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Abstract 
The only known predictable aggregation of dwarf minke whales (Balaenoptera 
acutorostrata subsp.) occurs in the Australian offshore waters of the northern 
Great Barrier Reef in May-August each year. The identification of individual 
whales is required for research on the whales’ population characteristics and 
for monitoring the potential impacts of tourism activities, including commer-
cial swims with the whales. At present, it is not cost-effective for researchers 
to manually process and analyze the tens of thousands of underwater images 
collated after each observation/tourist season, and a large data base of histori-
cal non-identified imagery exists. This study reports the first proof of concept 
for recognizing individual dwarf minke whales using the Deep Learning 
Convolutional Neural Networks (CNN).The “off-the-shelf” Image net-trained 
VGG16 CNN was used as the feature-encoder of the per-pixel sematic seg-
mentation Automatic Minke Whale Recognizer (AMWR). The most fre-
quently photographed whale in a sample of 76 individual whales (MW1020) 
was identified in 179 images out of the total 1320 images provided. Training 
and image augmentation procedures were developed to compensate for the 
small number of available images. The trained AMWR achieved 93% predic-
tion accuracy on the testing subset of 36 positive/MW1020 and 228 nega-
tive/not-MW1020 images, where each negative image contained at least one of 
the other 75 whales. Furthermore on the test subset, AMWR achieved 74% 
precision, 80% recall, and 4% false-positive rate, making the presented ap-
proach comparable or better to other state-of-the-art individual animal rec-
ognition results. 
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1. Introduction 

The dwarf minke whale (Balaenoptera acutorostrata subsp.) is the second smal-
lest baleen whale, born at approximately 2m in length and growing to a maxi-
mum measured length of 7.8 m [1]. Dwarf minke whales are distributed 
throughout the southern hemisphere, including Antarctica, and were first ac-
knowledged as a distinct form of minke in 1985 [1]. The only known predictable 
aggregation of dwarf minke whales occurs in the Australian offshore waters of 
the northern Great Barrier Reef (GBR) each year throughout the Australian 
winter months [3]. This aggregation supports a local swim-with-whales tourism 
industry [2] [3]. The predictable nature of this aggregation has also enabled 
dedicated research of dwarf minke whales, which has contributed to seminal 
work on dwarf minke whale biology [4], behavior [5], and assessment and man-
agement of swim-with-whales activities [2]. Outputs from this work have in-
formed and shaped management policies and expanded knowledge of both the 
subspecies in general and, specifically, the interactions with the tourism indus-
try. The uniqueness of this aggregation presents an opportunity to conduct re-
search and improve the knowledge base for a poorly understood oceanic rorqual 
whale, as well as a responsibility to ensure that tourism activities are managed 
sustainably [2] [3] [5]. 

The identification of individual whales underpins much of the scientific re-
search on dwarf minke whales and the monitoring of tourism activities. While in 
the GBR, these whales are highly inquisitive, readily approaching vessels and di-
vers and often maintaining contact for prolonged periods [3] [5]. This behavior 
provides good opportunities for passengers aboard the swim-with tourism ves-
sels to photograph dwarf minke whales. The whales’ color patterns have been 
shown to remain stable over many years, and are sufficiently complex to allow 
for unequivocal identification of individuals [3] [6] [7]. The stability of these 
patterns and the regular, in-water access provided to researchers by tourism 
vessels has made the dwarf minke whale an ideal species for photo-identification 
(photo-ID) [6] [8]. 

Photo-ID is a simple, non-invasive technique widely used to study a range of 
biological and behavioral characteristics of wild animal populations. Ideal can-
didates for photo-ID are those with stable color patterns and/or other markings 
that are unique to each individual, so that individuals can be easily distinguished 
from each other and their identifiable markings remain the same over time. The 
automation of the photo-ID process is often highly specific to the required spe-
cies, e.g. fin contour of great white sharks [9]. Due to its fundamental research 
role, photo-ID is an active research area for many species, e.g. green sea turtles 
[10], gorillas [11], and dolphins [12].  
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For minke whales, photo-ID has typically involved visual comparison of large 
numbers of photographsby trained researchers; thus, the process is time-intensive. 
Much of the imagery used for photo-identification of dwarf minke whales in re-
cent years has come from tourists and crew aboard swim-with whales dive tour-
ism vessels [8]. The quantity of this donated imagery has increased dramatically 
with the availability of low-cost digital underwater cameras and the resultant rise 
in popularity of these items among tourists [8]. Researchers are now obtaining 
tens of thousands of photographs and video clips each season. Consequently, it 
is no longer cost-effective for researchers to manually process and analyze such 
quantities of images, and a large database of historical non-identified imagery 
exists. In order to utilize the increasing quantity of imagery to address key bi-
ological and ecological knowledge gaps about these whales, automatic com-
puter-vision based recognition software is required, and was the main focus of 
this study. 

