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Abstract 
 
This paper presents a self-structured organizing single-input control system based on differentiable cerebellar 
model articulation controller (CMAC) for an n-link robot manipulator to achieve the high-precision position 
tracking. In the proposed scheme, the single-input CMAC controller is solely used to control the plant, so the 
input space dimension of CMAC can be simplified and no conventional controller is needed. The structure of 
single-input CMAC will also be self-organized; that is, the layers of single-input CMAC will grow or prune 
systematically and their receptive functions can be automatically adjusted. The online tuning laws of sin-
gle-input CMAC parameters are derived in gradient-descent learning method and the discrete-type Lyapunov 
function is applied to determine the learning rates of the proposed control system so that the stability of the 
system can be guaranteed. The simulation results of three-link De-icing robot manipulator are provided to 
verify the effectiveness of the proposed control methodology. 
 
Keywords: Cerebellar Model Articulation Controller (CMAC), De-icing Robot Manipulator, 

Gradient-Descent Method, Self-Organizing, Signed Distance 

1. Introduction 

In general, robotic manipulators have to face various 
uncertainties in their dynamics, such as friction and ex-
ternal disturbance. It is difficult to establish exactly 
mathematical model for the design of a model-based 
control system. In order to deal with this problem, the 
braches of current control theories are broad including 
classical control: neural networks (NNs) control [1-3], 
adaptive fuzzy logic control (FLCs) [4-6] or adaptive 
fuzzy-neural networks (FNNs) [7-9] etc. They are classi-
fied as adaptive intelligent control based on conventional 
adaptive control techniques where fuzzy systems or neu-
ral networks are utilized to approximate a nonlinear 
function of the dynamical systems. However, many 
adaptive approaches are rejected as being overly compu-
tationally intensive because of the real-time parameter 
identification and required control design. 

Fuzzy logic control (FLCs) has found extensive appli-
cations for plants that are complex and ill-defined which 
is suitable for simple second order plants. However, in 
case of complex higher order plants, all process states are 
required as fuzzy input variables to implement state 

feedback FLCs. All the state variables must be used to 
represent contents of the rule antecedent. So, it requires a 
huge number of control rules and much effort to create. 
To address these issues, single-input Fuzzy Logic con-
trollers (S-FLC) was proposed for the identification and 
control of complex dynamical systems [10-12]. As a re-
sult, the number of fuzzy rules is greatly reduced com-
pared to the case of the conventional FLCs, but its control 
performance is almost the same as conventional FLCs. 

Neural networks (NNs) are a model-free approach, 
which can approximate a nonlinear function to arbitrary 
accuracy [1-3]. However, the learning speed of the NNs 
is slow. To deal with these issues, cerebellar model ar-
ticulation controller (CMAC) was proposed by Albus in 
1975 [13] for the identification and control of complex 
dynamical systems, due to its advantage of fast learning 
property, good generalization capability and ease of im-
plementation by hardware [13-15]. The conventional 
CMACs, regarded as non-fully connected perceptron-like 
associative memory network with overlapping receptive 
fields which used constant binary or triangular functions. 
The disadvantage is that their derivative information is 
not preserved. For acquiring the derivative information of 
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input and output variables, Chiang and Lin [16] developed 
a CMAC network with a differentiable Gaussian recep-
tive-field basis function and provided the convergence 
analysis for this network. The advantages of using CMAC 
over neural network in many applications were well 
documented [17-21]. However, in the above CMAC lit-
eratures, the structure of CMAC cannot be obtained 
automatically. The amount of memory space is difficult to 
select, which will influence the learning and control 
schemes. Some self-organizing CMAC neural networks  
were proposed for structure adaptation [22-25]. In [22] 
and [23] a data clustering technique is used to reduce the 
memory size and a structural adaptation technique is 
developed in order to accommodate new data sets. 
However, only the structure growing mechanism is in-
troduced and; the pruning mechanism was not discussed. 
In [24], a self-organizing hierarchical CMAC was intro-
duced. The authors proposed a multilayer hierarchical 
CMAC model and used Shannon’s entropy measure and 
golden-section search method to determine the input 
space quantization. However, their approach is too com-
plicated and lacks online real-time adaptation ability. 
Online adjusting suitable memory space of CMAC 
structure is our motivation. To address these issues, C. M. 
Lin, T. Y. Chen proposed self-organizing control system 
[25]. This control system does not require prior knowl-
edge amount of memory space, the layers of CMAC will 
grow or prune systematically. However, the dimension of 
the input space of CMAC control system is reduced 
through a combination of sliding control model. Recently, 
to deal with the problem of the simplified input, B. J 
Choi, S. W. Kwak and B. K. Kim proposed the S-FLC 
[10-12] and its advantages which are mentioned above. 
Based on the S-FLC, several literatures developed sin-
gle-input CMAC (S-CMAC) control system [26,27], 
which adopts two learning stages, namely, an offline 
learning stage and online learning stage. The disadvan-
tage is that their derivative information is also not pre-
served. So, M. F. Yeh and C. H. Tsai proposed differen-
tiable standalone CMAC control system [28] to provided 
better system status in the learning control. In addition, 
the quantization of input space could be reduced while 
using the differentiable standalone CMAC. However, the 
disadvantages are that the structure of S-CMAC cannot 
be obtained automatically. 

