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Abstract 
The recharge of non-potable water into a drinking water aquifer is one means 
to overcome decreasing groundwater supplies and maintain availability of 
these resources for current and future generations. However, health concerns 
exist regarding the use of waters of “impaired quality” such as reclaimed 
wastewater for aquifer recharge. The objective of this study is to evaluate the 
potential risk to drinking water from the use of reclaimed water for recharge 
purposes using computational modeling with MODFLOW and MT3D ground-
water transport simulation based on an actual situation using rotavirus as a 
surrogate. The results from the simulation showed that after seven months, 
the risk of contamination based on concentration contours from the injection 
well to the production wells was stabilized below 10−6. 
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1. Introduction 

Surface waters supply the majority of people connected to water utilities, but 
these same surface waters are used many times over for water supplies, irriga-
tion, industrial and waste disposal. Therefore, their quality can be suspect. 
Groundwater resources are often thought of as being of higher quality than sur-
face. These groundwater supplies have the benefits of being more drought resis-
tant and more protected than surface waters, and as a result, they are easier to 
treat. However, unlike surface waters that recharge with rain, many aquifers are 
confined from the surfaces and are therefore far less responsive to precipitation. 
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As a result, aquifer levels are falling in many areas of the world (Reilly et al., 
2008). As populations have grown in areas with less access to surface waters, the 
demand for groundwater has increased, putting pressure on groundwater sup-
plies. Higher demands have caused aquifers to be mined, creating potential risk 
for large populations, a condition that exists for many areas of the world, putting 
millions of people are at risk. 

The widespread expansion of groundwater supplies corresponds to the availa-
bility of electricity in rural areas to run pumps, which make formerly dry areas 
available for farming and development. The reduction of available water due to 
aquifer mining, threatens the economic and social wellbeing of those that rely on 
these supplies. For these areas, a solution to their water supply issues is to inject 
water into aquifers to replenish or maintain water levels. Florida is one of many 
places that face this risk. 

While Florida has not yet faced the critical water shortages experienced in 
California and Texas, population growth continues to put increasing pressure on 
Florida’s water resources. Given its generally flat topography, Florida’s ability to 
use and store surface waters is limited. The result is the wet season rains cannot 
be stored for dry season use. Storage issues are compounded by nutrient runoff, 
algal blooms and other water quality impairment issues. Aquifer storage and re-
covery (ASR) has been helpful on the west coast of Florida, but it has been less 
successful on the east coast and central part of the state (Bloetscher et al., 2014; 
Bloetscher et al., 2015). The need for large volumes of water also exceeds the 
ASR potential (Bloetscher et al., 2014; Bloetscher et al., 2015). As a result, Florida 
is already facing an increasing need for innovative water supply source man-
agement solutions, including indirect (and potentially direct) potable reuse, that 
can be an effective part of the integrated water management approach. 

The use of such injection programs offers significant potential for improving 
many of the world’s water supply problems, particularly in places like Florida 
where millions of gallons of treated wastewater are discharged to rivers, streams, 
oceans and deep injection wells each day, some of which could be diverted for 
aquifer recharge or protection programs (Bloetscher, 2001). However, these wa-
ter supplies are of lower quality than the native groundwater in most cases, 
creating concern among regulators of groundwater contamination. Most of the 
regulatory concerns have resulted from the perceived risks of adverse health ef-
fects from pathogens such as viruses, organic contaminants, metals and nu-
trients. Solutions to treat the water can be developed, but measuring the risk re-
mains a challenge using current methods. Contaminant transport of nutrients 
and organics has been modeled, but less so with pathogens, and in no case was 
an analysis of the risk of pathogen migration undertaken. The question is what 
level of treatment is needed? 

