2 >(L2(w))”x(e(w))”
assume that
K'u=(v,v,) e Ho (Q)xHy (Q)
then
<Hu,z >(L2(w))nx(L2(w))n
= <VV1 KoLy >(L2(Q))n +<VV2 KXo Zz>(|_z(9))n

Integrating on Q we obtain
>|_2( Q)

<VV,,;(; zf>( 2o <V“Zn:a(

~% *

/?,/w 1k
0 X,

k=1

and

k=1 axk
but we have
j:) rk lel</¥w ;k’ > (Q)ij
m=1 j
and
PR 3 Y AT NN
m=1 j=1
Using the fact that
w N . .
<7~(w k> Won | > ZZ%TJI <Zlk’vvlp>|_2
= (@)
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and

~k % 2 < m;l *
Z, ,W = “’<z LW >
<Zw 2k mj>L2(Q) ZZ?’(H 2k > W, ()

then we obtain Vi=1,---,q

from (5), (6) and (7) we obtain

Yy wnm""’z w A t+ !
zzz[zy (s, eos Tt
o N a

ZZIZV{T <22k ’W| >Sin —4 t:|< ij :f|>:O
I=1 p=1 Xk
Thus

0 0(7, 23
kz; 0 X%,

z”:a(}(w 2k)

k=1 a Xk

this gives (Hu,z" =0,

gV < >(L2(a)))"><(L2(m))”

Yuel? ( 0,T;IR%) and z"#0, which contradicts the
fact that the sequence of sensors is G-strategic.

3.4. Remark 3.3

1) The above proposition implies that the required num-
ber of sensors is greater than or equal to the largest mul-
tiplicity of eigenvalues.

2) By infinitesimally deforming of the domain, the
multiplicity of the eigenvalues can be reduced to one
[9,10]. Consequently, the regional G-observability on the
subregion @ may be possible only by one sensor.

4. Regional Gradient Reconstruction

In this section, we give an approach which allows the
reconstruction of the initial state gradient on @ of the
system (1). This approach extends the Hilbert Unique-
ness Method developed for controllability by Lions [6]
and don’t take into account what must be the residual
initial gradient state on the subregion Q\w@ . Consider
the set

F= eL/¢°=¢)1=00nQ\a)}

(o
V(¢ ¢>/(¢ ') eHy(Q)xHy (@)
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where L=(L*(Q))" x(L*(Q))’
l)e (Q)xH, () , the system

for (
6¢;tx,t) AG(x.1) o
s:0)=0 (0. 25D g 0@
#($5t)=0 )

has a unique solution
$eC’(0.T:Hy(Q))nC'(0.T:3(Q)).

We consider the zone sensor case where the system (1)
is observed by the output function

(-F( ) o

k=1 a Xk

D is the sensor support, f the function of measure
and we consider a semi-norm on F defined by

2

((00,(01)6 Fl—)“((ﬂo,(/)l) i

1) ’ (10)
< , f> it
ol k=1 an L2(D)

where ¢(x,t) is the solution of (8).
The reverse system given by

Ty () _ [ ¢
————<=A t —, f f
pre v g o et Q

A VAR Q (11

'—,—!

has a unique solution
weC(0.T:H (Q))nC'(0,T:17(Q)) [5].
We denote the solution y(x,0) by w°(x) and
oy (x,0
oy (x.0) by ' (x).

ot
Let consider the operator

o) P07
where P=7.7,
W= (phy ) = (v )

and consider the retrograde system which has a unique
solution
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84 S.BENHADID ET AL.

Z(xt) . e

o _AZ(xt)+kZ_;< o f>;(Df Q
Z(xT)=0, az(;t(,T): Q (12)
Z(£.1)=0 z

ZeC(0.T:H, (Q))nC'(0.T:7(Q)) [5]-
We denote the solution Z(x,0) by Z°(x) and

0Z(x,0) . . .
Y by Z'(x). Then, the regional gradient ob-
servability turns up to solve the equation

Ag.¢')=P(-Z".2") (13)
where Z'= (Z z', Zl) and

Z° = (z z°,-.,2°.

