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Abstract 
China Meteorological Administration (CMA) has a long history of using High 
Performance Computing System (HPCS) for over three decades. CMA HPCS 
investment provides reliable HPC capabilities essential to run Numerical 
Weather Prediction (NWP) models and climate models, generating millions 
of weather guidance products daily and providing support for Coupled Model 
Inter-comparison Project Phase 5 (CMIP5). Monitoring the HPCS and ana-
lyzing the resource usage can improve the performance and reliability for our 
users, which require a good understanding of failure characteristics. Large-scale 
studies of failures in real production systems are scarce. This paper collects, 
analyzes and studies all the failures occurring during the HPC operation pe-
riod, especially focusing on studying the relationship between HPCS and 
NWP applications. Also, we present the challenges for a more effective moni-
toring system development and summarize the useful maintenance strategies. 
This step may have considerable effects on the performance of online failure 
prediction of HPC and better performance in future. 
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1. Introduction 
1.1. High Performance Computing System in CMA 

CMA HPCS is managed by National Meteorological Information Center 
(NMIC) at CMA in Beijing, China. There are two national subsystems and other 
7 regional subsystems locating in different provincial meteorological bureaus. 
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The supercomputer is an IBM Flex P460 system, consisting of 1786 compute 
nodes with 57,152 compute cores, and 5.4 petabytes storage. It provides a total 
peak performance of 1.7 Petaflops. In NMIC, there are two identical subsystems, 
one for production (Uranus), and the other for research (Neptune). For each 
subsystem, there are 560 computer nodes with 17,920 cores, 77 terabytes of 
memory and 1730 terabytes storage. Each compute node contains 4 Power7 
compute cores (3.3 GHz). 58 computer nodes have large memory with 256 GB, 
while others with 128 GB memory. Access to compute resources is managed by 
LoadLeveler. The IBM General Parallel File System (GPFS) is used to support 
I/O operations. The compute clusters and storage clusters are connected by Infi-
niBand, with the speed of 160 Gb/s for either way. 

The CMA HPCS are served for all the users in the CMA campus and other 
provincial bureaus, including users from National Climate Center and Numeri-
cal Weather Prediction Center and other operational centers.  

1.2. CMA HPCS Performance 

We analyze a dataset of 44-month CMA HPCS workload traces and investigate 
the users’ waiting patterns, which include all the jobs submitted from Nov. 2013 
to Jun. 2017. We also analyze the resources usage by week, by month and by 
year. The subsystems that we analyzed are Uranus and Neptune which are lo-
cated in NMIC and served for CMA users with high utilization. From the pre-
vious data collections, we can see the following characteristics: 

1) High CPU Utilization: CPU utilization is an important indicator of the sys-
tem performance. 

From Figure 1, we can see that at the very beginning of the 8 months, the 
CPU average utilization of Uranus is around 51%. In the 9th month, both Ura-
nus and Neptune were in use; all the research work were assigned to Neptune; 
the average CPU utilization of Uranus decreased immediately, with a figure of  
 

 
Figure 1. CPU monthly utilization. 
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36%, while 47% for Neptune. In the following two years, both of the systems 
have been in high utilization, with 54% and 59% respectively. 

2) Small jobs are majority: Every month, there are about 1.8 million jobs 
which are submitted, meaning that about 60,000 jobs are submitted every day. 
84.81% jobs run with a single core, only 5.36% jobs need 32 cores each time, 
which is followed by those jobs needing 8 cores, with 3.79%. If we take those jobs 
with one core out of the calculation to analyze the parallel jobs, we will discover 
that, 65% of jobs run with cores which are less than 32; 12% of jobs ask for cores 
lying between 33 and 128; 23% of jobs need more than 128 cores.  

3) Short Job Waiting Time: 96.15% of the jobs run within 3 minutes. Only 
1.5% jobs need to wait for less than 10 minutes to get the resource. We also ana-
lyze that for those jobs requiring to wait more than 30 minutes are either out of 
the user’s resource quota or high frequency of job submission by the same user. 

4) Top 20 Users & Resources Usage: There are over 200 users, with top 10 us-
ers taking up 46.1% resource, top 20 users 70.5%. High Time Slots are those time 
periods which have high CPU utilization. And production users use more cores 
in high time slots (Figure 2).  