The concern is focused on potentially impairing potable water supplies with 
various contaminants, a violation of underground injection control rules created 
as part of the Safe Drinking Water Act (anti-degradation rules), creating the 
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possibility of contaminants being recovered in water supply wells during extrac-
tion. In a discussion with Florida regulators, heavy metals are not perceived as 
being highly mobile in the aquifer system, and the minor concentrations of or-
ganics remaining in reclaimed water often decay (or are consumed by aquifer 
microflora (Bloetscher, 2001). However, they were concerned about pathogens 
because of 673 waterborne illness outbreaks that occurred in the United States 
between 1946 and 1980, 44% were attributable to groundwater sources (Asano, 
1985). The statistics are similar for the subsequent 25-year period (Blackburn et 
al., 2004; Lee et al., 2002; Liang et al., 2006; Yoder et al., 2008; Bloetscher & 
Plummer, 2011; Keswick et al., 1982). Pathogen occurrence rate may be much 
higher in aquifers with high organic content, which encourages microbial 
growth (Bloetscher et al., 1997; Meeroff et al., 2008). Because reclaimed waste-
water containing viruses may be injected into the ground, regulators fear the in-
jection program will increase the likelihood of groundwater-related illnesses 
(Yates et al., 1987). 

The objective of this study is to evaluate the potential to develop risk contours 
for aquifer recharge programs using reclaimed water for aquifer recharge. For 
purposes of this investigation, the term “risk” is defined as the probability of 
occurrence of an infection as a result of withdrawal of a contaminant introduced 
into the aquifer by an injection project. The process outlined herein could be 
replicated for areas outside southeast Florida. The results will build on the prior 
Hazen and Sawyer (2000) and Bloetscher (2001) work in this field. However, 
because regulatory agencies are unwilling to permit injection of pathogens into a 
drinking water aquifer, the results here provide insight, albiet untestable insight, 
into microbial risk from injection programs. 

2. Methodology 
2.1. Prior Methods for Treatment and Analysis  

of Injection Programs for Reuse 

In the late 1990s, the injection of reclaimed wastewater (filtered, high level dis-
infection) into a shallow aquifer formation for saltwater intrusion control was 
pursued by the City of Hollywood, FL. A series of injection tests were performed 
(with potable water), and the results were used by Hazen and Sawyer (2000) and 
Bloetscher (2001) to create a numerical groundwater simulation model developed 
to address the differential density issues associated with groundwater movement at 
the saltwater interface along oceans and other large saltwater bodies. 

In the 20 years since that project was initiated, the regulations for indirect 
potable reuse (whereby purified water would be returned to the surficial aquifer 
or a deeper brackish aquifer) requires higher levels of treatment, usually con-
sisting of micro/ultrafiltration (MF/UF), reverse osmosis (RO), and UV ad-
vanced oxidation (UVAOP). Within the past 10 years, nearly a dozen Florida 
communities have undertaken pilot studies of potable reuse, including: Sunrise, 
Plantation, Miami-Dade County, Davie, Pembroke Pines, Hollywood, and Clear-
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water. Two of these pilot studies were conducted in Southeast Florida in antici-
pation of the pending Ocean Outfall Rule, which bans ocean disposal of treated 
wastewater by 2025. A key component of these feasibility studies centered around 
nutrients, pathogens and microconstituents removal efficiencies, all of which were 
specifically evaluated in Pembroke Pines (Bloetscher et al., 2011, 2013). 

While several of these projects have proven the concept from a treatment 
perspective, there are two concerns: 1) the cost of the treatment and 2) the ag-
gressiveness of the treated water when using RO. Reverse osmosis for wastewater 
treatment is relatively expensive to pursue, and so utilities would like to avoid 
using it if possible. In addition, the Pines studies (Bloetscher et al., 2011, 2013) 
found that the treatment processes utilized to address microconstituent removal 
produce nearly distilled, deionized water quality, post-treatment is important to 
minimize impacts in aquifer recharge projects and protect the injected purified 
water from aggressively leaching naturally occurring trace metals. Therefore, 
post-treatment is needed to restore minerals so that the water does not dissolve 
metals from piping, tank materials, or the native formation (Bloetscher et al., 2011, 
2013). A cost/benefit analysis raises the question that if a lesser treatment, say rec-
laimed quality water used for irrigation of gardens, crops and landscaping was in-
jected, how much risk would there likely be to the public, and how would it com-
pare to full treatment? Risk assessment is one way to address the cost/benefit 
question. 