4.1. Proposition 4.1

If the sensor (D, f) is G-strategic on @, then the equ-
ation (13) has a unique solution (goo,gol) which is the
gradient of the initial state to be observed on @ .

4.2. Proof

1) Let us show first that if the system (1) is
G-observable, then (10) defines anormon F .

Consider a basis (w;) of the eigenfunctions of A,
without loss of generality we suppose that the multiplic-
ity of the eigenvalues are simple, then

oo}, 0= g{3Er), o

on ]0,T[ which is equivalent to

i|:<¢0,wj>L2(Q) cos  [-A;t
i=1

1
+ﬁ<¢lﬂwi>|_ Q) siny =4 t]kz_‘f<
The set {sin\/—_/ljt,cosx/__’ijt}jzl

orthogonal set of L*(0,T), then we obtain

(¢, > §<axk >L2(D)=o,vj21

1 ow, -
(W) o0 Lf) o —ovijx1
NI i)

and since the sensor (D, f ) is regionally G-strategic on
o , we have

1)

forms a complete

M:

=
I
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n
Z< > #0,Vj>1,
1 8xk 2(0)

then <¢0:Wj>|_2(0) :<¢1’Wj>|—2(0) =0,V j=>1.

Consequently ¢”=¢' =0 andthus ¢’ =¢'=0.
Conversely, ¢’°=¢'=0= ¢'=c, and ¢'=c,
(constants), since
¢;eCO(o,T;H;(Q))mcl(o,T;Lz(Q))

and from ¢=0 on X, (10)is a norm.

2) Let denote by F completion of F by the norm
(10) and F" be its dual. We show that A is an iso-
morphism from F into F". Indeed, let (gpo gbl)e F
and ¢ the corresponding solution for the problem (8),
multiply the first equation of the system (11) by

0 (x.t)

5 , and integrate on Q , we obtain
Xk

o Oy o

<ax 8t2> <ax "’>
k ’(Q) k Q)
o o

<axk |Zl“<ax, i )>L2<D)fZD>

for the first term, we obtain

6_¢? o’y - 8&(.,0) oy (.,0)
ox, ot o ot o)

+<%(a¢g{0)}’w ("0)>|_2(O) +<ai;k(A¢ )"//>L2(Q>

Using Green formula for the second term, we obtain

a¢ NI %,z 99 fy
O OX OX P
k LZ(Q) k1=l | LZ(D)
0
_< 6¢9V/>
%l

FHEY  0PED dp(ED)
+£[W(§’t)a X o on, ]dz

Q)

p 6¢(X t) o
+£I X, Z< f>L2(D)f;(Ddxdt

1=1

and with the boundary conditions, we obtain

((9".0') . A(¢"0"))

AE R )

Using Cauchy-Schwartz inequality, we have,
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S.BENHADID ET AL. 85

v(¢".0').(¢".0') < F
((#.3)-A(¢"0 ) <[(0".2)] "),
Hence, V((po,q)l)e F
<(¢0’¢1) ’A(¢0’¢1)>:”(¢0,¢1) i
which proves that A is an isomorphism and conse-
quently the Equation (13) has a unique solution which

corresponds to the state gradient to be observed on the
subregion .

4.3. Remark 4.2

The previous approach can be established with similar
techniques when the output is defined by means of inter-
nal or boundary pointwise sensors.

