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ABSTRACT 

This paper presents a method to deal with an extension of regional gradient observability developed for parabolic sys-
tem [1,2] to hyperbolic one. This concerns the reconstruction of the state gradient only on a subregion of the system 
domain. Then necessary conditions for sensors structure are established in order to obtain regional gradient observabil-
ity. An approach is developed which allows the reconstruction of the system state gradient on a given subregion. The 
obtained results are illustrated by numerical examples and simulations. 
 
Keywords: Distributed Systems; Hyperbolic Systems; Observability; Regional Gradient Observability; Sensors;  

Gradient Reconstruction 

1. Introduction 

For a distributed parameter system evolving on a spatial 
domain nIR , the notion of regional observability 
concerns the reconstruction of the initial state on a sub- 
region   of . Characterization results and appro- 
aches for the reconstruction of regional state are given in 
[3,4]. Similar results were developed for the state gradi- 
ent of parabolic systems in [2]. This led to the so-called 
regional gradient observability and concerns the possibil- 
ity to reconstruct the gradient on a subregion 



  without 
the knowledge of the system state. The study of gradient 
observability is motivated by real applications, the case 
of insulation problems, also there exist systems for which 
the state is not observable but the state gradient is ob-
servable, example is given in [1]. 

In this paper we present an extension of the above re-
sults on regional gradient observability to hyperbolic 
systems evolving on a spatial domain . That is to say 
one may be concerned with the observability of the state 
gradient only in a critical subregion 



  of  . More 
precisely let (S) be a linear hyperbolic system with suit-
able state space and suppose that the initial state 0y and 
its gradient 0y  are unknown and that measurements 
are given by means of output functions (depending on the 
number and structure of the sensors). The problem con-
cerns the reconstruction of the state gradient on the sub-
region   of the system domain  without taking into 
account the residuel part on \  . 

Here, we consider the problem of regional gradient 

observability of hyperbolic systems and we establish 
condition that allows the reconstruction of the initial gra-
dient on such a subregion. And the paper is organized as 
follows. 

The second section is devoted to definitions and char-
acterizations of this notion for hyperbolic systems. In the 
third section we establish a relation between regional 
gradient observability and sensors structure. The fourth 
section is focused on regional reconstruction of the initial 
gradient. In the last section we give a numerical approach, 
extending the Hilbert Uniqueness Method developed by 
J.L. Lions [5], and illustrations with efficient simulations. 

2. Regional Gradient Observability 
nILet   be an open bounded subset of R  with a re- 

gular boundary  0T . Fix  and let denote by  
  0,Q T   and 0,T

 

  . 
Consider the system described by the hyperbolic equa-

tion  

 

   

 

2

2

0 1

,
,

,0
,0 ,

, 0

y x t
A y x t Q

t
y x

y x y y
t

y t





    




.       (1) 

 



where A  is the second order elliptic linear operator 
with regular coefficients. 

Copyright © 2012 SciRes.                                                                                  ICA 



S. BENHADID  ET  AL. 79

Equation (1) has a unique solution  

  1 1
00, ;y C T H C     20, ;T L 

 

 [6]. 

Suppose that measurements on system (1) are given by 
an output function: 

 z t C y t

 1 qIR 
q

D  


D b

.               (2) 

where 0  is a linear operator depending 
on the structure of  sensors. 

:C H

Let us recall that a sensor is defined by a couple 
, where  is the location of the sensor and 

 is the spatial distribution of measurements 
on . In the case of a pointwise sensor, 

 ,D f
2f L D

D  
b

 
and f   is the Dirac mass concentrated in  see 
[7]. 

b

Let  ,y y y t    and  , 0C y C y
 1

 then the sys-
tem  may be written in the form 

 0 0 1
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A  has a compact resolvent and generates a strongly 
continuous semi-group  on a subspace of the    

0t
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m j  is a basis in 0 of eigenfunctions of A , 
orthonormal in  and m2  0L  

mr
 the associated ei-

genvalues with multiplicity . Then (3) admits a uni- 
que solution   0y

 

y S t . 
Let us define the observability operator 

   
 

2: 0, ;

.

q1 1
0 0K H H

h C

   



L T IR

S h
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which is linear and bounded with its adjoint denoted by 
K  and let   be the operator 
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1 2
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while their adjoints are denoted by * *and   respec-
tively. 

2.1. Definition 2.1 

The system (1) together with the output (2) is said to be 
exactly (resp. approximately) gradient observable if 

       

    
* 2 2

*

Im ,

resp. 0

n n
K L L

Ker K

    

 
 

Such a system will be said exactly (resp. approximately) 
G-observable. 

