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Abstract 
 
Today the controller commissioning of industrial used servo drives is usually realized in the frequency do- 
main with the open-loop frequency response. In contrast to that the cascaded system of position loop, veloc- 
ity loop and current loop, which is standard in industrial motion controllers, is described in literature by us- 
ing parametric models. Several tuning rules in the time domain are applicable on the basis of these paramet- 
ric descriptions. In order to benefit from the variety of tuning rules, an identification method in the time do-
main is required. The paper presents a method for the identification of plant parameters in the time domain. 
The approach is based on the auto relay feedback experiment by Åström/Hägglund and a modified tech- 
nique of gradual pole compensation. The paper presents the theoretical description as well as the implement- 
tation as an automatic application in the motion control system SIMOTION. The identification results as 
well as the achievable performance on a test rig with a PI velocity controller will be presented. 
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1. Introduction 

Nowadays, the identification of the velocity controlled 
system is often carried out in the frequency domain. 
However, in the area of low frequencies the detection of 
mechanical parameters is restricted, if the measure- ment 
is performed in the closed loop. There are resulting er-
rors of the magnitude and phase response, which are de-
scribed in [1]. 

In contrast to the estimation in the frequency domain, 
standard identification techniques in the time domain 
(e.g. interpreting step responses) have been developed. 
These methods demand high measurement accuracy and 
are limited, when the expected time constants are in the 
range of the sample time. 

Derived models for controlled systems of a servo drive 
are primarily used for controller tuning. Several tuning 
algorithms (e.g. symmetrical optimum) have been pub- 
lished, which require exact model parameters as a one 
main criterion to be efficient. The model order is another 
important criterion for the accuracy of the tuning rules 
because standard velocity controller structures are not 
able to consider higher order models [2]. According to [3] 
the velocity controller (PI-Structure) can be tuned based 

on order reduced parametric models even for oscillatory 
mechanical systems. 

In addition to controller tuning, various limitations can 
be defined in servo drives based on identified models [4]. 
In [5] online monitoring functions like detection of varia- 
tion in the moment of inertia or friction moments have 
been proposed. 

The intention of the paper is to establish a new identi- 
fication method in the time domain, which is suitable for 
electrical servo drives. It is based on the relay feedback 
experiment and the technique of gradual pole compensa- 
tion. Based on the identification results, several tuning 
rules will be carried out to prove the applicability. 

The paper is divided in 5 sections. Subsequent to the 
introduction, the identification method is discussed theo-
retically and applied to the velocity loop of an industrial 
servo drive. In section 3 several tuning rules will be in-
troduced. Section 4 describes the experimental set-up 
and the experimental results are presented. Finally the 
conclusions are given. 

2. Identification Method 

The relay feedback experiment [6] is a well known iden- 
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tification approach, which is generally applied to identify 
a process Gs(s) on its limit of stability. For this purpose, 
the controller Gr(s) is replaced by a relay controller ac-
cording to Figure 1. The original method provides a 
nonparametric model with the characteristics ultimate 
gain (ku) and ul- timate frequency (ωu). In contrast to that, 
the relay feed- back experiment is exclusively used as an 
excitation in the presented approach. The controlled 
variable x ap- pears as input for a compensator Gc(s). The 
aim is to adjust the compensator to the plant parameter 
by using the method of gradually compensation of the 
dominant pole [7]. This approach combines the advan-
tages of the relay feedback experiment with those of the 
parametric model identification (Figure 1). 