In this paper, we propose a novel self-structured orga-
nizing single-input CMAC (SOSICM) control system for 
three-link De-icing robot manipulator to achieve the 
high-precision position tracking. This control system 
combines advantages of S-CMAC and it does not require 
prior knowledge of a certain amount of memory space, 
and the self-organizing approach demonstrates the prop-
erties of generating and pruning the input layers auto-

matically. The developed self-organizing rule of S-CMAC 
is clearly and easily used for real-time systems. More-
over, the developed system is solely used to control the 
plant and no conventional or compensated controller. 
The online tuning laws of CMAC parameters are derived 
in gradient-descent method. 

This paper is organized as follows: System description 
is described in section 2. Section 3 presents SOSICM 
control system. Numerical simulation results of a 
three-link De-icing robot manipulator under the possible 
occurrence of uncertainties are provided to demonstrate 
the tracking control performance of the proposed 
SOSICM system in section 4. Finally, conclusions are 
drawn in section 5. 

2. System Description 

In general, the dynamic of an n-link robot manipulator 
may be expressed in the Lagrange following form: 

     ,M q q C q q q G q N             (1) 

where  are the joint position, velocity and 
acceleration vectors, respectively, 

, , nq q q R 

  n nM q R   denotes 
the inertia matrix,  , nxnC q q R

1nxN R

 expresses the matrix 
of centripetal and Coriolis forces,  is the 
gravity vector,  represents the vector of exter-
nal disturbance , friction term 

  1nxG q R

 


lt f q , and un-modeled 
dynamics,  is the torque vectors exerting on 
joints. In this paper, a new three-link De-icing robot ma-
nipulator, as shown in Figure 1, is utilized to verify dy-
namic properties are given in section 4. 

1mxR 

The control problem is to force   ,n
iq t R  

1, 2,i m   to track a given bounded reference input 
signal   nRdiq t . Let  be the tracking error 
vector as follows: 

 ie t

,       1, 2,i di ie q q i m             (2) 

and the system tracking error vector is defined as 
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Figure 1. Architecture of three-link De-icing robot manipu- 
lator. 
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where n n
niK R   is the scaling factor matrix for the 

system tracking vector 1[ ]n n
i i i ie e e e R   ,



  
. 1, 2 ,i m

Based on [10,11], the tracking error  is trans-
formed into a single variable, termed the signed distance 

 which is the distance from an actual state 
 to the switching line as shown in Figure 2 for a 

