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Abstract 
 
Iterative learning control (ILC) is used to control systems that operate in a repetitive mode, improving track-
ing accuracy of the control by transferring data from one repetition of a task, to the next. In this paper an op-
timal iterative learning algorithm for discrete linear systems is analyzed and a solution for its attainment is 
proposed. Finally the mathematical proof of the algorithm’s causal formulation is also provided in its com-
plete form, since its implementation requires its causal formulation. 
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1. Introduction 
 
Iterative Learning Control (ILC) is a relatively new con-
cept in the control theory. It evolved from the need to 
control dynamical systems that are supposed to carry out 
a given task repetitively. More specifically for systems 
where the desired output values are a function of time 
and the task is carried out repeatedly. A classical exam-
ple is the robot in the car industry that follows a given 
trajectory and welds at specific points along the trajec-
tory. Normally the robot would be tuned once through 
feedback or feedforward control or even a combination 
of both. After the tuning, it would carry out the repeti-
tions performing in the same way. The obvious drawback 
of this approach is the fact that if there is an error be-
tween the measured trajectory and the reference trajec-
tory due to a wrong selection of the control input trajec-
tory, the robot will repeat this error at each trial, i.e., if 
there is an error in the performance it will repeat the 
same error at each iteration. 

To overcome this problem, Arimoto, one of the in-
ventors of ILC [1,2], suggested that both the information 
from the previous tasks or “trials” and the current task 
should be used to improve the control action during the 
current trial. In other words, the controller should learn 
iteratively the correct control actions in order to mini-
mize the difference between the output of the system and 
the given reference signal. He called this method “bet-

terment process” [3]. This approach is more or less an 
imitation of the learning process of every intelligent be-
ing. Intelligent beings tend to learn by performing a trial 
(i.e. selecting a control input) and observing what was 
the end result of this control input selection. After that 
they try to change their behaviour (i.e. to pick up a new 
control input) in order to get an improved performance 
during the next trial. Because, a) the overall idea of ILC 
and the procedure results in a controller that learns the 
correct control input, and b) learning is done through 
iteration, the term Iterative Learning Control is nowa-
days used to describe control algorithms that result in the 
“betterment process” as suggested by Arimoto [3]. In this 
work an optimal iterative learning algorithm for discrete 
linear systems is analyzed and a solution for its attain-
ment is proposed. Finally the mathematical proof of the 
algorithm’s causal formulation is also provided in its 
complete form, since its implementation requires its 
causal formulation. 
 
2. The Iterative Learning Control Aim 
 
The aim of the ILC algorithm [4,5], is to find iteratively 
an optimal input *u for the plant under investigation. 
This input, when applied to the plant, should generate an 
output *y  that tracks the desired output dy  “as accu-
rately as possible”. The use of the phrase “as accurately 
as possible” states the significance of obtaining the 
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smallest possible difference between the actual *y  and 
desired dy  output. This difference is actually the error e 
and the above lead to the conclusion that the error e is 
desired to be minimal. The ultimate aim of the ILC is to 
push the error e to zero. Thus it is clear that the applying 
an ILC algorithm will result in a two-dimensional system 
because the information propagates both along the time 
axis t and the iteration axis k. 

The 2-dimensionality of the iterative learning control 
introduces problems in the analysis as well as the design 
of the system and hence the 2-dimensions are an expres-
sion of the systems dependent dynamics: a) the trial in-
dex k and b) the elapsed time t during each trial. In order 
to overcome such difficulties an algorithm for Iterative 
Learning Control is introduced, which has the property 
of solving the 2-dimensionality problem. 
 
3. Proposed Cost Function 
 
One way of solving this problem is to introduce the cost 
function for the system under investigation. The mini-
mization of the cost function will provide an effective 
algorithm for iterative learning control (ILC). 
The following cost function is proposed [4]: 

  2 2

1 1 1k k k kR Q
J u u u e              (1) 

where: 
 1kJ u   is the cost function with respect to the current 

trial input, 
2

1k ku u   is the norm of the difference between the 
current and previous trial inputs, 

2

1ke   is the norm of the current error and 
R, Q are symmetric and positive definite weighing ma-
trices. It is assumed that R and Q are diagonal matrices, 
and for simplicity rIR   and Q qI , where q and r 
are positive real numbers  ,q r R . 

In ILC literature, researchers have suggested different 
cost functions to solve the ILC problem. The reasons that 
lead to the realization that the selected cost function (1) 
is effective and appropriate are the following: 

1) The 
2

1k ku u   factor represents the importance 
of keeping the deviation of the input between the trials 
small. Intuitively this should result in smooth conver-
gence behavior. This requirement could also be stated as 
the need for producing smooth control signals, in order 
to obtain smooth manipulation of actuators. 

