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Abstract 
Neural network analysis based on Growing Hierarchical Self-Organizing Map 
(GHSOM) is used to examine Spatial-Temporal characteristics in Aerosol 
Optical Depth (AOD), Ångström Exponent (ÅE) and Precipitation Rate (PR) 
over selected East African sites from 2000 to 2014. The selected sites of study 
are Nairobi (1˚S, 36˚E), Mbita (0˚S, 34˚E), Mau Forest (0.0˚ - 0.6˚S; 35.1˚E - 
35.7˚E), Malindi (2˚S, 40˚E), Mount Kilimanjaro (3˚S, 37˚E) and Kampala 
(0˚N, 32.1˚E). GHSOM analysis reveals a marked spatial variability in AOD 
and ÅE that is associated to changing PR, urban heat islands, diffusion, direct 
emission, hygroscopic growth and their scavenging from the atmosphere spe-
cific to each site. Furthermore, spatial variability in AOD, ÅE and PR is dis-
tinct since each variable corresponds to a unique level of classification. On the 
other hand, GHSOM algorithm efficiently discriminated by means of cluster-
ing between AOD, ÅE and PR during Long and Short rain spells and dry spell 
over each variable emphasizing their temporal evolution. The utilization of 
GHSOM therefore confirms the fact that regional aerosol characteristics are 
highly variable be it spatially or temporally and as well modulated by PR re-
ceived over each variable. 
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1. Introduction 

Aerosols sources and their short lifetime (5 - 10 days) results into a spatial-temporal 
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heterogeneous field that makes aerosol characterization real challenge [1] [2]. 
Despite this, recent initiatives by organizations such as NASA among others 
have increasingly deployed a number of passive remote sensing platforms that 
provide systematic and accurate long-term measurements of aerosol characteris-
tics over the globe. This initiative hasn’t been reciprocated adequately by the 
science community since a large percentage of the data actually used is low, in 
part because of a lack of efficient and effective analysis tools. For example, less 
than 5% of all remotely sensed images are ever viewed by human eyes or actually 
used [3]. Therefore, the increasing quantity and type of data available for climate 
change research studies among them atmospheric aerosols require effective fea-
ture extraction methods such as self-organizing map (SOM) and the growing 
hierarchical self-organizing map (GHSOM). Additionally, accurate extraction of 
key features and characteristic patterns of variability from a large data set is vital 
to correctly monitor atmospheric processes and how they alter climate change 
[4].  

Techniques for pattern detection i.e. clustering, classifying and feature extrac-
tion for multi-dimensional spectroscopic datasets are becoming increasingly 
important since the previous is growing in size and complexity. The SOM, an ar-
tificial neural network based on unsupervised learning, is an effective software 
tool of feature extraction [5] [6]. It provides a nonlinear cluster analysis, map-
ping high dimensional data onto a (usually) 2D output space while preserving 
the topological relationships of the input data. As a tool for pattern recognition 
and classification, the SOM analysis is in widespread use across a number of dis-
ciplines among the climate research [7] [8] [9]. 

Notwithstanding its wide applications, SOM analysis has inherent deficiencies. 
First, it utilizes static network architecture with respect to the number and ar-
rangement of neural nodes that are predefined prior to the start of training. 
Second, hierarchical relations between the input data are difficult to be detected 
in the map display. These two issues have been addressed within a single 
framework of the GHSOM that is available [10] [11]. The GHSOM is composed 
of independent SOMs, which are allowed to grow in size during the training 
process until a quality criterion regarding data representation is met. This 
growth process is further continued to form a layered architecture such that hie-
rarchical relations between input data are further detailed at lower layers of the 
neural network.  

It is important to note that both SOM and GHSOM techniques can be utilized 
through their respective MATLAB toolboxes that are available free online. The 
SOM MATLAB Toolbox (version 2.0) utilizes MATLAB structures, making it 
convenient to tailor the code for specific user needs and can be downloaded 
from a Website of the Helsinki University of Technology, Finland:  
http://www.cis.hut.fi/projects/somtoolbox/. On the other hand, the GHSOM 
Toolbox, developed jointly by the University of Aberdeen and Vienna University 
of Technology, can be downloaded at http://www.ifs.tuwien.ac.at/~andi/ghsom/. 
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The current study presents novel techniques for spatial-temporal aerosol cha-
racterization over East Africa for over a decade of monthly selected aerosol opt-
ical and microphysical properties i.e. Aerosol Optical Depth (AOD), Ångström 
Exponent (ÅE) and Mass Concentration (MC) from Moderate Resolution Im-
aging Spectrometer (MODIS) through SOM and GHSOM toolboxes in 
MATLAB. The two techniques i.e. SOM and GHSOM demonstrate their appli-
cability in pattern detection, classification, feature extraction and temporal vari-
ations. 