2.2. Risk Assessment 

Given the regulatory agencies’ concern about microbial species and the inci-
dence of illness caused by groundwater contamination, Bloetscher (2001) fo-
cused on viral risk in public water supplies. But there are difficulties in deter-
mining microbial dose-response for pathogens because of a paucity of data, 
low-dose infectivity transmission effects, and differences in immune system re-
sponse. Identification of safe doses pathogen exposure in drinking water through 
collection of dose-response data is generally not feasible. As a result, Bloetscher 
(2001) focused on utilitzing predictive Bayesian methods to develop a dose-response 
for several pathogens that were identified as a major potential risk of infection. 
Englehardt and Swartout (2006) have previously investigated the use of predic-
tive Bayesian methods for dose-response relationships, and Bloetscher et al. 
(submitted) appears to provide a convenient solution for the use of sparse data, 
while permitting the incorporation of additional data as it is generated. When 
the United States Environmental Protection Agency (USEPA) did perform an 
analysis on rotavirus movement in the subsurface, the focus was oriented to in-
activation (4-log) as opposed to creating risk contours (Azadpour-Keeley et al., 
2003). As a result, there are no prior studies that use these principles to test for 
rotavirus risk movement in groundwater. 

To construct a risk assessment for the injection of reclaimed wastewater for 
aquifer recharge, there are four steps that must be completed. First, the tracer 
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must be identified. Second, a groundwater model needs to be constructed and 
calibrated. Next, using the groundwater model, a contaminant transport model 
that includes tracer pathways, decay and retardation terms must be developed. 
Finally, a dose-response curve for tracer infectivity must be created. To be con-
servative, the scenario does not consider any treatment of withdrawn water. It 
was assumed that any result lower than 10−6 risk would not pose a concern that 
would prevent the installation and operation of an injection project. 

The tracer used was rotavirus, which is a highly infectious pathogen that has 
good survivability in the environment compared to other viruses (Yates et al., 
1987, 1989). Rotavirus also has a high shedding incidence, high exposure rate 
and low infective dose (Bhattarai et al., 2017). Rotavirus is a common cause of 
serious gastroenteritis in humans (Gerba et al., 1996) and is estimated to account 
for 20% of diarrheal deaths in early childhood in the United States (Maldonado & 
Yolken, 1990). In this study, rotavirus is selected as a surrogate because 
dose-response data in human adults indicated that it is the most infective of all 
the enteric viruses (Maldonado & Yolken, 1990). The concentration of rotavirus 
in treated effluent water samples was calculated based on secondary treatment 
with filtration and high level of disinfection (for reclaimed wastewater). Secondary 
treatment can achieve an average removal of 2.00 ± 1.10 log10 (Li et al., 2011) via 
adsorption on activated sludge (Gerba et al., 1996). Li et al. (2011) reported the 
average concentration of rotavirus as 16.6 PFU/L in the primary effluent with a 
maximum of 300 PFU/L, and the detection rate was 33%. Using disinfection with 
secondary treatment achieved 2.09 logs of removal, and filtration can achieve 
another 0.72 logs of removal for a total of 2.8 logs. Chlorine can provide additional 
disinfection, but to be conservative, 2.8 logs removal was assumed. 

The injection well used for this transport modeling was estimated to deliver 1 
million gallons per day into the recharge zone (200 feet below ground level). For 
the worst-case scenario, the detection rate was assumed to be 100%; thus the ap-
proximate concentration level was 2 million PFU per 1 million gallons of injec-
tion water. Note that Li et al. (2011) evaluated a water treatment plant with re-
verse osmosis membranes and did not detect any rotavirus after treatment, so 
they could not perform an analysis. Results for wastewater treated with reverse 
osmosis followed by ultraviolet radiation and advanced oxidation by Bloetscher 
et al. (2011, 2013) also did not find any presence of rotavirus after treatment ei-
ther. 

2.3. Groundwater Model 

The City of Hollywood is located in southeast Broward County, Florida. It is 
Broward County’s third-largest municipality with a population of about 140,000 
permanent residents, 50,000 seasonal residents and various commercial and in-
dustrial customers of its water supply. The main source of drinking water for the 
city is the Biscayne aquifer, which is a shallow, productive aquifer. However, ex-
tensive drainage practices during the wet season and the increased population 
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demand during the tourist season adversely affect the supply of water, which re-
sults in frequent water shortages. Protection or recharge to the aquifer would 
help the City sustain its existing groundwater supplies. 