Over the last few years the Deep Learning Convolutional Neural Networks 
(CNNs) revolutionized the field of computer-vision image recognition [13]. For 
example, the Alex Net image classification CNN [14] won the Imagenet Large 
Scale Visual Recognition Challenge (ILSVRC) [15] in 2012, and since then all 
the ILSVRC13-ILSVRC17 winners used CNNs of various architectural configu-
rations as their key features, e.g. [16]. It is customary to refer to such CNNs as 
been trained-on-Imagenet. 

A typical Imagenet-trained CNN is setup to classify as many as 1000 different 
types of objects. Therefore, it is plausible to expect that such a CNN could dis-
tinguish at least 1000 different individual dwarf minke whales if it is trained or 
re-trained appropriately. This direct approach, however, has a number of limit-
ing factors. First, millions of images are available in the Imagenet for training 
CNNs, which is presently not feasible for dwarf minke whales, where the num-
ber of images available for an individual whale may vary between one and sever-
al thousand. Second, typical Imagenet object categories are very different, e.g. 
differences in images for dogs and people, whereas all minke whales fit essen-
tially the same category for the Imagenet (i.e. near-identical body shape, propor-
tions and general color). Third, the output of a classification CNN is a single 
probability number for each available class, where category and class are used as 
equivalent terms in this study. Such probability prediction has limited value to a 
marine biologist, as it does not explain why/how CNN arrived at its prediction. 
This is known as the black-box perception and/or criticism of the classification 
CNNs. The black-box CNN prediction is unavoidable in studies where animals 
are identified by their “faces”, e.g. for gorillas [11], and identification uses facial 
geometrical proportions and is essentially the full face. Fortunately in the case of 
dwarf minke whales, they are currently identified by finely detailed color pat-
terns and scars (Figure 1), which could be recognized and localized by CNN, 
and then confirmed by a trained researcher. 

The black-box limitation of the classification CNNs has a natural solution  
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Figure 1. Example of individual minke whale distinct fin color pattern and scars. 

 
when the CNNs are configured to perform semantic segmentation of images, 
where an image is segmented into per-pixel categories [17]. The output of seg-
mentation CNNs is a per-pixel heat-map (also known as the probability or acti-
vation map) for each class. Therefore, a researcher could easily verify the CNN 
prediction by viewing the heat-map corresponding to the recognized individual 
whale (Figure 2). This approach was successfully validated in this proof of con-
cept study by training a segmentation CNN to recognize a single whale within 
1320 images of 76 different whales. 

2. Materials and Methods 
2.1. Dataset 

The underwater imagery dataset used in this study consisted of 1320 digital 
photographs of dwarf minke whales (Balaenoptera acutorostrata subsp.). All 
images were sorted according to unique individual animals. In some cases only 
left or right sides of a whale was identified, without knowing if corresponding 
images belonged to the same whale or not. Where it was possible to match the 
left and right sides to the same whale, the related imagery was labeled accor-
dingly and placed together in the same folder. As a result, the dataset identified 
76 different whales. The identification process was extremely time consuming 
even for trained researchers as it required recording and cataloguing the color 
patterns and scars of 76 different whales, and/or reviewing any new image 
against at least 76 other whale images thus relying on researchers’ memory to 
identify matches with any efficiency. The number of available images varied 
greatly between individuals; the MW1020 individual had the largest number of 
images (179), and several whales had only one image per individual. 

2.2. Segmentation Neural Network 

As described in the introduction, this study used a segmentation CNN rather 
than a classification CNN to recognize an individual minke whale and localize 
the recognized unique features. Specifically, the most accurate segmentation 
FCN-8s model from the Fully Convolutional Networks (FCN) [17] was selected 
due to the following considerations. 