2-D input. The switching line is defined as follows: 

n
i R 

,m
sid R

n
i R 

1 2
1 2 1 0n n

i n i i ie e e e   
           (4) 

where  is a constant. Then, the signed dis-
tance between the switching line and operating point 

 can be expressed by the following equation: 

1
1

n
n R 
 

n
i R 
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1 ( 1) 2 2 1 1

2 2 2
1 2 11

n n
ni n n i i i
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According to the standalone CMAC control system is 
shown in Figure 3. This control scheme provided better 
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Figure 2. Derivation of a signed distance. 
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Figure 3. Block diagram of standalone CMAC control sys-
tem. 

control characteristics due to using the differentiable 
CMAC in the system. The advantage is that derivative 
information of input and output variables is preserved in 
learning process. In addition, the generalization error 
caused by quantization of input space could be reduced 
while using the differentiable CMAC. 

Based on the standalone CMAC control system, we 
propose the SOSICM control system as shown in Figure 
4, which combines advantages of standalone CMAC and 
it does not require prior knowledge of a certain amount 
of memory space. The self-organizing approach demon-
strates the properties of generating and pruning the input 
layers automatically. The developed self-organizing rule 
of CMAC is clearly and easily used for real-time systems 

3. Adaptive SOSICM Control System 

3.1. Brief of the S-CMAC 

An S-CMAC is proposed and shown in Figure 5. It is 
composed of an input, association memory, weight and 
output spaces. The signal propagation and the basic 
function in each space are expressed as follows: 

1) Input space sD ; assume that each input state vari-
able si  can be quantized into d si  discrete states and 
that the information of a quantized state is regarded as 
region for each layer ki . Therefore, there exist 

si

N

n th
1N   individual points on the si - axis. Figure 6 

shows the case of si

d
10N  . Each activated state in each 

layer becomes a firing element, thus, the weight of each 
layer can be obtained. The Gaussian basic function for 
each layer is given as follows: 
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Figure 4. Block diagram of proposed SOSICM control sys-
tem. 
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Figure 5. Architecture of a single-input CMAC. 
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Figure 6. Block division of CMAC with Gaussian basic func-
tion. 
 

 2

2( ) exp ,

1, 2, , ,     1, 2, ,

si ki
ki si

ki

ki

d m
d

i m k




 
  


   n

         (6) 

where ki  represents the kth layer of the input sid  w  
the mean kim  a  the variance ki

ith
nd  . 

2) Output space O: The output of S-CMAC is the al-
gebraic sum of the firing element with the weight mem-
ory, and is expressed as 

 
1

kin

i ki ki ki
k

a w d 


  si

n

             (7) 

where  denotes the weight of the kth layer, 
  is the index indicating 

whether the ith memory element is addressed by the 
state involving 

kiw
 sid  ,ki kia a 1,2, kik  

si . Since each state addressed exactly 

ki  memory elements, only those addressed  s are 
one, and the others are zero. 

d
m ,

kia

The block diagram in Figure 3, in which only the 
S-CMAC plays a major role in the control process, thus 
to have a trade-off between the desired performance and 
the computation loading we must choose a reasonable 
number of layers. However, if the number of layers is 

chosen too small, the learning performance may be in-
sufficient to achieve a desired performance. Otherwise, if 
the number of layers is chosen too large, the calculation 
process is too heavy, so it is not suitable for real-time 
applications. To deal with this problem, a self-structured 
organizing S-CMAC is proposed includes structure and 
parameter learning as shown in Figure 4. 

3.2. Self-Structured Organizing S-CMAC 

In this section, structural learning is necessary to deter-
mine whether to add a new layer in association memory 
A depends on the firing strength  of each layer 
for each incoming data 

kin
ki R 

si . If the firing strength 
 of each layer for new input data 

d
kin

ki R  si  falls 
outside the bounds of the threshold, then, SOSICM will 
generate a new layer. The self-structured organizing 
S-CMAC can be summarized as follows: 

d

1) Calculate the firing strength  of each 
layer for each input data 

kin
ki R 

si

2) Using Max-Min method is proposed for layer 
growing. Find 

d  in (6). 