The City of Hollywood’s model of injection is the most robust in southeast 
Florida. The groundwater model for the City of Hollywood study (Hazen & 
Sawyer, 2000) was initially analyzed using the finite-difference groundwater 
model (MODFLOW) by the U.S. Geological Society. For the study of contami-
nant transport, MT3D simulations were used to illustrate the effect of propaga-
tion of contaminants using rotavirus as a surrogate (Zheng & Bennett, 1995). 
MODFLOW and MT3D were used to predict groundwater movement in the vi-
cinity of the injection zone and the impact on inland wellfields. Hazen and 
Sawyer (2000) used a modification to MODFLOW to address the buoyancy of 
freshwater called SEAWAT. The SEAWAT model was calibrated to actual field 
data for groundwater levels and rainfall over a 24-month period. The SEAWAT 
output was then used as input to a contaminant transport software package 
(MT3D) to track movement of the tracer in the formation. The contaminant 
contours were then used to assess the potential risk to consumers. 

For this project the groundwater model was re-created using Groundwater 
Vistas, a groundwater modeling system with comprehensive graphical analysis 
tools was used to combine these packages in a post-processing software envi-
ronment (Rumbaugh, 2004). In addition to MODFLOW, SEAWAT and MT3D, 
Groundwater Vistas includes a contaminant transport subprogram. For the in-
put module, the number of rows and columns was set at 65 and 85, respectively. 
The uniform X spacing and uniform Y spacing was 500 feet. This gave a total 
modeled area of 32,500 by 42,500 ft2 (see Figure 1). Note that the columns and 
rows were further subdivided in the vicinity of the recharge wells for better 
model resolution. The grids were developed to simulate the spatial variability of 
depth and the hydrologic effects of surface and groundwater bodies and com-
pared against actual, calibrated results as developed by Bloetscher (2001) and 
Hazen and Sawyer (2000). There were 5 layers representing hydrologic differ-
ences in the soil characteristic; however, layers were assumed to be in the same 
conditions throughout the whole area of the model, which reduces the complex-
ity and computational difficulty of the model. 

Once the grid was established, hydrogeologic and hydrochemical conditions 
were required to set-up the groundwater transport model in the defined domain. 
The primary geologic parameters were locations of model boundaries and 
thicknesses of geologic units (see Table 1). Physical and chemical parameters 
such as reaction coefficients, porosity, specific yield, storage, transmission and 
hydraulic conductivity were developed by Hazen and Sawyer (2000) in their ca-
librated model of the wellfield. 

The South Florida Water Management District’s DBHYDRO web-portal 
(https://www.sfwmd.gov/science-data/dbhydro) was used to gather the initial 
parameters for rainfall data for calculation of recharge in Table 2, while the  
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Figure 1. The initial grid used for modeling the aquifer in the Hollywood area. On the 
right is the Atlantic Ocean. 

 
Table 1. Initial geohydrological parameters for each model layer. 

Layer of 
aquifer 

Depth from 
surface 

(ft) 

Hydraulic 
conductivity 

x direction Kx 

(gpd/ft2) 

Hydraulic 
conductivity y 
direction Ky 

(gpd/ft2) 

Hydraulic 
conductivity z 

or vertical 
direction Kz 

(gpd/ft2) 

Storage 
Coefficient 

(dimensionles) 

Specific 
yield of aquifer 

or drainable 
porosity (ratio) 

Porosity of 
formation 
(ratio-% 
voids) 

Leakance 
(1/d) 

Transmissivity 
(gpd/ft) 

1 13 800 160 16 0.015 0.015 0.15 0.45 130,000 

2 37 1000 200 20 0.015 0.015 0.15 0.45 37,000 

3 40 10000 2000 200 0.00015 0.00015 0.15 0.45 400,000 

4 60 10000 2000 200 0.00045 0.00045 0.15 0.13 600,000 

5 60 100 20 2 0.015 0.015 0.15 0 6000 

 
physical conditions of the soil were adapted from Hazen and Sawyer (2000) as 
shown in Table 3. 

It was assumed that the injection wells will be operated continuously, thereby 
reaching equilibrium by: 

( ), , ,c x y z t = ∞                         (1) 

However, the model cannot function when the time element is infinity; there-
fore, the two years with recharge via rainfall from Table 2 was used as an esti-
mate of steady state. An appropriate decay rate (0.1027 day−1) as defined by  
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Table 2. Two-Year Precipitation Data 2011-2012 (DBHYDRO, SFWMD). 