For the example of a first order transfer function with 
dead time (FOPDT) a compensator (Gc) as shown in [8] 
is chosen. 
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Applying this, the forward path of the control loop 
becomes: 
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Finally, this equation is expanded in terms of two 
components: 
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In the case of T* = T the term reduces to an integral 
plus dead time (IPDT) system: 
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As mentioned above, Y(s) is a relay output signal. 
With this input sequence, Equation (4) describes an ideal 
ramp function x(t). To adjust T*, Equation (3) needs to 
be evaluated to satisfy Equation (5): 
 

 

Figure 1. Identification with gradual pole compensation. 
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To determine the compensator time constant T*, an 
adjustment criterion is of primary importance. Because 
of the expected small lag and dead times for electrical 
servo drives not all adjustment strategies are suitable. 
Consequently the oscillation magnitude of xc(t) is com- 
pared with the expected magnitude of the ramp function 
xi(t) (Figure 2) and T* is adjusted according to the mag-
nitude ratio in Equation (6). 
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For the evaluation, only the extreme values of xc(t) 
have to be determined, which entails a high toleration of 
measurement uncertainty even for lag times which are 
smaller than the sample time of the motion controller. 
The dead time of the system (Td) can be determined by 
the time behaviour of xc(t) and the relay output y(t) [9]. 

2.1. Velocity Control Loop 

The velocity controller (GVC) is typically implemented as 
PI controller. The subordinated system consists of the 
closed current loop (GCuL) and a mechanical system 
(Gmech) which is mainly characterized by the total mo- 
ment of inertia J and an oscillatory system. The resulting 
structure with an additional nonlinear friction moment 
(Mfric) is displayed in Figure 3. 

2.2. Identification of the Velocity Controlled  
System 

The derivation of a parametric model of the velocity 
controlled system consists of three steps. In the first step, 
the closed current loop is described by using the FOPDT 
identification approach, introduced in Section 2. In a 
second step, it is shown, how the proposed adjustment 
strategy can be applied to a first order plus integral plus 

 

 

Figure 2. Proposed criterion for compensator adjustment. 
 

 

Figure 3. Structure of the velocity control loop. 
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dead time (FOIPDT) system behavior in order to esti- 
mate the moment of inertia J. In step three the mechanic- 
cal system is classified according to its first resonance 
frequency. 

Step 1: Identification of the Closed Current Loop 
For the closed current loop a first order plus dead time 

model with known gain was proposed in [4]. 
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The compensator time constant  is estimated by 
using the structure according to Equation (1) and the 
proposed adjustment criterion, applied to the problem of 
the closed current loop. 
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Step 2: Identification of the Total Moment of Iner-
tia 

For the illustrated closed velocity loop the effective 
acceleration torque Macc can be described by the differ- 
ence of the actual drive torque Mact and the friction mo- 
ment (Figure 3): 

acc act FricM M M             (9) 

In case the mechanical system is regarded as a single 
mass system, the angular momentum can be written as: 

acc actM J                 (10) 

The moment of inertia can not be identified based on 
Equation (10), because the acceleration torque Macc can 
not be measured. Consequently, an alternative solution 
has to be discribed. Therefore, the velocity controller 
GVC in Figure 4 has to be substituted with a relay with 
hysteresis represented by Equation (13). 

The friction moment characteristic in Equation (9) is 
nonlinear.  

 FricM f            (11) 

With the following approach, this nonlinearity has not 
to be considered. Instead MFric can be assumed as constant 
at selectable operation points for the command velocity 
ωcom: 

* . Fric com opM const for            (12) 

Considering the gain of the closed current loop in Equa-
tion (7) the position of the summation point in the open  
 

 

Figure 4. Identification of the moment of inertia. 

loop can be moved as shown in Figure 5. 
The relay output Mcom in Figure 5 is defined: 
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To use the proposed identification technique for the 
moment of inertia, the structure of the velocity loop has 
to be expanded by a compensator as well. 

Based on the identified closed current loop, the relay 
output Mcom can be used for the calculation of the actual 
torque Mact. The forward path of the loop in Figure 4 be- 
comes a FOIPDT model. Hence, the proposed identifica- 
tion method (Figure 1) has to be modified by using a 
different compensator structure leading to Figure 6:  
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The influence of the lag time on the actual velocity 
ωact can be eliminated by using the modified compensa- 
tor  cG s . 
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In the case of an adjusted closed current loop time 
constant: 
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The further derivation is carried out in the time domain. 
Especially, the time behaviour of ωsimp is of interest: 

     *

1 1 d
com Fric sT

simp

M s M
L s L e

J s
  

    
  

 (17) 

 

 

Figure 5. Alternative open loop structure. 
 