 
1

ˆ arg min ,  1,2,
ki

i ki si
k n

k d k
 

   kn i       (8) 

If  

 
î

sik
d K   gi                (9) 

Here giK is a threshold value of adaptation with 
0 K 1gi  . In our case  and a new layer is 
generated. 

0.1giK 

This means that for a new input data, the exciting 
value of existing basic function is too small. In this case, 
number of layers increased as follows: 

   1ki kin t n t 1              (10) 

where ki  is the number of layers at time t. Thus, a new 
layer will be generated and then the corresponding pa-
rameters in the new layer such as the initial mean and 
variance of Gaussian basic function in association mem-
ory space and the weight memory space will be defined 
as 

n

kinm d si                (11) 

ˆkin ki
                 (12) 

0
kinw                  (13) 

Another self-structured organizing learning process is 
considered to determine whether to delete existing layer, 
which is inappropriate. A Max-Min method is proposed 
for layer pruning. 

Considering the output of SOSICM in (7), the ratio of 
the kth component of output is defined as 
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,  1, 2, ,ki
ki ki

i

v
MM k


   n        (14) 

where ,kikiki wv   Then, the minimum ratio of the kth 
component is defined as follows: 

1
arg min

ki
i

k n
k

 
 kiMM            (15) 

If  

i cik
MM K               (16) 

Here ciK  is a predefined deleting threshold. In our 
case  and the i  layer will be deleted. 
This means that for an output data, if the minimum con-
tribution of a layer is less than the deleting threshold, then 
this layer will be deleted. 

0.03Kci  k th

3.3. On-Line Learning Algorithm 

The central part of the learning algorithm for a SOSICM 
is how to choose the weight memory  mean  
variance ki

,kiw ,kim
  of the Gaussian basic function. ni  Are 

the scaling factors of the error ie  and the change of 
error i , which will significantly affect the performance 
of SOSICM. For achieving effective learning, an on-line 
learning algorithm, which is derived using the supervised 
gradient descent method, is introduced so that it can in 
real-time adjust the parameters of SOSICM. The energy 
function  is defined as 

k

e

iE

 2 21

2 2i di iE q q e  
1

i           (17) 

According to the energy function (17) and the system 
structure in Figure 4, the error term to be propagated is 
given by 

i i i
pi i

i i i

E E q
e

q
 i

i

q

  
   

    
   

        (18) 

where i iq    represent the sensitivity of the plant 
with respect to its input. With the energy function  
the parameters updating law based on the normalized 
gradient descent method can be derived as follows 

,iE

1) The updating law for the  weight memory can 
be derived according to 

kth
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        (19) 

where wi  is positive learning rate for the output 
weight memory  the connective weight can be up-
dated according to the following equation: 

,kiw

   1ki ki kiw t w t w              (20) 

2) The mean and variance of the  Gaussian basic 

function can be also updated according to 

kth
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where mi , i  are positive learning rates for the mean 
and variance, respectively. The mean and variance can 
be updated as follows: 

   1ki ki kim t m t m              (23) 

   1ki ki kit t                (24) 

3) Finally, the updating law for scaling factors can be 
derived as follows: 
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   (25) 

where mi  is the learning rate, and it can be updated by 
the following: 

   1ni ni nik t k t k             (26) 

The plant sensitivity i iq    in (18) can be calcu-
lated if the plant model is exactly known. However, the 
plant model is unknown, so i iq    can not obtained 
in advance. To deal with this problem, in [28], a simple 
approximation of the error term of the system can be use 
as follows: 

pi ie ei                (27) 

3.4. Convergence Analysis 

The update laws of Equations (19), (21), (22) and (25) 
require a proper choice of the learning rates ,wi  mi , 

,i  and ni  in order to the convergence of the output 
error is guaranteed; however, this is not easy which de-
pends on each person’s experience. To train the 
S-CMAC effectively, the variable learning rates which 
guarantee convergence of the output error are derived in 
the following. 