Month 
Monthly 

Precipitation (in) 
Annual Cumulative 

Precipitation (inches) 
Recharge Rate (2/3 

if rainfall) 
Recharge 
(ft/day) 

1 1.37 1.37 0.0761 0.0025 

2 0.17 1.54 0.0094 0.0003 

3 2.54 4.08 0.1411 0.0046 

4 3.31 7.39 0.1839 0.0061 

5 2.85 10.24 0.1583 0.0051 

6 2.2 12.44 0.1222 0.0041 

7 7.79 20.23 0.4328 0.0140 

8 7.91 28.14 0.4394 0.0142 

9 7.96 36.10 0.4422 0.0147 

10 16.43 52.53 0.9128 0.0294 

11 2.91 55.44 0.1617 0.0054 

12 2.44 57.88 0.1356 0.0044 

1 0.55 0.55 0.0306 0.0010 

2 3.79 4.34 0.2106 0.0075 

3 2.43 6.77 0.1350 0.0044 

4 10.09 16.86 0.5606 0.0187 

5 11.62 28.48 0.6456 0.0208 

6 7.53 36.01 0.4183 0.0139 

7 10.24 46.25 0.5689 0.0184 

8 14.29 60.54 0.7939 0.0256 

9 8.73 69.27 0.4850 0.0162 

10 4.69 73.96 0.2606 0.0084 

11 0.54 74.50 0.0300 0.0010 

12 1.89 76.39 0.1050 0.0034 

 
Table 3. Biscayne aquifer flow model input parameters (Hazen & Sawyer, 2000). 

Layer Name 
Transmissivity 

(ft2/day) 
Vertical Conductivity 

(dimensionless) 
Layer Thickness 

(ft) 
Initial Head 
(ft, NGVD) 

Storativity 
(ft3/ft3) 

1 Upper Zone 1 25 - 1249 0.02 - 0.08 15 - 22 0 - 4.5 0.18 - 0.5 

2 Upper Zone 2 1000 - 3000 0.02 - 0.08 5 - 15 0 - 4.5 0.0002 - 0.0006 

3 Biscayne Aquifer 1 100,000 - 500,000 0.08 - 0.15 30 - 50 0 - 4.5 0.00004 - 0.0001 

4 Biscayne Aquifer 2 100,000 - 500,000 0.08 - 0.15 30 - 50 0 - 4.5 0.00004 - 0.0001 

5 Lower Zone 1 2000 - 13,000 0.02 - 0.09 50 - 60 0 - 4.5 0.0002 -  0.0006 
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Bhattarai et al. (2017) was incorporated. 
The baseline condition from two years of observations and precipitation data 

was used to model the groundwater flow with MODFLOW under the assump-
tion of transient conditions. The flow rate of the injection well (Q = 1 MGD) and 
production wells (Q = 12 MGD) were assumed to be constant throughout the 
two-year period of simulation. The model used monthly time steps and actual 
rainfall in Table 2 for calibration. The baseline condition model was compared 
against historical City of Hollywood records for groundwater table level eleva-
tions in DBHYDRO and the monitoring wells in Dania Beach and Hollywood. 

At this point, the contaminant transport model, MT3D, using rotavirus as a 
contaminant tracer was introduced. A three-dimensional solute transport simula-
tion in MT3D was conducted to predict the contaminant movement within the 
groundwater aquifer. Analysis included not only the contaminant transport me-
chanism reaction, but also a rate of decay and dispersion radius from the injection 
source. The output data was migrated to ArcGIS to visualize the risk contours. 

The groundwater flow model was calibrated using previously known condi-
tions of groundwater table elevation and drawdown from City of Hollywood 
production wells in the wellfields located on the west side of the City for the pe-
riod of two years from January 2010-December 2011. Figure 2 illustrates the 
groundwater table drawdown levels of the May 2011 dry season from the 
Groundwater Vistas (GV) simulation, and Figure 3 depicts the same groundwa-
ter drawdowns for the May 2011 dry season in ArcGIS with data imported from 
GV. The contour lines represent hydraulic head, and color flood represents the 
drawdown of the groundwater table. 