2) The 
2

1ke   factor represents the main objective of 
reducing the tracking error, at each iteration. 

3) In order to state which of the above two factors 
plays a more significant role in the cost function the 
weighting matrices R and Q are used. If the interest is 
focused in retaining the deviation of the input between 

the trials small, then the ratio r q   has to be “large”. 
On the other hand, if keeping the error small is more 
significant, then the ratio r q   has to be “small”. 
The actual meaning of “small” and “large” depends on 
the system being considered and the units measured. 

4) Τhe optimal value of the cost function is bounded. 
If the cost function is evaluated with 1k ku u   then (1) 
becomes:   2 2 2

k k k k kR Q Q
J u u u e e     and hence 

the optimal value:   2

1k k Q
J u e  . It is also clear that 

the optimal cost function has a lower bound:  
  2 2 2

1 1 1 1k k k k kR Q Q
J u u u e e       . Hence com-
bining the above, the upper and lower bounds are ex-
pressed with (2). 

 2 2

1 1 1k k k ke J u e              (2) 

 
4. The Norm-Optimal ILC Algorithm 
 
The differentiation of the cost function (1) with respect 
to 1ku   produces the solution used to update the input, 
the norm-optimal ILC algorithm, which is investigated in 
this work. The input up-date law is the following [4]: 

1

0
k

J

u


 

   

1
1 1 1

T
k k k k ku u R G Qe u G e 
           (3) 

or 
1

1 1
T

k k ku u R G Qe
             (4) 

where: 

1ku   is the current trial input, 

ku is the previous trial input, 

1ke   is the current trial error and 
1 TG R G Q   is the gain matrix-adjoint of the plant, 

that represents the relative weighting of the cost function 
requirements (error-input deviation). 
 
5. Characteristics and Properties of the ILC 

Algorithm 
 
The main characteristics of the update law for the pro-
posed Iterative learning control scheme (3) can be sum-
marized to the following: 

1) Non-causalily. The dependence of the input update 
law (3) on the adjoint of the plant G , where G is a 
function of the error in future sample times than the cur-
rent one, implies non-causality. 

2) Integrator-type of approach. The algorithm utilizes 
the input change instead of the input itself to evaluate the 
performance of the system. 

3) Feedback approach. This characteristic is one of the  
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most important ones. Several authors [2] suggested 
feedforward approaches where the error of the previous 
trial was used in the input update law: 1k k ku u Ke   . 
On the contrary the update law in (3) is of the form: 

1 1k k ku u Ke   , which means that it uses feedback of 
the current trial error. The feedback operator K is in this 
case the adjoint of the plant G . The feedforward ap-
proaches face the problem of ignoring the current trial 
effects such as plant modeling errors and possible dis-
turbances. This means that the algorithm is not sensitive 
to these effects. On the contrary the feedback approach 
of (3) takes into account all of this producing in this way 
a more robust solution and this is likely to be a more 
effective one in the plant stabilizing sense. 

4) Descent algorithm. With the help of the equation: 
2 2

1 1k k ke J e   , it is deduced that the norm of the 
error 1ke

 is monotonically decreasing from trial to 
trial.  

Two of the most important properties of the algorithm 
are presented below: 

1) Convergence of the error sequence to zero. It can be 
shown not only that the error e converges to a final value 
e  as the number of iterations k  but also that 

0e  . It is significant to mention that the convergence 
is exponential. It is also significant to be mentioned at 
this point, that the error sequence convergence can be 
proved even for an arbitrary chosen initial error 0e . This 
is a form of robustness, since it is ensured that the error 
will converge to zero, independent of the initial error 
value. 

2) Convergence of the input sequence. It can be shown 
that the input of the algorithm converges to a final value 
u  as the number of trials k  . 
 
6. Causal Formulation of the ILC Algorithm 
 
One of the main characteristics of the ILC algorithm (3) 
is that the algorithm is seems to be non-causal. Because 
of its characteristics it is a very efficient algorithm in 
terms of plant control. The main drawback is the fact that 
enormous amount of data and computational effort is 
required due to the matrices size. A solution to this 
problem would be the implementation of the algorithm. 
On the other hand, in order to be able to implement the 
algorithm it is essential to derive it in a causal form. 
 
6.1. The Proposed Causal Algorithm 
 
The causal solution to the above problem is given by 
introducing the following proposed algorithm for Norm- 
Optimal ILC, which consists of the following terms: 

Term 1: The gain matrix K(t). Given in the form of the 
discrete Ricatti equation [6,7]: 

   

     
1

1

1 1 1

T

T T T

K t K t

K t K t R K t C QC
 

    

            
 

(5) 

for [0, 1]t N   and with the terminal condition 
  0K N  . 
Term 2: The feedforward (predictive) term. 