2. Methodology 
2.1. Description of Study Area 

The East Africa region covers diverse land forms comprising of glaciated moun-
tains, Semi-Arid, Plateau and Coastal regions. Details and the map illustrating 
the study region and specifics on each site of study are as shown in Figure 1.  

 

 
Figure 1. Study sites. Source: [12]. 
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2.2. Growing Hierarchical Self-Organizing Maps (GHSOM) 

The inherent deficiencies of SOM are well addressed by GHSOM through the 
use an incrementally growing version of the SOM, which does not require the 
user to directly specify the size of the map beforehand and its enhanced ability to 
adapt to hierarchical structures in the data as illustrated in Figure 2 [10] [11]. 
Prior to the training process, a “map” in layer 0 consisting of only one unit is 
created. This unit’s weight vector is initialized as the mean of all input vectors 
and its mean quantization error (MQE) of unit i is computed as: 

{ }1 ,
ii k i i kk U

i

MQE x m U k c i
U ∈

= − = =∑              (1) 

A new 2D array SOM is always created underneath layer 0 map so as to in-
crease the map size so that all the spectroscopic data is well represented. A mean 
of all iMQE  normally defined as MQE  is compared to the MQE in the 
above layer aboveMQE  and if the inequality in the following equation is ful-
filled, then a new row or column of map units is inserted in the SOM. 

1 aboveMQE MQEτ>                      (2) 

where 1τ  is the breadth controlling parameter. The GHSOM array of unit i 
with the largest iMQE  is normally the error unit. On the other hand, the unit 
with the largest distance with respect to the model vector is selected and a new 
row or column is inserted between the two. If the inequality in the above equa-
tion is not satisfied, then the next decision is whether to expand some units in 
the next hierarchical level or not. If the data mapped unto one single unit i still 
has a large variation i.e.  

2i aboveMQE MQEτ>                      (3) 

where 2τ  is the depth controlling parameter with the values of both 1τ  and 

2τ  are chosen as 1 21 0τ τ> > . Of significance to note, is the fact that smaller 
values of both 1τ  and 2τ  implies large SOM arrays and more layers GHSOM 
will have in the hierarchy respectively. The schematic of how GHSOM was im-
plemented is as shown in Figure 2. 

2.3. Data 

Level-3 MODIS gridded atmosphere monthly global product “MOD08_M3” at 
spatial resolution of 1˚ × 1˚ [13], was used in the current study for spatio-temporal 
characterization of AOD (at 550 nm), Ångström Exponent (ÅE) (at 470 - 660 
nm) and Precipitation Rate (PR) over selected sites of East Africa from 2000 to 
2014. Based on Figure 2, the MODIS level 3 monthly data was rearranged in a 
2D array with the rows and columns representing the temporal and spatial di-
mensions respectively. The row vector at each time step was used to update the 
weight of the SOM via an unsupervised learning algorithm. The outcome weight 
vectors of the SOM nodes are reshaped back into characteristic data patterns [4] 
[9]. Likewise, the same data arrangement was utilized in implementing the  
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Figure 2. Graphical representation of the hierarchical structure of the GHSOM where the 
four units in the first layer of SOM are expanded in the second layer and only two units of 
the second layer are further expanded in the third layer [9]. 

 
GHSOM based on Figure 2. GHSOM utilizes the hierarchical structure where 
the four units in the first layer of SOM are expanded in the second layer and on-
ly two units of the second layer are further expanded in the third layer and so on 
[9]. 