Similarly, Figure 4 and Figure 5 illustrate the groundwater table drawdown 
levels for the September 2011 (wet season) from GV model simulation and GIS, 
respectively. The approximate minimum value for the hydraulic head is 0.8 feet 
(dry season) and 1.4 feet (wet season). 

 

 
Figure 2. Groundwater table drawdown from May 2011 (Dry Season) in Groundwater 
Vistas. 
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Figure 3. Heat map of groundwater table drawdown May 2011 (Dry Season) in GIS (red is the 
highest drawdown). 

 

 
Figure 4. Groundwater table drawdown from September 2011 (Wet Season) in Groundwater 
Vistas. 

 

 
Figure 5. Heat map of groundwater table drawdown from September 2011 (Wet Season) 
in GIS (red is the highest drawdown). 
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The contaminant transport model showed that rotavirus reached steady state 
during time step 7 (Month 7-July), which was expected since the decay rate of 
rotavirus is 0.1027 day−1. The contaminant contours started at the injection well 
as a point source, propagated through groundwater layers, and widened as time 
steps increased until reaching equilibrium. 

Dose-response assessments require properly identifying the inputs of the ha-
zard of interest. Haas et al. (1999) suggested a number of dose-response models 
for pathogenic organisms using the assumption of a Poisson distribution (a dis-
crete distribution of the number of unlikely events over a given period of time) 
combined with the binomial distribution to define the probability that a given 
person ingests the pathogen, a process that was developed and will be further 
discussed for this analysis. For microbes, the dose-response algorithms must be 
combined with estimates of intake exposure. Hence, dose-response data from a 
number of smaller outbreak data sets are needed to predict the microbial dose 
required for a direct health response. To address microbial risk, Quantitative 
Microbial Risk Assessment (QMRA) methods (Beaudequin et al., 2015) were 
developed to estimate risk from exposure to microorganisms by combining 
dose-response information with information of the distribution of exposures. 
However, dose-response algorithms are not precise prediction tools, and the 
currently applied method is formulaic such that the algorithm’s origins and de-
rivation are not well understood. As a result, the idea of applying/extending 
Bayesian methods to continuous improvement of QMRA dose-response rela-
tionships is a sound method to better incorporate uncertainty and variability 
(Englehardt & Swartout, 2006; Messner et al., 2001; Beaudequin et al., 2015). 
Predictive Bayesian methods do not require researchers to treat dose-response 
algorithms as fixed, but they provide a technique to rationally and continually 
improve the mathematical relationship based on added data. 

Bayesian statistical methods are rooted in the concepts of disorder, or ther-
modynamic entropy, and statistical mechanics (Shannon & Weaver, 1949), as-
suming a samples space S, with a series of events i, characterized by individual 
probabilities pi. Definitive observations play an important role in information 
entropy theory since once the definitive observation is made, the underlying un-
certainty is reduced. The uncertainty defines the confidence in the observation 
(Englehardt & Lund, 1992). By maximizing information entropy, the most con-
servative or broadest distribution consistent with the available information can 
be used (Englehardt & Lund, 1992). The Bayesian approach involves the assign-
ment of probability distributions to the underlying dose-response function. The 
mean and standard deviation determine the location and scale of the distribu-
tion, describing their shape. When little or no data are available to specify the 
parameters of these distributions, probability distributions can then be assigned 
to the parameters within the initial distributions. Subjective information may 
then be used to create these prior distributions until such time as real data is de-
veloped or becomes available. Hence subjective data can be incorporated and the 
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prior distributions adjusted as new data emerges. Based on the published rota-
virus dose-response data developed by Ward et al. (1986), the value of a, related 
to the slope on a log-log graph for the Pareto II distribution, was determined 
through graphical means (Bloetscher, 2001; Englehardt, 1995). The Pareto II 
distribution has no lower threshold, which is desirable since the dose-response 
for microbial infection assumes a probability of receiving a given dose (hence 
numbers less than one) as opposed to a true threshold (i.e. ≥1 organism). In ad-
dition, the Pareto distributions are used for high consequence, low likelihood 
events and have been suggested as an appropriate model by others (Englehardt 
& Swartout, 2006; Englehardt, 2004; Englehardt & Lund, 1992; Bloetscher, 2001; 
Furumoto & Mickey, 1967). The methods used by Englehardt and Swartout 
(2006) were adapted to develop a predictive Bayesian dose-response relationship 
using the Pareto II distribution probability density function as follows: 