Defined a discrete-type Lyapunov function can be 
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given by 

   21

2i iV k e k             (28) 

Thus, the change of the Lyapunov due to the training 
process is obtained as 

         2 21
1 1

2i i i i iV k V k V k e k e k       



 (29) 

where  is represented by [28]  1kei

         
1
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i i i i
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i   (30) 

where  represents the in the learning process, iie P  
denotes a change of an adjustable parameters. Using 
Equation (18), we have  i i pi i i iPe P e k        and 

i pi i iP E P    pi pi i iP     , where pi  is the 
learning rate for the parameter Pi. 

Thus: 
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If the learning rate pi  is selected as: 

 
22

0 2pi pi i ie k P        i        (32) 

Then  therefore   0,iV k     1 ,i iV k V k   the 
Lyapunov stability (system stability) and the conver-
gence of the tracking error could be guaranteed. In addi-
tion, the optimal learning rate can be found for achieving 
faster convergence by taking the differential equation (31) 
with respect to pi  and equals to zero. Finally, the op-
timal learning rate can be determined as follows: 

 
22

1pi pi i ie k P       i        (33) 
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  (34) 

4. Simulation Results 

A three-link De-icing robot manipulator as shown in 
Figure 1 is utilized in this paper to verify the effective-
ness of the proposed control scheme. The detailed system 
parameters of this robot manipulator are given as: link 
mass , lengths angular posi-
tions  and displacement position 

1 2 3, , ( )m m m kg
, ( )q q rad

 1 2,l l m ,

1 2  3d m . 
The parameters for the equation of motion (1) can be 

represented as follow: 

 
11 12 13

21 22 23

31 32 33

M M M

M q M M M

M M M

 
   
  

 

  
 

2 2
11 1 1 2 2 1 2 1 1 1

2 2
3 2 2 2 2 1 2

9 4 1 4

2

2M m l m c l l l l c s

m c l l c l l

    

  
 

2 2
22 2 2 3 2 1 11 4 4 3 2M m l m l m l    

23 32 3 2 2M M m c l   

33 3M m  

12 13 21 31 0M M M M     

 
11 12 13
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  (35) 

where 3q R  and the shorthand notations  
 1 1 ,c qcos   2 2cos ,c q   1 sin 1s q and  
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 2 sin 2s q

1 3( )m kg

 are used. 
For the convenience of the simulation, the nominal 

parameters of the robotic system are given as 
 2  2( ),m kg 3 2.5( ),m kg  1  

2  and 
0.14( ),l m

0.32( ),l m  29.8g m s
0 0, 3d


0 1,  2q

 and the initial condi-
tions     1q  0 0 ,  1 0 0q ,

 

 
 . The desired reference trajectories 

are 1d   
 2 0 0,q  d

 q t 
 3 0 0
 sin ,t 2d   cosq t    ,t  2 cos ,d t td  

respectively. 
The most important parameters that affect the control 

performance of the robotic system are the external dis-
turbance the friction term ,lt  f q , which are injected 
into the robotic system, and their shapes are expressed as 
follows: 

 lt t 

 

     5sin 5 5sin 5 5sin 5
T

t t t       (36) 

In addition, friction forces are also considered in this 
simulation and given as 

   

 
1 1 2

3 3

20 0.8sgn 4 2sgn

4 2sgn
T

2f q q q q q

d d

  

 

    

 


   (37) 

In order to exhibit the superior control performance of 
the proposed SOSICM control system, the control sys-
tem standalone CMAC is introduced in Figure 3 and 
examined in the mean time [28]. They are applied to 
control three-link De-icing robot manipulator and the 
same setting of SOSICM and standalone CMAC control 
system are chosen as follows: The inputs space of 
S-CMAC are 1,sd  2sd  and 3sd , the mean and vari-
ance of Gaussian basic functions are selected to cover the 
input space     1 1  

k k kw w w
1 1 1 1

 
; all initial weights 

are set to zero, i.e., 1 2 3  . 
The parameter 

0, 1,2, kik n 
 in the switching line is one. For re-

cording respective control performance, the 
mean-square-error of the position-tracking response is 
defined as: 