For a positive Lebesgue measure subset   of  , 
we also consider the operators 

           
   

2 2 2 2

1 2 1 2

:

, ,

n n n n
L L L L

y y y y



 

  

 

    



 

 

where 

    2 2:
n n

L L

y y





  


 

and 

   2 2:L L
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while their adjoints, denoted by * * *,    and   
respectively and given by 
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We finally introduce the operator 

       * 2 2 2: 0, ;
n nqK L T IR L L       . 
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2.2. Definition 2.2 

1) The system (1) together with the output Equation (2) 
is said to be exactly regionally gradient observable or 
exactly G-observable on   if  

    Im     2 2n n
L L   

2) The system (1) together with the output equation (2) 
is said to be approximately regionally gradient observ-
able or approximately G-observable on   if  

.     * 0Ker  
The notion of regional G-observability on   may be 

characterized by the following results. 

2.3. Proposition 2.3  

1) The system (1) together with the output Equation (2) 
is exactly G-observable on   if and only if one of the 
following propositions is holds. 

a) For all , there exists 
, such that 

     * 2 2n n
z L L  

0c 

       2

* * * *

0, ; qL T IR
K z2 2n nL L

z c
 




   

b)     * 2 ImKer K L       2n n
L   

2) The system (1) together with the output Equation (2) 
is approximately G-observable on   if and only if the 
operator  is positive definite. *N  

     2 2n nL L
h Id

 


2.4. Proof 

1) a) let us consider the operator  
and g K 

Since the system is exactly G-observable on 
. 

 , we 
have , and by the general result given in [8], 
this is equivalent to  such that  

Im Imh g
0c 

     
       2
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.n n qL L L T IR

z L L

h z c g z
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b) Let , then 

  y L    2 2n n
L   , 

since the system (1) is exactly G-observable on  , there 
exists  such that  2 0, ; qz L T IR  * 0y K z  

y y
 . 

Let put  where 1 2y  *
1y y  K z  and  

*
2y K z  , then 1y Ker   and  *

2 Imy K 

 2n n
 

. 

Conversely, let , then     2y L L 

    * 2 2n
y L L     n

 , there exist 1y Ker   

and  *
2 Imy K   such that *

1 2y y   y  and  
*

1 2 2y y y y           . 

Since *
2 Imy K   2 0 , ; qz L T IR   , there exists 

such that *
2y K z  . Thus * *y K z      , which 

gives * Imy K z   

     * 2 2n n
z L L  

. 

2) Let  such that  

     2 2

* *, 0n n
L L

N z z  
. 

 2

* * * *

0, ;
, 0qL T IR

z zSo   

* *z Ker

 which means that  

 
* 0z
 and since (1) is approximately G-obser- 

vable then N , that is   is positive definite. 

Conversely, let  such       * 2 2n n
z L L  

* * 0z
     2 2

* *, 0n n
L L

N z z  
that  , then , there   

* 0zfor  , that is the system is approximately G-obser- 
vable on  . 

2.5. Remark 2.4 

1) If a system is exactly (resp. approximately) 
G-observable on 2 , it is exactly (resp. approximately) 
G-observable on 1 2 . 

2) There exist systems which are not G-observable on 
the whole domain but may be G-observable on some 
subregion. 

2.6. Example 2.5  

   Let 0,1 0,1  

 

, we consider the two-dimensional 
system described by the hyperbolic system 
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The operator 
2 2

2 2
1 2

A

x x


 
 

, which the eigenvalues  

 2 2 2πij i j     associated to the eigenfunctions are 
     , 2sin π sin πijw x x i x j x1 2 1 2

Measurements are given by the output function  
. 

     1 2 1 2 1 2, , , d d
D

z t y x x t f x x x x   

where  1
0,1

2
D    

 
 is the sensor support and  

   1 2 2, sin πf x x x

 
 is the function measure. 

Let the subregion 
1 1

0,1 ,
6 3

     
 and we consider  

the initial state 
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  0
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  1
1 2, cos πy x x   

Then the initial state gradient to be observed is 
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We have the result. 

2.7. Proposition 2.6  

The gradient g  is not approximately G-observable on 
the whole domain  , however it is approximately 
G-observable on the subregion  . 

2.8. Proof 

To prove that g  is not approximately G-observable on 
, we must show that   *g Ker K  . We have 
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This gives * 0 1, 0K g g 


, and then the system is 
not approximately G-observable once . 

On the other hand g  may be approximately G-obser- 
vable on  . 

Indeed, suppose that  * * 0 1, 0K g g   , then  
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Since for  large enough, the set  
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Thus * * 0 1, 0K g g   

q

. 

3. Gradient Strategic Sensors 

The purpose of this section is to establish a link between 
regional gradient observability and the sensors structure. 