( )
( ) 1

a

a

akp z
k z +=
+

                       (2) 

where z is the dose, k is the location parameter (which may be the D50 or 50 per-
centile mortality) and a is a distribution parameter. When the Pareto II distribu-
tion is graphed on log-log scale, the slope on the right side is defined as 1-a. The 
initial value of a was set at 0.4 based on graphing the data from Ward et al. 
(1986). However, given the uncertainty of one data set, the prior for the Pareto II 
was assumed to be a gamma distribution with unknown parameters α and β. The 
location parameter (k) is defined as the dose where the change in slope occurs in 
the data, which corresponds to where the infection rate changes. This is the 
point where the fastest rate of increase in the probability of illness occurs in the 
cumulative density plot (predictive Bayesian). In this case, the values of the va-
riables a and k are not known but can be estimated from data. Englehardt and 
Lund (1992) generated a solution for Pareto II when a is uncertain and k is as-
sumed. However, the solution for the Pareto II distribution where neither a or k 
are certain, which is the more typical case for microbial species or synthetic 
chemicals, has not been similarly solved until now. The maximum likelihood 
function (L) for the Pareto II distribution (Johnson & Kotz, 1970) is: 

( ) ( ) ( )1

1
| ,

J
aa

o
J

L z a Z ak k z − +

=

= +∏                   (3) 

where J is the number of data points of sets. The conjugate prior for a and k are 
gamma distributions with the following form (Johnson & Kotz, 1970; Arnold & 
Press, 1989): 

( ) ( )
1e| ,

aap a
α α ββα β

α

− −

=
Γ

                    (4) 

where both α and β are greater than zero. The binomial distribution is incorpo-
rated into the likelihood. 

One of the main benefits of Pareto is that the parameters a and k are taken to 
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be independent (Arnold & Press, 1989). This simplifies the mathematics com-
pared to intractable solutions suggested by dependent joint priors. The posterior 
distribution incorporates observations from x into the sample space S. The out-
come of the observations conveys additional information about the true content 
of S through a series of informed assumptions (Aitchison & Dunsmore, 1975). 
The basis for the information obtained is the influence of the proper distribu-
tion, and the attachment of same to the possible distributions for x. Updating the 
plausibility in light of the observations of the prior using Bayes notation leads to 
the posterior probability function (Aitchison & Dunsmore, 1975): 

( ) ( ) ( )
( )

|
|

p p x
p x

p x
θ θ

θ =                     (5) 

where p(x) can be equal to 1. Given that x and θ are often unknowns, they can be 
estimated using the maximum likelihood estimates or graphical methods 
(Englehardt & Lund, 1992). The posterior for the bivariate Pareto II is found by: 

( ) ( ) ( ) ( )1 2 3 4, | , , , , , | , | , | ,jp a k z z z z z L z a k p k m p aθ α β=       (6) 

where m and θ are priors for k, and α and β are priors for a which, for this effort, 
results in: 

( ) ( ) ( )

11
1 2

1 ln
1 2

2 1, | , , , , , e e e
a k

a ma J z kJ aJ a
Jp a k m z z z n a k

m
θθ θ

 
 −  − + + −  ∑ −

= ⋅    (7) 

The predictive Bayesian approach takes the process one step further to create 
a cumulative density function that will yield risk on a log-log scale. This permits 
the investigator to find the probability of infection at a given dose. As new in-
formation is gathered, from either epidemiological studies or outbreak investiga-
tions, the predictive function can be updated to increase the robustness of the 
dose-response function. This is the benefit of the Bayesian approach: given un-
certainty about a density function, p(y|θ), some data can be deduced from the 
assessment of p(θ|x) over θ when the experimental results of x are known 
(Aitchison & Dunsmore, 1975). This function is: 

( ) ( ) ( )| | | dp y x p y p x
θ

θ θ θ= ∫                   (8) 

where the function p(y|x) is the predictive density function. If there are two un-
knowns, as in this case (a and k), there are two integrations necessary in order to 
create an equation based on the incident size (z) or in this case the mortali-
ty/illness likelihood of the pathogen: 

( ) ( ) ( )1 2 1 2| , , , | , , | , , , , , , d dJ Jp z z z z p z a k p a k y z z z a kα β= ∫∫      (9) 

Because of the intrinsic difficulty in solving a predictive Bayesian equation 
with multiple embedded distributions through double integration, a Markov 
Chain Monte Carlo (MCMC) program was developed in MATLAB® with un-
certain values for a and k using the Metropolitan Hastings protocol with a Gibbs 
sampler was used to generate mathematical dose-response solution. Using the 
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generated dose-response function, the results of the groundwater tracer model 
can be used to define the probability of exposure. 