    2

1

1
,  1,2,3

T

i di i
j

mse

q

q j q j i
T 

          (38) 

where T is the total sampling instant, and i and 

di are the elements in the vector i  and diq . In this 
paper, the numerical simulation results carried out by 
using Matlab software. 

q
q

Example 1: Consider the standalone CMAC control 
system is shown in Figure 3. 

For the standalone CMAC control system, the pa-
rameters are chosen such as: 0.02,wi   0.02,mi   

0.02i  , 0.02,ni 

2 0.8im  

 the initial value of Gaussian 
basic functions and scaling factors are defined as 

1 1.0,im   , 3 0.6,im   4 0.4,im  
, 9 0.6im5 0.2,im   6 0.0,im  7m 0.2, 8 0.4im i    

10 0.8,im  m11 1.0,i  ki 0.15,  1 0.5ik  and 2 0.2ik   

for 1, 2, ,11,k    1, 2,3i  . The simulation results of 
standalone CMAC system, the responses of joint position 
and MSE are depicted Figures 7(a)-(f), respectively. 
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Figure 7. Simulated position responses and MSE of the 
Standalone CMAC control system at joints 1, 2 and 3. 
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Example 2: Consider the proposed SOSICM control 
system is shown in Figure 4. 

For the proposed SOSICM control system, the pa-
rameters are chose in the following:  

22
1 ( )pi pi i i ie k P        ki for , ,i ki kiP w m   and  

ni , and the initial values of system parameters are given 
as , the inputs of S-CMAC 1

k
2kin  sd , 2sd  and 3sd  

the mean and variance of Gaussian basic functions are 
selected to cover the input space     1 11 1 1 1   . 
The threshold value of giK  is set as 0.1; ciK  is set as 
0.01 for . The simulation results of the pro-
posed SOSICM system, the responses of joint position, 
MSE and layer number are depicted in Figures 8(a)-(f) 
and (g), (h) and (k) respectively. 

1, 2,3i

According to the simulation results as shown in Fig-
ures 7 and 8, the joint-position tracking responses of the 
proposed SOSICM system can be controlled to more 
closely follow desired reference trajectories than the 
standalone CMAC as shown in Figure 7 and Figures 
8(a)-(c). Our proposed control system for each joint 
shows that the MSE in Figures 8(d)-(f) is faster than the 
MSE in Figures 7(d)-(f) and finally converges to 0.009, 
0.015 and 0,019. Meanwhile the MSE of standalone 
CMAC is 0.032, 0.031 and 0.036 and number of layers 
of S-CMACs converge to three layers as shown in Fig-
ures 8(g), (h) and (k). 
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Figure 8. Simulated position responses, MSEs and layer 
number of the SOSICM control system at joints 1, 2 and 3. 

5. Conclusions 

In this paper, a SOSICM control system is proposed to 
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control the joint position of a three-link De-icing robot 
manipulator. In the SOSICM system, dynamical system 
is completely unknown and auxiliary compensated con-
trol is not required in the control process. The online 
tuning laws of S-CMAC parameters are derived in gra-
dient-descent learning method and the discrete-type 
Lyapunov function is applied to determine the variable 
optimal learning rates so that the stability of the system 
can be guaranteed. This paper has successfully devel-
oped the SOSICM control system for a three-link 
De-icing robot manipulator not only requires low mem-
ory with online structure and parameters tuning algo-
rithm, but also the input space can be reduced through 
the signed distance. The simulation results of the pro-
posed SOSICM system can achieve favorable tracking 
performance for three-link De-icing robot manipulator.  
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