Let us consider the system (1) observed by  sensors 
 1,i i i q
D f


 which may be pointwise or zone. 



3.1. Definition 3.1 

A sensor ,D f
 

 (or a sequence of sensors) is said to 
be gradient strategic on   if the observed system is 
G-observable on  , such a sensor will be said G-stra- 
tegic on  . 

We assume that the operator A  is of constant coeffi-
cients and has a complete set of eigenfunctions in 

 iw  orthonormal in  1
0H  2L  denoted by   
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associated to the eigenvalues i  of multiplicity i . 
Assume also that  is finite, then we have the 
following result. 

r
sup ir r

 1,i i i q
D f

 



3.2. Proposition 3.2 

If the sequence of sensors  is G-strategic on  

 , then  and , where 
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and  

is the row vector the elements of which are  i i km m j
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   1, ; jj   k r  . 

3.3. Proof 

The proof is developed in the case zone sensors. 
The sequence of sensors  ,i iD f  is G-strategic on 
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and 
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 ; qT IRu L   and  , which contradicts the 
fact that the sequence of sensors is G-strategic. 

3.4. Remark 3.3 

1) The above proposition implies that the required num-
ber of sensors is greater than or equal to the largest mul-
tiplicity of eigenvalues. 

2) By infinitesimally deforming of the domain, the 
multiplicity of the eigenvalues can be reduced to one 
[9,10]. Consequently, the regional G-observability on the 
subregion   may be possible only by one sensor. 

4. Regional Gradient Reconstruction 

In this section, we give an approach which allows the 
reconstruction of the initial state gradient on   of the 
system (1). This approach extends the Hilbert Unique-
ness Method developed for controllability by Lions [6] 
and don’t take into account what must be the residual 
initial gradient state on the subregion \ . Consider 
the set  
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and consider the retrograde system which has a unique 
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4.1. Proposition 4.1 

If the sensor  is G-strategic on  , then the equ-
ation (13) has a unique solution  0 1,  which is the 
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4.2. Proof 
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and since the sensor  is regionally G-strategic on 
 , we have  

f j
x
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then 
   2 2

0 1, , 0, 1j jL L
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Consequently   0 1 0  
0 1 0 

 and thus . 
  0

1c  1
2c and Conversely,    

(constants), since  

     0 1 1 2
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0

 

and from    on  , (10) is a norm. 
F  completion of 2) Let denote by F  by the norm 

(10) and *F  be its dual. We show that  is an iso-
morphism from 


 0 1ˆ ˆ,* FF  into F . Indeed, let     

and ̂  the corresponding solution for the problem (8), 
multiply the first equation of the system (11) by 

 ˆ ,
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Q, and integrate on , we obtain 

   

 
   

2 2

2
2

2
*

2

1

ˆ ˆ
, ,

ˆ
, ,

k kL Q L Q

n

D
lk l L D

L Q

A
x xt

f x f
x x

   

  


  


 

 


 
 

for the first term, we obtain 
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Using Green formula for the second term, we obtain 
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and with the boundary conditions, we obtain 
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Using Cauchy-Schwartz inequality, we have,  
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 0 1, ,  0 1ˆ ˆ, F  M  is an order of truncation.     

       0 1 0 1 0 1ˆ ˆ ˆ ˆ, , , , 0 1,
F F

 

 0 1,

        

Hence, F  


 

     2
0 1

ˆ
,0 1 0 1, , ,

F
      



 

which proves that  is an isomorphism and conse-
quently the Equation (13) has a unique solution which 
corresponds to the state gradient to be observed on the 
subregion  . 

4.3. Remark 4.2 

The previous approach can be established with similar 
techniques when the output is defined by means of inter-
nal or boundary pointwise sensors. 

5. Numerical Approach 

In this section we give a numerical approach which leads 
to explicit formulas for 0 1,y y  on  . We consider 
the case where the system (1) is observed by the output 
equation  

     
2 ( )
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5.1. Proposition 5.1 

If the sensor  is G-strategic on  , then the ini-
tial gradients 0y  and 0y  may be approached by 

0ˆ y  and 1ˆ y  respectively 

2
1 1

10

10

2

,
ˆ

, cos d

M n

nj l
j

k k

T n

m m
i

w
T f

x
y

y

1

,

,

on

0 on \

M

m
m

j
j

i l

w f

w
f t t w w

x x




 





 
 
 
 

   
        

 
 





 






 


  





(14) 

2
1 1

11

10

2

,
ˆ

sin
, d

M n
j

nj l
j

k k

T n
m

i i m

w
T f

x
y

ty

where 

5.2. Proof 

In the previous section, it has been seen that the regional 
reconstruction of the initial state gradient on   turns up 
to solve the Equation (13). For that consider the func-
tional 
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And solving Equation (13) turns up to minimize   
with respect to  0 1,  . 
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For  large enough, we have 
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and 

0 1 1
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The minimization of (13) is equivalent to solve the two 
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With these developments, according to (18) and (19), 
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We replace that in the relation (16) and (17), we obtain 
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MWe consider a truncation up to order M IN , 
then we obtain the relation (14) and (15). 