 

Figure 6. Open velocity loop with compensator (grey). 
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The dead time does not have to be considered, because 
only the magnitude ratio is significant. 

    *1
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J
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The closed loop with relay controller (Figure 4) 
achieves oscillation with the time period (TPer). At the 
point of time t = 0 the relay output changes to the third 
case of Equation (13). Consequently, the oscillation at 
the operation point can be expressed as a sum for the 
sampled system with the sample time ts. 
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The structure, shown in Figure 6 is used for the cal- 
culation of the moment of inertia. A half-cycle of the 
oscillation (19) is sufficient for measuring the magnitude 
of ωsimp ( simp ). Finally, the resulting formula for calcu- 
lation the moment of inertia with 

ω̂
ˆsimp  is: 
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It has to be pointed out that for this approach the sig- 
nificant resonance frequencies have to be damped ade- 
quately. For this purpose, notch filters GCF for the current 
command value can be used [1]: 
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Step 3: Classification of the mechanical system 
The classification of the mechanical system is based 

on the location of the first antiresonance frequency fN 
compared to the frequency of the 0 dB crossing fd of the 
open loop. There are two cases in Table 1 that have to be 
considered in order to find a suitable controller setting 
for the mechanical system [2]. 

The location of the resonance frequency and the an- 
tiresonance frequency fN can be estimated by using stan- 
dard methods of the spectral analysis, such as the Fast 
Fourier Transformation [10]. Consequently the motor 
moment of inertia JM can be estimated according to 
Equation (22). 
 

Table 1. Characterization of the mechanical system. 

Coupling Classification Considered inertia for tuning rule

Fixed/Stiff fN >> fd Total moment of inertia (20) 

Soft fN << fd Motor moment of inertia (22) 
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After carrying out these three steps, the parametric 
model for the velocity controlled system is complete. As 
mentioned above, it can be used for the design of the 
velocity controller, based on well known tuning rules, 
listed in the next section. 

3. Tuning Rules 

According to [11], “the most direct way to set up con- 
troller parameters is the use of tuning rules”. There are 
various tuning rules for a wide range of parametric mod- 
els put together in [11]. Since the typical structure of a 
velocity controller in industrial servo drives is PI, the 
choice is reduced to PI controller rules for parametric 
models. The structure of the controller is: 
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The extracted tuning rules Table 2 differ in their suit- 
ability for electrical servo drives and will be benchmarked 
with various criteria in section 4. 

4. Experiments and Results 

4.1. Experimental Set-Up 

The presented approach has been verified on an experi- 
mental rig, as shown in Figure 7. It is equipped with the 
SIEMENS motion controller SIMOTION D445 and SI- 
NAMICS drives. The motion controller is sampled with 
500 μs and the drive components with 125 μs. 

The experimental set-up contains of a two-mass-sys- 
tem. The basic parameters are the total moment of inertia 
J, the resonance frequency f0 and antiresonance fre- 
quency fN. The preset values of the parameters for the 
experimental set-up are shown in Table 3. 
 

Table 2. PI controller tuning rules for FOIPDT model. 

Tuning rule KP [Nms/rad] TN [s] 
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Figure 7. Experiment set-up with motion controller. 
 

Table 3. Parameters of the experimental set-up. 

Configuration J [kgm²] f0 [Hz] fN [Hz] 

Two-mass-system 
(Stiff coupling) 

61355 10  422 333 

4.2. Identification Results 

The closed current loop (7) under relay feedback and the 
identified model are shown in the following time plot. The 
identified model has been calculated in the sample time of 
the motion controller. Even for a lag time which is smaller 
than the sample time, the reaction curves of the real values 
and the modelled values are nearly identical Figure 8. 
Hence, the performance of the chosen adjustment strategy 
is proven. 