5) Application Usage Distribution: When it comes to application usage, we 
notice that Beijing Climate Center Climate System Model (BCC_CSM) accounts 
for 36.3%, while Global and Regional Assimilation and Prediction System 
(GRAPES) for 25.1%. The third application goes to WRF, with 17%. The top 5 
application shows that the resources utilization is very typical. 

6) “Round” Estimates for Wall Clock Request Values: Users tend to choose 
rough time for the estimation for Wall Clock Requested (WCR), a similar user 
behavior has been found in other HPC machines [1] [2]. We discover that jobs 
requiring more compute cores with less wall clock time overall have more 
chance of avoiding long-time waiting in the queue, comparing with those re-
quiring fewer compute cores with more wall clock time. 

7) Busy Time Slots: For production system, the busy time slots are very evi-
dent for the reason that numerical weather prediction models run by different 

 

 
Figure 2. Production users using more cores in high time slots. 
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forecast hours; while for research system, the CPU utilization is relatively stable 
with high usage because scientists can run the jobs automatically for research 
work (Figure 3).  

The world lives online. We all depend on IT hardware to keep everything 
going. Reliable HPC resources are imperative to production running. Many re-
searchers have pointed out the importance of analyzing failure data. Failure 
analysis is the process of collecting and analyzing data to determine the cause of 
a failure, often with a goal of determining corrective or preventive actions. 

1) System Failures 
Failure rates in high performance computing systems rapidly increase due to 

the growth in system size and complexity. Hence, failures became the norm ra-
ther than the exception. Different approaches on HPCS have been introduced, to 
prevent failures or at least minimize their impacts. On-demand resilience is 
proposed to work as an approach to achieve adaptive resilience in HPCS. The  
 

 
 

 
Figure 3. CPU utilization by time slot. 
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HPCS is considered in its entirety and resilience mechanisms such as check-pointing, 
isolation, and migration. To mitigate a large number of failures occurring at 
various layers in the system, to prevent their propagation, and to minimize their 
impact, all of these are very essential for daily maintenance. In the case of fail-
ures that are estimated to occur but cannot be mitigated using the proposed 
on-demand resilience approach, the system administrators will be notified in 
view of performing further investigations into the causes of these failures and 
their impacts. 

The system failures come from software, hardware, user operations, network, 
and environmental problems (e.g. power outages). For each failure, the data in-
cludes start time and end time, the system, node and jobs affected, as well as ca-
tegorized root cause information. 

We collect and analyze a dataset of 44-month failures of CMA Uranus and 
Neptune. Hardware failures are easy to track as we make a record with any 
hardware replacement with manufacture. (Neptune was installed later and put 
into operation 8 months after Uranus.) 

Figure 4 shows the number of failures per month, starting from production 
time. Failures number is comparatively low at the first several months. The fail-
ure number actually grows over a period of nearly 18 months, before it even-
tually starts dropping. The reason most likely is that many problems in hard-
ware, software and configuration are only exposed by real user code in the pro-
duction workloads [3]. 

There are some research work in understanding the correlations between sys-
tem failures and workload. Study shows that there is a correlation between a 
system’s failure rate and its workload [4], since in general usage patterns work-
load intensity and the variety of workloads is lower during the night and on the 
weekend. When it comes to CMA’s HPC systems, as Figure 3 indicates that it has 
been very busy over the period of the lifetime. We cannot see the relationship  
 

 
Figure 4. Hardware failures by month. 
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between the failure rate and its workload intensity. But we analyze the system 
outage and find that the regular maintenance before the flood season often 
brought a high percentage of motherboards’ replacement. 

The curve in Figure 5 corresponds to the hardware failures observed during 
the first 44 months. For Uranus, 82% of hardware failures come from computer 
nodes, with the backplane, IB card, internal HDD, FC Card, Ent Card, CPU and 
Memory; 12% of failures are from storage, with replacement of disk; other fail-
ures such as switch, power supply, controller, leaf module and spine module 
count for 3%. The similar distribution can also be found in Neptune (Figure 5).  