Using the mathematical principles described above, Figure 6 is the resulting 
dose-response curve for rotavirus. The circles are the actual data from Ward et 
al. (1986). For this model, the solid line is the beta-Poisson model often em-
ployed. The dot-dash is the predictive Bayesian methods developed herein—it is 
more conservative than the Beta-Poisson model proposed and used by Haas et 
al. (1996, 1999). The resulting concentrations from the groundwater model were 
directly translated to risk contours by developing a simple conversion between 
the risk on the dose-response graph with the concentration contours developed 
by the MT3D code. 

The data from MT3D simulation were exported to GIS as a shape file, which 
also included concentration levels per contour. Using GIS, each contour color 
was changed according to its log concentration and translated to a risk contour. 
Because the groundwater model was based on a drought period, the tracer model 
(MT3D) will be conservative in its movement (tracers move farther than likely). 
The tracer concentrations were then converted to risk contours to indicate the 
impact of rotavirus injection on the aquifer over a two-year period. Note the 
movement of the organisms ceases within 7 months. 

3. Results 

After the groundwater modeling data was exported into GIS, the distance be-
tween each contour layer and injection well was measured using the measuring 
tool in GIS. The distance between contours decreased with increasing distance  

 

 
Figure 6. Rotavirus dose-response curve (the dot-dash is the graph of the predictive 
Bayesian methods developed herein, the Beta Poisson was shown to be the solution to the 
Pareto II—the model developed herein is more conservative than the beta-Poisson model). 
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Figure 7. Risk Contours showing that as the water moves away from the injection well, 
the risk declines (1:10 to 1:10 million; the 1:1000 is the blue contour, 1:1 million is orange 
and red is 1:10 million). 

 
from the injection point. Figure 7 shows the resulting risk contours plotted in 
GIS. Each log reduction in microbial density translates to a one-log decline in 
risk probability assessment. The closer the distance to the injection well, the 
higher the risk probability since the microbial density should be higher. The 
lowest rotavirus concentration contour is 0.7 miles from the injection well, while 
the City of Hollywood raw water extraction well fields are 3 miles away from the 
injection site. 

4. Conclusion 

Several communities have conducted preliminary investigations into the possi-
bility of injecting reclaimed wastewater into an underground source of drinking 
water to supplement existing supplies. However, utilities have been required to 
evaluate reverse osmosis treatment as the appropriate treatment prior to injec-
tion. due to concerns about aquifer contamination. To date, regulatory agencies 
are reluctant to permit other less stringent forms of treatment. Furthermore, the 
potential public health impact of supply augmentation with reclaimed wastewa-
ter for irrigation has not been addressed from a risk perspective. In this research, 
the alternative of injecting treated wastewater was evaluated using rotavirus as a 
surrogate tracer. For risk analysis purposes, the injectate was reclaimed waste-
water with an assumed initial concentration of 2 million PFU of rotavirus per 1 
million gallons of injection water. Based on computer modeling of the worst case 
scenario aquifer situation (dry season involved 24 months of weather records 
during a recent low rainfall period, and using a predictive Bayesian dose-response 
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relationship), it was found that the 1:1 million risk contour is 0.7 miles from the 
injection well, which is about 3 miles away from the City of Hollywood’s well-
fields. 

The results of this project stemmed from a long-term effort to develop a Baye-
sian solution to assess public health risk from pathogens. The goal of the project 
was to demonstrate the use of risk assessment as a tool to support regulatory 
agency decisions regarding the potential incidence of illness caused by ground-
water contamination, using rotavirus in this case. It should be noted that in the 
treatability studies (Li et al., 2011), no rotavirus was detected in wastewater ef-
fluent treated with reverse osmosis. Regrettably, the conclusion cannot be inde-
pendently verified without spiking rotavirus in the treated wastewater effluent. 
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