5. Numerical Approach

In this section we give a numerical approach which leads
to explicit formulas for Vy°, Vy' on . We consider
the case where the system (1) is observed by the output

equation
z(t)=i<ag(x"t),f> teloT]
k=1 K LZ(D)

5.1. Proposition 5.1

If the sensor (D, f) is G-strategic on @, then the ini-
tial gradlents vy’ and Vy° may be approached by
Vy and Vy respectively

M=

> 2w, )

S
{2 e 2

on @
0 on Q\w

3
R
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where M is an order of truncation.

5.2. Proof

In the previous section, it has been seen that the regional
reconstruction of the initial state gradienton @ turns up
to solve the Equation (13). For that consider the func-
tional

®(p".¢')
=Moo~ (P(2.2°) (0"

SE -2

0o\ k=1

And solving Equation (13) turns up to minimize @
with respect to (¢°,¢' )
After development and when T — +oo, we obtain

Jim | {Z}<a¢a(xk 20(o1) f>L2 D ] dt

S Py bl )|

J

For T large enough, we have

g0 Ja

SR )

On the other hand, we have
()= 38" ), ()
j=
and

()= 200" ), ()

since (¢°,(pl) = §(¢°,¢1) , then

® oW, OW, oW,

0 _ 0w s N 16
¢’ (x) §<¢ W>[axl T axﬂj on @ (16)
and

= oW, OW oW

1 — 1’ J’ . J 17
=Sl G G on v @)
we obtain
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and
)-8l 5

The minimization of (13) is equivalent to solve the two
following problems

Ifsz}{ < > {g@_‘;":, f>L2(D)J2

and

which solutions are, V j>1
1
0 2 <Z ’VWJ>(L2(w))"
(W) =7 - a8)
0, fow;
2\
k=1 6Xk LZ(D)
and
=0
<¢1 W> __2/11_ <Z ’VWJ>(L2({,;)) (19)
T e

Now, let Z(x,t)=

of the system (12) with

Z,(t m’m£2< i) >sm I (s—1)ds.

Thus

Z°= Z(xO: T{Z< i) >

m i=1
’ >

sin /-4, sds w, (x).

and

oz ra
Z'===(x,0
6t( m>1 £§<

oS/~ A, Sds W, (x )

then, we obtain
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and

T oW
Iz< >cos 2 Sds<W ﬂ>
0 i=1 X; aXl m

With these developments, according to (18) and (19),
n +oo

we obtain. V j>1
n I lm—
k=

(W) 2 ) =
e >cos Z sds<w ).

P ow;
I sin m SAS( W, ,—) .
0=l X; ox /.,

We replace that in the relation (16) and (17), we obtain
+00 2

‘”°”T@<zz,f>fz”

T OW.
Jz<ay( S), >cos -1 SdS<W i>VWj on @
0 i=1 axi 8X|

i
We consider a truncation up to order M ( M e IN*),

then we obtain the relation (14) and (15).
We define a final error

HVy —oy [

sz

The good choice of M will be such that &£<e¢
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(8 > O) , and we have the following algorithm:

Algorithm

Step 1: Data: The region @, the sensor location D
and ¢.

Step 2: Choose a low truncation order M .

Step 3: Computation of Vy° and Vy' by the for-
mulae (14) and (15).

Step 4: If &< ¢ then stop, otherwise.

Step5: M <~ M +1 and return to step 3.

5.3. Remark 5.2

if y* and y' are regular enough, we have a regular
system state, so measurements may be taken with point-
wise sensor. In this case we obtain similar formulaes as
in the previous proposition given by

vy ~ = 9K (20)
T oy(b,t
Iz y( )cos —Aptdt{w, ,—) (Vw,
0 k=1 aXk |
on @
0 on Q\w

Vy' = (2D
T oy(b,t ow,
> YO ot w, 20 W,
0 k=1 an 8X|
onw
0 on Q\w

6. Simulations
6.1. Example

In this section we develop a numerical example that leads
to results related to the choice of the subregion, the sen-
sor location and the initial state gradient.

On Q=10,1[, we consider the one dimensional system.