   
    

11
1

1 1 1

T
k

T T
k k

t I K t R

t C Qe t










     

   
     (6) 

for [0, 1]t N   with the terminal condition 
 1 0k N   . 

Term 3: The input update law. 

   

        
 

1

1

1

1
1

k k

T T
k k

T
k

u t u t

K t R K t x t x t

R t










 

        



  (7) 

Easily can be observed that Term I is independent of 
the inputs, outputs and states of the system, Term II, the 
predictive term  1k t   is dependent on the previous 
trial error  1ke t   and Term III, the input update law 
depends on the previous trial input  ku t , the current 
state  1kx t , the previous trial state  kx t , and the 
predictive term  1k t  . This is hence a causal iterative 
learning control algorithm consisting of current trial-full 
state-feedback along with feedforward of the previous 
trial error data. 
 
6.2. Mathematical Proof of the Causal  

Formulation 
 
In this section a complete mathematical proof of the al-
gorithm is provided, demonstrating all the necessary 
steps from the optimization problem to the conception, 
development and finally the acquisition of the three 
terms of the algorithm’s causal form. The proof is based 
on the general idea proposed in [8] but it is for the first 
time that it is in its complete form, as it includes all the 
intermediate steps and calculations in an analytic way. 

The proof is as follows: Rewriting the input update 
law as a difference between the current trial input and 
the previous trial input gives the relationship (4): 

    1
1 1

T
k k ku t u t R G Qe
   . This form of the input 

update law, when written in super-vector notation results 
in relationship (8).  
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   
   
   

   

   
 
 

 
 
 

 

2 1

1 1
2

1 1
1

31 1

1 1

0 0 1

1 1 20

2 2 3
0 0

1 1
0 0 0

NT T T T T T T T T T T

k k k
NT T T T T T T T

k k k

Nk k kT T T T T

k k k
T T

C C C C
u u e

u u eC C C

R Qu u e
C C

u N u N e N
C



 


 


 

 

            
             
    
      
    
           






 

    


      (8) 

 
The difference of the control input  
     1k ku t u t u t   at the tth sample (by examining 

the  1
th

t   row of (8)) with 0 t N  , can be written: 

       
11

1
1

N j tT T T
k k

j t

u t u t R C Qe j
 


 

      (9) 

       
11

1
1

N j tT T T
k k

j t

u t u t R C Qe j
 


 

      (10) 

In order to derive a state space description of the ad-
joint system, the discrete co-state  p t  is introduced, 
such that: 

     1
1

T
k ku t u t R p t
             (11) 

Comparing (10) and (11) it follows that the co-state 
satisfies: 

     
1

1

0
N j tT T

j t

p t C Qe j t N
 

 

        (12) 
By expanding the sums in (12): 

     

       

       
   

       
   

     

1

1

0

2 1

2 1

2

1 2

3 ....

1 2

3 ....

1 2

3 ....

N j tT T

j t

T T T T

N tT T T T

T T T

N tT T T T

T T T

N tT T T T

p t C Qe j

p t C Qe t C Qe t

C Qe t C Qe N

C Qe t C Qe t

C Qe t C Qe N

C Qe t C Qe t

C Qe t C Qe N

 

 

 

 

 

  

     

    

    

    

    

       



  (13) 

but 

     

   
2

1 2 3 ....T T T

N tT T

p t C Qe t C Qe t

C Qe N
 

     

 
   (14) 

Hence the above yields the recursion relation for 
 p t : 

     1 1 0T Tp t C Qe t p t t N         (15) 

with    1 1Tp N C Qe t    or equivalently   0p N  . 
Consequently, the complete discrete input update law 

is as follows: 

     1
1 1 , 0T

k k ku t u t R p t t N
         (16) 

     1
1 1

T
k k ku t u t R p t
            (17) 

and 

       1 1 1 11 1 , 0T T
k k k kp t C Qe t p t p N         

(18) 

The main observation is the fact that the adjoint sys-
tem has a terminal condition (at t = N) instead of an ini-
tial condition; this is a sign of a non-causal solution. 

Equation (18) is an expression for the current trial 
co-state. Another expression for the co-state  1kp t  
can be calculated as follows: A standard technique [6,7] 
is to set the discrete co-state equal to: 

 

          
1

11
1 1

k

T
k k k

p t

K t I R K t x t x t t




 



        
 

(19) 

with a gain matrix K(t) and a correction term ξk+1(t). 
Both the terms K(t) and ξk+1(t) should be computed be-
fore each trial. Lets set: 

     
11 TM t K t I R K t

             (20) 

and then substitute this into equation (19): 

          
 

11
1 1

1

T
k k k

k

p t K t I R K t x t x t

t


 



         


 

         1 1 1k k k kp t M t x t x t t             (21) 

Setting the functions f(t) and g(t) as follows easily can 
be observed that these are independent of the states. 