3. Results and Discussions 
3.1. Growing Hierarchical Self-Organizing Maps (GHSOM) 

Aerosol Optical Depth (AOD), Angstrom Exponent (ÅE) and Precipitation Rate 
(PR) data values consist of 62, 69 and 136 samples respectively with each having 
six variables denoting the spatial dimension. It was noted that GHSOM dis-
played a more detailed granularity in each of the variable datasets. For example, 
34 - 38 and 41 - 43 clusters are displayed during GHSOM classification of AOD 
and ÅE respectively. Likewise, a total of 69 - 72 clusters are revealed during 
GHSOM classification of the PR dataset, the high number of clusters was attri-
buted to the highest sample space as compared to the rest of the datasets used in 
this work. The darker and white colors in each variable space implies lower and 
high occurrence of the feature respectively in this case AOD, ÅE and PR. Classi-
fication of both AOD and ÅE using GHSOM was attributed to various factors 
among them aerosol transport, diffusion, direct emission, hygroscopic growth 
and their scavenging from the atmosphere. 

3.1.1. GHSOM Analysis of Aerosol Optical Depth 
Recent studies over the East African region show that aerosol characteristics are 
controlled directly by the local climate, i.e. Monsoonal precipitation [14]. Other 
modulators of aerosol characteristics include direct emissions i.e. through anth-
ropogenic or natural activities over the entire East African atmosphere [12] [15] 
[16] [17] [18]. Based on the results obtained by the GHSOM algorithm, both 
temporal and spatial variability in AOD over each site is unique and majorly 
dependent on the seasonal variability. Monsoon precipitation accelerates wet 
scavenging of aerosols from the atmosphere hence the low AOD values during 
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wet season (the black clusters) over each of the six sites of study (variables) [19] 
[20]. It is of importance to note that the GHSOM algorithm efficiently discrimi-
nated, by means of clustering between AOD, during wet and dry seasons over 
each variable. The dark clusters correspond to long rain spells that are associated 
with enhanced scavenging of AOD hence, their low values while greyish clusters 
correspond to a less aerosol scavenging from the atmosphere due to low PR. 
Moreover, the white clusters reveal enhanced AOD values due to inefficient sca-
venging of atmospheric aerosols via dry deposition over each variable during dry 
season. The details of the GHSOM classification of AOD over the six variables 
are shown in Figure 3. 

On the other hand, spatial variability in AOD is pronounced since each varia-
ble corresponds to a unique level of classification. This variability is not only 
dependent on seasons but also on aerosol transport, anthropogenic influence, 
diffusion, direct emission, hygroscopic growth and their scavenging from the 
atmosphere which explain the varied classification levels observed over each 
study site. Of significance to note is the fact that Mau Forest experiences low 
number of dark clusters but significantly more greyish and white clusters. This 
maybe as a result of continual biomass burning and forest clearance for agricul-
tural use even after the process of land reclamation stated in 2008 [21]. Even 
though Nairobi experiences relatively higher precipitation rate (0.15 ± 0.02 
mm/hr) (Figure 5), it has an enhanced number of greyish and white clusters that 
may be attributed to anthropogenic influences e.g. increasing populace, vehicu-
lar and industrial emissions and biomass and refuse burning [15].  

Additionally, Mbita experiences low AOD values relatively occasioned by the 
Lake-land air mass exchange controlled precipitation rate (0.19 ± 0.01 mm/hr) 
(Figure 5) which enhances aerosol scavenging during the study period and 
hinders biomass burning activities [18] [19] [20]. Meanwhile, maritime condi-
tions coupled with long distance transport of aerosols from the Arabian Penin-
sula desert via Monsoon winds [18] explain the observed high number of greyish 
and white clusters (high AOD values) over Malindi. The high AOD values are  

 

 
Figure 3. GHSOM classification of AOD over the six variables. 
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occasioned by significantly low precipitation rate (0.07 ± 0.02 mm/hr) observed 
in Figure 5. Likewise, Mount Kilimanjaro has been reclaimed in the recent past 
restraining the negative impacts of deforestation hence, explaining the domin-
ance of greyish and dark clusters (low AOD values) during the study period [17]. 
The dominance of both greyish and white clusters for both AOD (Figure 3) and 
precipitation rate (Figure 5) implies high AOD and precipitation rate over 
Kampala during the study period. The observed high AOD values are associated 
to the high vehicular emissions from growing private motorized transport over 
the city [16]. 