Oy(xt) _ay(x.t) 10,1[x]0,T[

ot? ox?
y(x,0)=y"(x) 0.1] 22)
ay(x,0)

2y

ot
y(0,t)=y(1,t)=0

]
]
]
]
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Measurements are given by the output function
z(t)=y'(b,t) 23)

The previous system is G-observable on [0,1] [7] if
and only if

be8=0{ I;n:l/ke[o,m—l]mrxl}

We denote that numerically an irrational number does
not exist but it can be considered as irrational if trunca-
tion number exceeds the desired precision.

Let T =5, and the sensor is located at b=0.48505.
The initial gradient to be reconstructed is given by

vy’ = A sin3nx

and
Vy' =(1+A,) [sin4nx +4nx cos 47X]

The coefficients A, A, are chosen such that the num-
erical scheme be stable, and in order to obtain a reason-
able amplitude of Vy° and Vy' let us take
A =0.015 and A, =-0.01.

Applying the previous algorithm, using the formulae
(20), (21) we respectively obtain the Figures 1 and 2 for
@ =10.46,0.66] and respectively the Figures 3 and 4
for @=]0,1].

The estimated gradient is obtained with error
£=0.81x10" on w=1]0.46,0.66].

For @=]0,1], the gradient is reconstructed with error
£=4.04912x107 on w=]0,1].

6.2. Simulating Conjectures

Now we show numerically how the error grows with
respect to the subregion area. It means that the larger the
region is, the greater the error is. The obtained results are
presented in Table 1.

0.020

— Initial state gradient
--------- Estimate initial state gradient

0.015
0.010 -
0.005 -
0.000 -
-0.005 -

-0.010

-0.015

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. lheb2.eps: initial state gradient Vy° (continuous
line) and estimate initial state gradient bar (V)y° (dashed
line).
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—— Initial speed gradient
04 - Estimate initial speed gradient /

-5

-10

0{0 I O.I2 I 0.I4 ' O.I6 I 0.I8 I 1,|0
Figure 2. Nouha2.eps: initial speed gradient Vy* (continuous

line) and estimate initial speed gradient bar (V)y* (dashed
line).

Initial state gradient

0.020 _ ---------- Estimate initial state gradient

0.015
0.010 ]
0.005 ]
0.000 ]
-0.005 ]

-0.010

-0.015

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Ihebl.eps: initial state gradient Vy° (continuous
line) and estimate initial state gradient bar (V)y° (dashed
line).

15 ~

—— Initial speed gradient
......... Estimate initial speed gradient

10

-10

T T T T T T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Nouhal.eps: initial speed gradient Vy* (continuous
line) and estimate initial speed gradient bar (V)y* (dashed
line).
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Table 1. Evolution error with respect to the area of the sub-
region.

(2] é:

Joq] 4.04912x10°
10.14,0.94] 1.00315x107
10.24,0.84] 2.04316x10°
]0.34,0.74] 5.61831x10™
]0.46,0.66] 8.16314x107

Table 2. Evolution error with respect to the initial state gra-
dient amplitude.

A £
0.5 1.56181x10
0.1 2.38512x10°
0.08 9.02815%x10™*
0.04 1.52361x10™*

0.015 8.16314x10°°

Also how both the error decreases with respect to the
amplitude A of the initial state gradient. For this let
take the subregion ®=10.46,0.66] and A, =-0.01.
We note that the reconstruction error depends on the am-
plitude of initial state gradient. It means that the greater
the amplitude is, the greater the error is. The obtained
results are presented in Table 2.

7. Conclusion

Gradient Observability on a subregion interior to the spa-
tial evolution domain of hyperbolic system is considered.
A relation between this notion and the sensors structure
is established and numerical approach for its reconstruc-
tion is given. This allows the computation of the initial
state gradient without the knowledge of the system state.
[lustrations by numerical simulations show the effi-
ciency of the approach. Interesting questions remain
open, the case where the subregion @ is part of the
boundary of the system domain. This question is under
consideration.
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