First, the FCN-8s model is based on the VGG16 CNN model [16], which was 
one of the top performers in the ILSVRC14 [15]. 
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Second, this study used the Deep Learning python framework Keras [18] with 
Tensor Flow [19] as the processing backend. The Imagenet pre-trained VGG16 
model was available within Keras [18], and the FCN-8s model had a number of 
publically available Keras-based implementations, e.g. [20]. For this study, 
FCN-8s version was recreated in Kerasdirectly from the original Caffe source 
code of the FCN-8s model [21], and released to public domain [22]. 

Third, at the time of writing, the FCN-8s publication [17] had the largest 
numbers of citations among segmentation CNNs making it a widely accepted 
base-line model for semantic segmentation. Adopting this well-known FCN-8s 
model for this study was intended to make the presented method be reproduced 
and/or replicated more easily for additional/different minke whale images or for 
other animal species recognition studies. 

In terms of the actual implementation, the FCN-8s model was built by reusing 
all VGG16 convolutional layers, which were loaded with the Imagenet-trained 
VGG16 weights available in Keras [18].Such reuse of CNN weights is often re-
ferred to as the knowledge transfer [23]. VGG16 was designed to recognize 1000 
classes of objects. Since this study was dealing with the maximum of 76 individ-
ual whales, the original VGG16/FCN-8s 4096 neurons were reduced to 1024 
neurons when the last two dense (non-convolutional) VGG16 layers fc1 and fc2 
were converted to their convolutional equivalents as per the FCN-8s model. This 
reduced the total FCN-8s size to approximately 160 MB when stored on disk, 
comparing to 540 MB for the original FCN-8s model with 4096 neurons in the 
fc1 and fc2 layers. The non-VGG16 convolutional layers were initialized by the 
uniform distribution as per [24]. Sigmoid activation [25] function was used in 
the last (i.e. prediction) layer. 

2.3. Data Augmentation and Training Workflow 

The adopted FCN-8s [17] segmentation model was a very high capacity neural 
network, which could overfit if it was presented with the same unchanged train-
ing images repeatedly. Therefore, the training images had to be augmented to 
prevent the FCN-8s model from memorizing the relatively small number of 
training images, and/or the trivial transient features such as ambient color hue 
or brightness. Furthermore and for the same reason of regularizing to avoid 
overfitting, the Imagenet-trained VGG16 convolutional weights were frozen, i.e. 
excluded from training. 

Two image processing protocols were used. First, all available images were 
standardized by the following imagescaling procedure (ISP640). If a given image 
had H and W as height and width, respectively, then min( , )L H W=  is the 
minimum of H and W, and the image was resized by scale 640 /S L= .This step 
scaled all images to have shortest sides be 640 pixels long, hence the abbreviation 
ISP640. 

The second or training augmentation protocol (TAP480) was applied to the 
ISP640 processed images, where each image was: 
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• Randomly rotated in the range of [ 45, 45]− +  degrees, where the input image 
was reflected to fill pixels outside the original boundary as required; 

• Randomly resized in the scale range of [0.75,1.25] , or by up to 25% zooming 
in or out; 

• Randomly shifted in each color channel in the [ 25.5,25.5]−  range, where 
25.5 was the 10% of maximum color values 255; 

• Randomly gamma shifted in the [ 25.5,25.5]−  range, where all color chan-
nels values were shifted together; 

• Randomly cropped to retain 480 480×  pixels; 
• Imagenet color mean values were subtracted as commonly done when work-

ing with the Imagenet-trained VGG16 model. 
The following training workflow was adopted for this study. All available im-

ages were sequentially numbered and split into five approximately equal subsets. 
The first three subsets were used as a single training set, i.e. 60% of all available 
images. The fourth and the fifth subsets became the validation and testing sets, 
respectively. More precisely, the ith image was allocated to validation or test if 
( 1)i +  or i were multiple of 5, respectively, where all remaining images were as-
signed to the training set. 

The training of FCN-8s was done in up to 100 cycles. In each cycle, TAP480 was 
further applied to the already ISP640-processed images. The training images were 
loaded into memory as a ( , , , )tX N M M C  tensor or a multidimensional matrix, 
where 200tN =  was the number of images, 480M =  was the TAP480 crop-
ping length, and where 3C =  was due to the three available color channels. The 
corresponding to the loaded training images were the ground-truth binary 
per-pixel masks, which were loaded as a one-hot encoded ( , , , )tY N M M K  ten-
sor, where ( ), , , 1Y i m l k =  if the ( , )m l  pixel belonged to the kth class in the ith 
image and zero otherwise. The required number of classes K was 1K =  for the 
automatic whale locator and a single whale classifier, as described later on in this 
paper. The validation vX  and vY  tensors were constructed in similar fashion. 