3.1.2. GHSOM Analysis of Angstrom Exponent 
Spectral curvature of aerosol extinction plays an important role when calculating 
the ÅE with only two wavelengths. ÅE calculated from longer wavelength pairs 
(λ = 670, 870 nm) are sensitive to the fine mode fraction of aerosols but not the 
fine mode effective radius; conversely, shorter wavelength pairs (λ = 380, 440 nm) 
are sensitive to the fine mode effective radius but not the fine mode fraction [22]. 
Hence it is important to consider the wavelength pair used to calculate the ÅE 
when making qualitative assessments about the corresponding aerosol size dis-
tributions. The present study presents spatio-temporal characterization of ÅE at 
470 - 660 nm wavelength range via GHSOM algorithm. The wavelength range 
used captures more information on ÅE capability to act as a qualitative indicator 
of aerosol particle size distribution over the study sites. The results are presented 
in Figure 4. 

As noted earlier, enhanced clarity in the ÅE classification was observed over 
each variable as indicated in Figure 4. Similarly, we note three clear clusters in 
ÅE i.e. black, greyish and white clusters over each variable. The black, greyish 
and white clusters imply low, medium and high ÅE values experienced over each 
site as indicated in Figure 4. Based on Figure 4, Nairobi ÅE variability spans the 
range 0.94 - 1.68 ± 0.06 during the study period. Black clusters correspond to  

 

 
Figure 4. GHSOM classification of ÅE over the six variables. 
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low ÅE values which imply the dominance of aerosol particles in the 660 nm 
wavelength. On the contrary, the white clusters are indicative of high ÅE values 
of up to 1.68 ± 0.06 which corresponds to the dominance of aerosol particles in 
the 470 nm wavelength over Nairobi. The greyish clusters over the site are indic-
ative of the proper mixing of aerosol particles which is attributed to vehicular and 
industrial emissions and biomass and refuse burning over the site [15]. GHSOM 
reveals a unique ÅE classification over Mbita i.e. limited black and white clusters 
which imply that there are limited periods of time when the site experienced ex-
treme low and high ÅE values. In general, the site is dominated by the greyish 
clusters (0.98 - 1.64 ± 0.05) which suggests proper mixing of aerosol particles 
from biomass burning over the site during the study period [18] [19] [20]. 

Malindi shows the least ÅE values of range 0.18 - 0.60 ± 0.06 as compared to 
all the other study sites in the region. The low values confirm the fact that the 
site experiences maritime conditions accompanied by sea salt and sea spray 
aerosol particles plus long distance transport of aerosols from the Arabian Pe-
ninsula desert via Monsoon winds. Continual biomass burning and forest clear-
ance for agricultural use over Mau Forest Complex [21], enhance the region’s 
aerosol particles whose ÅE values span in the range (0.46 - 0.89 ± 0.07). The low 
ÅE values infer the dominance of aerosol particles in the 670 nm wavelength. 
Aerosol particles from high energy use and emissions associated with the growth 
of private motorized transport over Kampala [16], dominate the 470 nm wave-
length, this may explain the higher span range of 1.30 - 1.83 ± 0.06 in the ÅE 
values observed over the site as compared to the rest of the study sites.  

3.1.3. GHSOM Analysis of Precipitation Rate 
As noted earlier, darker and white colors infers lower and high manifestation PR 
over each study site. It’s clear that Malindi experiences the lowest PR as com-
pared to the rest of the region. Additionally, Mbita-Kampala and Nairobi-Mau 
Forest Complex PR are correlated during the study period as shown Figure 5.  

 

 
Figure 5. GHSOM classification of precipitation rate over the six variables. 
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4. Conclusion 

MODIS Terra monthly AOD and ÅE level 3 data from 2000 to 2014 are used to 
spatio-temporal characterization of AOD, ÅE and PR over selected study sites of 
the East African region using GHSOM algorithm. It is possible to use the neural 
network techniques in studying spatial-temporal characteristics over the region 
with enhanced efficiency. The GHSOM algorithm classification of both AOD 
and ÅE is attributed to various factors among them aerosol transport, diffusion, 
direct emission, hygroscopic growth and their scavenging from the atmosphere. 
The East African region experiences diverse and highly variable aerosol charac-
teristics as revealed by GHSOM. 