According to Equation (13), the hysteresis of the relay 
is a free selectable parameter. Therefore, a compromise 
between the magnitude of the relay oscillation and the 
linearization error for the friction moment (12) has to be 
found. The moment of inertia for the mechanical system 
at different operation points is plotted with a variable 
hysteresis in Figure 9. 

The graph demonstrates that the value of the moment 
of inertia for the mechanical system can be identified 
with sufficient accuracy. A variance of less than 4% can 
be achieved for a hysteresis to operation point ratio >0.1. 
Comparing the achieved moments of inertia to other in- 
vestigations [12,13], the experiments have shown an im-
provement of the accuracy. Simultaneously, a small 
value of the velocity (operation point) is sufficient. Hen- 
ce, the stress to the mechanical system is smaller. Conse- 
 

 

Figure 8. Time behavior of closed current loop. 

 

Figure 9. Results for the total moment of inertia. 
 
quently the FOIPDT model (14) can be written with the 
identified parameters. 

4.3. Controller Design 

Using the identified parametric model from Table 4 and 
the tuning rules for PI controller from Table 2, the 
achievable phase margin and gain margin can be calcu-
lated. 

The typical phase margin for set point response is a 
range of 70° - 40° and for disturbance response a range 
of 50° - 20° [4]. As it is recognizable in Table 5, all 
listed tuning rules can be classified as sufficient for a 
good disturbance response. 

4.4. Achievable Results 

The behavior of these tuning rules on disturbance steps is 
shown in Figure 10. In addition, the internal tuning rule 
of the drive system is listed as “automatic”. 

The introduced tuning rules show a better disturbance 
response, compared to the automatic tuning of the drive 
system. As expected from the open loop stability calcu- 
lation Table 5, McMillan and Samal have the smallest 
settling times. 
 

Table 4. Identified parameters for controller design. 

Model J [kgm²] Td [s] Tcur [s] 

 1

dsT

cur

e

J T s s



   
 61340 10  30.25 10  30.4 10

 
Table 5. Estimated open loop characteristics. 

Tuning rule fd [Hz] Gain margin [dB] Phase margin [°]

McMillan 238 5.91 19.2 

Sym. 
Optimum 

129 13.3 35 

Samal  188 8.76 25.9 
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Figure 10. Disturbance response (step function). 
 

The validation of the setpoint response is divided in 
two time plots. In a first step the original structure of the 
PI-controller is used (Figure 11). 

As known from the Symmetrical Optimum, all set- 
point responses show an overshoot of up to 80%. Con- 
sequently an additional setpoint filter has to be used in 
the command value branch. The filter is described by the 
following equation: 
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The filter time constant TF was set equal to TN [4] for 
all experiments (Figure 12). 

By using the proposed filter, the overshoot is reduced 
to a range of 0% - 10%. The settling time for all ap- 
proaches is about 10ms. 

5. Conclusions 

In this paper a new identification method of parametric 
models for velocity loop parameters in the time domain 
has been presented. As an excitation, the auto relay 
feedback experiment has been used and has been com- 
bined with the method of gradual pole compensation. 

 

 

Figure 11. Setpoint response without filter. 

 

Figure 12. Setpoint response with filter. 
 

The model parameters are identified by applying a cri- 
terion, which compares the magnitudes of two signals. A 
high accuracy of the model parameters has been achieved. 
The advantages of the approach are a less necessary a 
priori knowledge compared to other identification meth-
ods, the possibility of a simultaneous identification of 
various parameters and a low but sufficient excitation of 
the me- chanical system. 

The presented algorithm has successfully been imple- 
mented as an automatic tool in the motion control system 
SIMOTION. Based on the identification results the PI 
velocity controller was designed by using various tuning 
rules. The achievable results for setpoint and disturbance 
responses have been compared. 
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