We define a final error 

   2 2
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L L
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M will be such that The good choice of    
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 0  , and we have the following algorithm: 
Algorithm 
Step 1: Data: The region  , the sensor location  

and 
D

 . 
Step 2: Choose a low truncation order M . 
Step 3: Computation of 0ˆ y  and 1ˆ y  by the for-

mulae (14) and (15). 
Step 4: If  

1M M 

0

 then stop, otherwise. 
Step 5:  and return to step 3. 

5.3. Remark 5.2 

if y  and 1y  are regular enough, we have a regular 
system state, so measurements may be taken with point-
wise sensor. In this case we obtain similar formulaes as 
in the previous proposition given by 
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6. Simulations 

6.1. Example 

In this section we develop a numerical example that leads 
to results related to the choice of the subregion, the sen-
sor location and the initial state gradient. 

On  0,1  , we consider the one dimensional system. 

   

Measurements are given by the output function 
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The previous system is G-observable on 0,1  [7] if 
and only if  
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5T

 

We denote that numerically an irrational number does 
not exist but it can be considered as irrational if trunca-
tion number exceeds the desired precision. 

0.48505bLet  , and the sensor is located at  . 
The initial gradient to be reconstructed is given by 

0
1 sin 3πy A x   

and 

  1
21 sin 4π 4π cos 4πy A x x x   

,

 

The coefficients 1 2A A

0

 are chosen such that the num- 
erical scheme be stable, and in order to obtain a reason- 
able amplitude of 1y y  let us take    and 

1 0.015A   and 2 0.01A .  
Applying the previous algorithm, using the formulae 

(20), (21) we respectively obtain the Figures 1 and 2 for 
 0.46,0.66   and respectively the Figures 3 and 4 

for  0,1 

40.81 10

. 
The estimated gradient is obtained with error  

 0.46,0.66  .    on 
 For 0,1 

24.04912 10
, the gradient is reconstructed with error 

 0,1  .    on 

6.2. Simulating Conjectures 

Now we show numerically how the error grows with 
respect to the subregion area. It means that the larger the 
region is, the greater the error is. The obtained results are 
presented in Table 1. 

 

 

Figure 1. Iheb2.eps: initial state gradient y0 (continuous 
line) and estimate initial state gradient bar ()y0 (dashed 
line). 
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Figure 2. Nouha2.eps: initial speed gradient y1 (continuous 
line) and estimate initial speed gradient bar ()y1 (dashed 
line). 
 

 

Figure 3. Iheb1.eps: initial state gradient y0 (continuo  us
line) and estimate initial state gradient bar ()y0 (dashed 
line). 
 

 

Figure 4. Nouha1.eps: initial speed gradient y1 (continuo

1. Evolution error with respect to the area of the sub- 

u  s
line) and estimate initial speed gradient bar ()y1 (dashed 
line). 

Table 
region. 

   

 0,  24.04912 101  

 0.14,0.9  21.00315 104   

 0.24,0.84 32.04316 10   

 0.34,0.74 45.61831 10   

 0.46,0.66 58.16314 10   

 
able 2. Evolution error with respect to the initial state gra- 

1

T
dient amplitude. 

  A 

0.5 21.56181 10   

0.1 32.38512 10

0. 49.02815 10

 

08 

41.52361 10

 

0.04 

0. 58.16314 10

 

015   

 
Also how both the error decreases with respect to the 

amplitude 1A  of the initial state gradient. For this let 
take the s region ub  0.46,0.66   and 2 0.01A   . 
We note that the reconstr depends on th -
plitude of initial state gradient. It means that the greater 
the amplitude is, the greater the error is. The obtained 
results are presented in Table 2. 

uction error e am

7. Conclusion 

ility on a subregion interior to the spa- Gradient Observab
tial evolution domain of hyperbolic system is considered. 
A relation between this notion and the sensors structure 
is established and numerical approach for its reconstruc- 
tion is given. This allows the computation of the initial 
state gradient without the knowledge of the system state. 
Illustrations by numerical simulations show the effi- 
ciency of the approach. Interesting questions remain 
open, the case where the subregion   is part of the 
boundary of the system domain. This uestion is under 
consideration. 

q
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