The per-pixel binary cross-entropy loss function, e.g. p.231 of [25], was aver-
aged as required and used as the training loss metric. Due to the available 
Graphical Processing Unit (GPU) memory limits, training was done in batches 
of only four images. Up to 16 training epochs were allowed per cycle, where one 
feed-forward and one back-propagation passes through all Nt-loaded im-
age-mask pairs were considered to be one epoch. Training for a given cycle was 
aborted if the validation loss metric did not decrease after two epochs, this is 
commonly known as early stopping. Note that the early stopping was the only 
place where the validation images were used in training. In order to prevent the 
indirect overfitting of the validation images, they were augmented by TAP480 
before each training cycle similar to the training set. 

2.4. Minke Whale Locator  

Being a segmentation model, the FCN-8s model required the ground-truth 
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per-pixel binary mask for each of the training and validation images. Therefore, 
the auxiliary goal of this study was to design the required workflow to be as 
scalable as possible for future larger training datasets. Creating the ground-truth 
per-pixel binary masks was clearly the least scalable component of this study, 
and required a scalable solution. This was solved by training an instance of 
FCN-8s to be the Minke Whale Locator (MWL).  

To train MWL, 100 images were segmented by hand (including 50 of the 
MW1020 individual) to produce binary per-pixel ground-truth mask Y for each 
of the 100 images. Then MWL was trained as per preceding Section 2.2 with the 
following modifications. In addition to TAP480, images were flipped horizon-
tally with 0.5 probability. The available 100 images were split 70 for training, and 
30 for validation, where the rest of the not-segmented images were considered to 
be the testing set. The Keras version of the RMS prop optimizer was used with 
10−4 learning rate, and 10−3 learning rate decay after each weights update, where 
RMS prop “divides the learning rate for a weight by a running average of the 
magnitudes of recent gradients for that weight” [26]. Once the per-pixel valida-
tion accuracy stopped improving (usually at around 95%), the Stochastic Gra-
dient Descent (SGD) optimizer was used with 10−4 learning rate, 10−3 learning 
rate decay, 0.9 momentum, and enabled Nesterov momentum. 

Trained MWL was applied to all available images to automatically generate 
one largest rectangular binary mask per ISP640 pre-processed image. Note that 
since MWL was fully convolutional, it was rebuilt to accommodate any required 
image dimensions, where one side was always 640 (due to ISP640) but the other 
side was varied. The mask generation was done as follows. For each image, the 
per-pixel prediction heat-map ( , )pY i j  was converted to binary mask B via, 

( , ) 1B i j = , ( , ) 0.8pY i j ≥ ,                    (1) 

where i and j were the row and column pixel location indices, respectively, and 
where the remaining mask values were set to zero, i.e. ( , ) 0B i j = ,  

( ), 0.8pY i j < . The largest connected non-zero area was filled to complete its 
minimum-enclosing rectangle, and saved as the only non-zero values of the final 
binary mask. 

2.5. Automatic Minke Whale Recognition 

Similar to the preceding MWL model, an instance of the FCN-8s model was 
created for a required number of K individual whales to be the Automatic Minke 
Whale Recognition (AMWR) model. To train AMWR, the automatically created 
(by MWL) masks for the K whales were reviewed for correctness. Specifically, 
each MWL-generated rectangular mask was checked to make sure it enclosed 
correct whale if multiple whales were present in an image. Also, if the mask did 
not enclose the whole whale, the mask was verified to enclose all whales’ fea-
tures, which a biologist could use to identify that whale, i.e. fin coloration pat-
terns and distinct scars. Note that in this study, the MWL model was nothing 
more than a convenience tool to automate ground-truth mask creation. There-
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fore where available, the manually segmented masks were used instead of the 
corresponding MWL masks.MWL produced acceptable bounding boxes in more 
than 90% cases confirming it to be a viable tool for this project. 

The AMWR was trained as per preceding Section 2.2 with the following mod-
ifications. For the K selected whales the positive ground-truth masks (manually 
or automatically MWL-segmented) were used. The training masks for the re-
maining (76 )K−  whales were automatically generated as negative or all-zeros 
masks, i.e. any of the K selected whales were missing in the remaining images. 
Then the training proceeded as per MWL but with added regularization weight 
decay set to 10−4. 