     

   

11

11 1

T T

T T

f t M t I K t R C QC

I K t R M t





       

       

 

and 

     

     

11
1

11
1

1

1

T T
k

T T
k k

g t I K t R t

I K t R C Qe t t











        

      

 

1) Calculating the (feedforward) predictive term 
 1 1k t    

By setting g(t) = 0: 
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     

     

11
1

11
1

1

1 0

T T
k

T T
k k

g t I K t R t

I K t R C Qe t t











        

       

 

Solving the above relationship for the predictive term 
 1 1k t    results in: 

     
 

11
1 1{ 1

1 }

T T
k k

T
k

t I K t R t

C Qe t

 


         


  (22) 

which is simply the desired expression for the (feedfor-
ward) predictive term. 

2) Calculating the gain matrix K(t) 
By setting f(t) = 0: 

     

   

11

11 1 0

T T

T T

f t M t I K t R C QC

I K t R M t





       

        

 

   

   

11

11 1 0

T T

T T

M t I K t R C QC

I K t R M t





       

        

 

Multiplying both sides of the above relationship with 
  1 TI K t R     yields: 

   
 

1

1 0

T T

T

I K t R M t C QC

M t

     
   

      (23) 

Substitute M(t) with its equivalent from equation (20), 
equation (23) becomes: 

     

   

11 1

111 1 0

T T

T T T

I K t R K t I R K t

C QC K t I R K t

 



            

         

 

     

   

11 1

111 1 0

T T

T T T

I K t R I K t R K t

C QC K t I R K t

 



              

         

 

 

   
111 1 0

T

T T

K t C QC

K t I R K t


   

         
 

Solving the above term for the gain matrix K(t) results in 
the following relationship: 

     
111 1T T TK t C QC K t I R K t
          

   

    11 1

1

1 1

T T

T T

K t C QC K t

I R K t I R K t
 

   

         
 

further manipulations and expanding the brackets of the 
above equation result in the desired relationship of the 
gain matrix (5) which is the usual discrete Matrix Riccati 
equation: 

   

     
1

1

1 1 1

T

T T T

K t K t

K t K t R K t C QC
 

    

            
 

3) Calculating the input update law for the new input 
 1ku t  

In order to prove the desired relationship for the new 
input, equation (16) is used, which is: 

     1
1 1

T
k k ku t R p t u t
      

Substituting in the above equation for the discrete 
co-state  1kp t  with its equivalent from equation (18) 
the following: equation is produced: 

        
     

11 1
1 1

1

{

}

T T
k k

k k k

u t R K t I R K t x t

x t t u t

 
 



       

  
 

By expanding the brackets: 

        
     

11 1
1 1

1
1

T T
k k

T
k k k

u t R K t I R K t x t

x t R t u t

 
 




        

   
 

        
     

11 1
1 1

1
1

T T
k k

T
k k k

u t I R K t R K t x t

x t R t u t

 
 




        

   
 

Having in mind that the multiplication at any desired 
point within the equation with the identity matrix I there 
is no loss of the equality: 

      
       

11 1
1

1
1 1

T T
k

T
k k k k

u t I R K t I R K t

x t x t R t u t

 



 

         

      
 

    
         

11 1 1
1

1
1 1

T T
k

T
k k k k

u t I R K t R R R

K t x t x t R t u t

  



 

         

      
 

      
       

11 1
1

1
1 1

T T
k

T
k k k k

u t R RR K t RR K t

x t x t R t u t

 



 

       

      
 

      
       

1

1

1
1 1

T T
k

T
k k k k

u t R K t K t

x t x t R t u t






 

      

      
 

After the above manipulations and simplifications the 
following relationship comes out, which is simply the 
expression for the causal Term III (7), the input up-date 
law: 

        
     

1

1

1
1 1

T T
k k

T
k k k

u t u t K t R K t

x t x t R t






 

      

     
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7. Conclusion 
 
In this paper an optimal iterative learning algorithm for 
discrete systems is analyzed. The algorithm’s properties 
and characteristics were presented with the most impor-
tant feature to be that the error sequence converges to 
zero with an exponential rate for the case of discrete time 
plants. Finally, the complete causal formulation of the 
algorithm was derived in detail, consisting of optimal 
state feedback and optimal prediction feedforward. 
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