Acknowledgements 

This work was supported by the National Council for Science and Technology 
Grant funded by the Government of Kenya (NCST/ST & I/RCD/4TH call 
PhD/201). The authors wish to thank the NASA Goddard Earth Science Distri-
buted Active Archive for MODIS Level 3, TRMM rainfall data which served as a 
complement to the meteorological data from the Kenya Meteorological Depart-
ment. 

References 
[1] Solomon, S. (2007) Climate Change 2007: The Physical Science Basis: Working 

Group I Contribution to the Fourth Assessment Report of the IPCC (Vol. 4). Cam-
bridge University Press, Cambridge.  

[2] Stocker, T. (2014) Climate Change 2013: The Physical Science Basis: Working 
Group I Contribution to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change. Cambridge University Press, Cambridge.   

[3] Petrou, M. (2004) Preface. Pattern Recognition Letters, 25, 1459.  
https://doi.org/10.1016/j.patrec.2004.05.021 

[4] Liu, Y. and Weisberg, R.H. (2011) A Review of Self-Organizing Map Applications in 
Meteorology and Oceanography. In: Mwasiagi, J.I., Ed., Self Organizing Maps - Ap-
plications and Novel Algorithm Design, InTech.  
http://www.intechopen.com/books/selforganizing-maps-applications-and-novel-alg
orithm-design/a-review-of-self-organizing-map-applications-inmeteorology-and-oc
eanography  

[5] Kohonen, T. (1982) Self-Organized Information of Topologically Correct Features 
Maps. Biological Cybernetics, 43, 59-69. https://doi.org/10.1007/BF00337288 

[6] Kohonen, T. (2001) Self-Organizing Maps. Springer-Verlag, New York, Berlin, 
Heidelberg. https://doi.org/10.1007/978-3-642-56927-2 

[7] Oja, M., Kaski, S. and Kohonen, T. (2003) Bibliography of Self-Organizing Map 
(SOM) Papers: 1998-2001 Addendum. Neural ComputingSurveys, 3, 1-156. 

[8] Hong, Y., Hsu, K., Sorooshian, S. and Gao, X. (2004) Precipitation Estimation from 
Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification 
System. Journal of Applied Meteorology, 43, 1834-1853.  
https://doi.org/10.1175/JAM2173.1 

[9] Liu, Y., Weisberg, R.H. and He, R. (2006) Sea Surface Temperature Patterns on the 

https://doi.org/10.4236/gep.2018.66008
https://doi.org/10.1016/j.patrec.2004.05.021
http://www.intechopen.com/books/selforganizing-maps-applications-and-novel-algorithm-design/a-review-of-self-organizing-map-applications-inmeteorology-and-oceanography
http://www.intechopen.com/books/selforganizing-maps-applications-and-novel-algorithm-design/a-review-of-self-organizing-map-applications-inmeteorology-and-oceanography
http://www.intechopen.com/books/selforganizing-maps-applications-and-novel-algorithm-design/a-review-of-self-organizing-map-applications-inmeteorology-and-oceanography
https://doi.org/10.1007/BF00337288
https://doi.org/10.1007/978-3-642-56927-2
https://doi.org/10.1175/JAM2173.1


J. W. Makokha, J. O. Odhiambo   
 

 

DOI: 10.4236/gep.2018.66008 110 Journal of Geoscience and Environment Protection 

 

West Florida Shelf Using the Growing Hierarchical Self-Organizing Maps. Journal 
of Atmospheric and Oceanic Technology, 23, 325-328.  
https://doi.org/10.1175/JTECH1848.1 

[10] Dittenbach, M., Rauber, A. and Merkl, D. (2002) Uncovering the Hierarchical 
Structure in Data Using the Growing Hierarchical Self-Organizing Map. Neuro-
computing, 48, 199-216. https://doi.org/10.1016/S0925-2312(01)00655-5 

[11] Pampalk, E., Widmer, G. and Chan, A. (2004) A New Approach to Hierarchical 
Clustering and Structuring of Data with Self-Organizing Maps. Intelligent Data 
Analysis, 8, 131-149. 