3. Results and Discussion 

The largest number (179) of images was available for the individual whale 
MW1020 so it was used as the benchmark of possible accuracy for the utilized 
dataset and the AMWR model with 1K = . As per preceding Sections 2.3 and 
2.4, 50 masks were segmented manually, and the rest of available MW1020 im-
ages (129) were segmented by MWL and quality-checked visually. The MW1020 
training, validation and test sets contained 107, 36, and 36 images, respectively. 
The rest of other whale images (1141) were automatically labeled as negative, 
and split 60%-training, 20%-validation, and 20%-test. Because there were many 
more negative labels than positive, for each training cycle an equal number of 
images (100) were randomly selected from both negative and positive/MW1020 
training images. Similarly, all available 36 MW1020 validation images were used 
with 36 randomly selected negative validation images, where a new random se-
lection of 36 negative images was done before each training cycle. Also due to 
the highly unbalanced number of positive and negative examples, AMWR clas-
sifier was assessed via precision, recall, fprate (false-positive), in addition to the 
standard accuracy [9] [11] [27], 

/ ( )precision TP TP FP= + , /recall TP P= ,  /fp rate FP N=     (2) 

( ) / ( )accuracy TP TN P N= + + ,                 (3) 

where TP, TN, FP and FN were the numbers of true-positive, true-negative, 
false-positive and false-negative predictions, respectively, and where P and N 
were the total numbers of positive (MW1020) and negative (non-MW1020-whale) 
images. 

The main distinct advantage of a per-pixel classifier (rather than per-image) 
such as the presented AMWR, is the full control over how “conservative” or 
“liberal” [27] it could be configured. The highly conservative version was confi-
gured by accepting the prediction heat-map values only above 0.99, where the 
binary per-pixel predictions were set as ( , ) 1B i j = , ( , ) 0.99pY i j ≥  and zero 
otherwise. Furthermore, the largest connected prediction area was only accepted 
as a positive detection if its area was at least 64 64 4096× =  pixels, see example 
in Figure 2. 
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Figure 2. Example of AMWR per-pixel prediction for MW1020 individual. The pixels 
with the prediction heat-map values above 0.99 were illustrated by amplifying the cor-
responding image pixel intensities by factor of 1.5.  

 
Table 1. Identification results for MW1020. 

Prediction Score 
Datasets 

Train Validation Test 

Accuracy 0.984 0.924 0.935 

Precision 0.935 0.735 0.743 

Recall 0.953 0.694 0.805 

Fp rate 0.01 0.04 0.04 

 
On the test subset, AMWR achieved 4% false-positive rate (Table 1). Low fp 

rate was viewed as essential to support a workflow where many thousands of 
unsorted images could be scanned for the known whales, and the number of 
“false-alarm” instances would remain feasible to be classified manually. AMWR’s 
test precision (74%) and recall (80%) results (last column of Table 1) were better 
than the corresponding state-of-the-art gorilla identification results [11] of ap-
proximately 60%. The AMWR’s test accuracy (93%) and precision (74%) were 
comparable to the 81% average precision achieved in the state-of-the-art great 
white shark identification results [9]. The validation and test prediction metrics 
were comparable (third and fourth columns in Table 1) supporting the achieved 
testvalues to be the expected benchmark/baseline values of the AMWR model in 
future similar circumstances/studies. 

4. Conclusion 

Due to the increasing abundance of underwater digital imagery, the manual 
identification of individual dwarf minke whales from images and videos has be-
come cost-ineffective. It has become excessively time-consuming to manually 
check if an unsorted image contains a new whale or a known whale, e.g. from the 
76 labeled whales of this study’s dataset. Considering that photo-identification of 
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dwarf minke whales represents one of the few methods available to address key 
knowledge gaps for this species’ biology and life history, the application of au-
tomated recognition tools can potentially provide new scientific insights that 
would otherwise be inaccessible to scientists. The quantity of images for indi-
vidual whales presented a theoretically challenging problem, where the number 
of available labeled images was too large for further manual labeling, but not 
large enough to apply Deep Learning classification CNNs. This study demon-
strated how the Deep Learning per-pixel segmentation FCN-8s [17] CNN could 
be trained for an individual minke whale recognition from only 179 positive 
images. As much as possible the off-the-shelf pre-trainedVGG16 [16] CNN was 
used to assist adoption and reproducibility of the results. 
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