[12] Makokha, J.W., Odhiambo, J.O. and Godfrey, J.S. (2017) Trend Analysis of Aerosol 
Optical Depth and Angstrom Exponent Anomaly over East Africa. Atmospheric 
and Climate Sciences, 7, 588-603. https://doi.org/10.4236/acs.2017.74043 

[13] Ichoku, C., Kaufman, Y.J., Remmer, L.A. and Levy, R. (2004) Global Aerosol Re-
mote Sensing from MODIS. Advances in Space Research, 34, 820-827.  
https://doi.org/10.1016/j.asr.2003.07.071 

[14] De Graaf, M., Tilstra, L.G., Aben, I. and Stammes, P. (2010) Satellite Observations 
of the Seasonal Cycles of Absorbing Aerosols in Africa Related to the Monsoon 
Rainfall, 1995-2008. Atmospheric Environment, 44, 1274-1283.  
https://doi.org/10.1016/j.atmosenv.2009.12.038 

[15] van Vliet, E.D.S. and Kinney, P.L. (2007) Impacts of Roadway Emissions on Urban 
Particulate Matter Concentrations in Sub-Saharan Africa: New Evidence from Nai-
robi, Kenya. Environmental Research Letters, 2, 045028.  
https://doi.org/10.1088/1748-9326/2/4/045028 

[16] Mabasi, T. (2009) Assessing the Impacts, Vulnerability, Mitigation, and Adaptation 
to Climate Change in Kampala City. Fifth Urban Research Symposium. Kampala. 

[17] Fairman, J.G., Nair, U.S., Christopher, S.A. and Mölg, T. (2011) Land Use Change 
Impacts on Regional Climate over Kilimanjaro. Journal of Geophysical Research: 
Atmospheres, 116, D03110.  

[18] Makokha, J.W. and Angeyo, H.K. (2013) Investigation of Radiative Characteristics 
of the Kenyan Atmosphere due to Aerosols Using Sun Spectrophotometry Mea-
surements and the COART Model. Aerosol and Air Quality Research, 13, 201-208. 

[19] Ngaina, J.K. and Mutai, B.K. (2013) Observational Evidence of Climate Change on 
Extreme Events over East Africa. Global Meteorology, 2, 6-12. 

[20] Ngaina, J.N., Mutai, B.K., Ininda, J.M. and Muthama, J.N. (2014) Monitoring Spa-
tial-Temporal Variability of Aerosol over Kenya. Ethiopian Journal of Environ-
mental Studies and Management, 7, 244-252. 

[21] National Environmental Management Authority, Kenya (NEMA) (2013) Mau at a 
Glance. NEMA Report. 

[22] Eck, T., Holben, B.N., Ward, D.E., Dubovik, O., Reid, J.S., Smirnov, A., Mukelabai, 
M.M., Hsu, N.C., O’Neill, N.T. and Slutsker, I. (2001) Characterization of the Opti-
cal Properties of Biomass Burning Aerosols in Zambia during the 1997 ZIBBEE 
Field Campaign. Journal of Geophysical Research 106, 3425-3448.  
https://doi.org/10.1029/2000JD900555 

 
 

https://doi.org/10.4236/gep.2018.66008
https://doi.org/10.1175/JTECH1848.1
https://doi.org/10.1016/S0925-2312(01)00655-5
https://doi.org/10.4236/acs.2017.74043
https://doi.org/10.1016/j.asr.2003.07.071
https://doi.org/10.1016/j.atmosenv.2009.12.038
https://doi.org/10.1088/1748-9326/2/4/045028
https://doi.org/10.1029/2000JD900555

	Spatial-Temporal Characterization of Atmospheric Aerosols via Airborne Spectral Imaging and Growing Hierarchical Self-Organizing Maps
	Abstract
	Keywords
	1. Introduction
	2. Methodology
	2.1. Description of Study Area
	2.2. Growing Hierarchical Self-Organizing Maps (GHSOM)
	2.3. Data

	3. Results and Discussions
	3.1. Growing Hierarchical Self-Organizing Maps (GHSOM)
	3.1.1. GHSOM Analysis of Aerosol Optical Depth
	3.1.2. GHSOM Analysis of Angstrom Exponent
	3.1.3. GHSOM Analysis of Precipitation Rate


	4. Conclusion
	Acknowledgements
	References