When it comes to software failures and other errors caused by users’ beha-
viors, there are two datasets, which represents our development in monitoring 
and management systems deployed at two different stages. The failure record at 
the first stage was written by the operation staffs, writing each failure in the 
shared files. The current failure record is from the monitoring system which 
stores the historical data. Figure 6 shows the software failures distribution start-
ing from May 2016 to Jun. 2017. IO waiting takes the largest part, with around 
68% and 58% of the total failures for Uranus and Neptune. Abnormal GPFS sta-
tus, abnormal LoadLeveler status and memory overflow are the top failures. 
Other failures including local file system of the important nodes (login nodes 
and scheduler nodes) exceed the threshold value, connection and process errors. 

2) Overview of NWP Applications and Its Failures 
Weather forecasting is regarded as an important element affecting the socioe-

conomic welfare of the globe—a situation demanding a highly reliable weather 
forecasting system. In response, CMA scientists and researchers use computa-
tionally demanding NWP models to calculate the atmospheric movements and 
physical processes that cause weather changes. There are currently more than 30 
operational NWP models in total, including GRAPES_GMF, GRAPES_GDA, 
T639_GMF, T639_GDA, Haze and etc. 

From the Table 1 and Figure 7, we can see that the NWP models are not 
working alone. The results of T639_GMF is the source data of other models,  
 

 
Figure 5. The distribution of hardware failures of Uranus from Nov. 2013 to Jun. 2017. 
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Figure 6. Software failures distribution from May 2016 to Jun. 2017. 
 

 
Figure 7. The interconnection among the current NWP model. 
 
Table 1. The overview of each NWP system. 

USER SYSTEM 
Cycle/Run Frequency (UTC) 

00 06 12 18 

nwp_op 

CUACE_DUST 05:30-07:05 
 

18:30-20:10 
 

GRAPES_MESO 03:20-06:55 
 

15:20-18:01 
 

GRAPES_GDA 07:00-08:10 13:00-14:10 19:00-20:10 01:00-02:10 

GRAPES_GMF 03:30-06:50 
 

15:30-19:00 
 

GRAPES_GDA_DIAG 07:30-08:40 13:30-14:40 19:30-20:45 01:30-02:45 

T639_GMF 02:59-04:53 10:45-12:06 14:59-16:55 22:15-23:42 

T639_GDA 09:00-10:00 13:10-14:10 21:00-22:00 01:10-02:10 

FIRE_Forecast 
  

20:00-20:05 
 

Verify 06:30-07:00 
   

Obs_Retrieve 03:10-03:13 09:10-09:13 15:10-15:13 21:10-21:13 

T639_GMF

CUACE_Dust

GRAPES_Typhoon

GEPS_T639

MEPS_GRAPES

RAFS

Obs_RAFS Mosaic_RAFS

GRAPES_MesoHaze

Obs_reg

Ocean-
Wavewatch

NCEP_GFS

T639_GMF_Vortex

Mosaic_GRAPES
_Meso

GRAPES_Meso_
3KM
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such as Haze, CUACE_Dust. Hence, the failure of the NWP models will affect 
other models’ operation. 

For production system, CMA has been utilizing the SMS or ECFLOW to es-
tablish the whole process for NWP and Climate models. From the record of the 
failures occurred within 44 months, there are 1191 failures. Among them, they 
are classified into different categories, including NWP models, network, servers’ 
related failure, data, file system and others. Segmentation fault, necessary data 
delay and bug in program design account for a very large part of the failures. 
Node related failures including the failures of the HPC hardware and ftp servers’ 
disconnections is another contributor. Thanks to the real-time monitoring sys-
tem and quick response of the failures, HPC cluster seldom influence the opera-
tion of NWP model for weather forecast products.  

2. CMA HPC Operation Monitoring System 

Through the HPC resource management system, we know very well about the 
HPC performance. In order to make the best of the system, we work hard on the 
improvement of the HPC monitoring system. For one thing, user’s behavior and 
Scheduling Policy values a lot, for the other thing, to monitor the HPC is the 
base for maintenance. We have accumulated a lot of experience or a plethora of 
solutions to ensure that quality is optimized and downtime is minimized. 

HPC Operation Monitoring System is used to monitor the following aspects 
of the system. We monitor the item listed as below: 

1) Hardware and Software of Nodes: CPU, memory, IB network interface card 
slot, fiber channel.  

2) Resources Management: busy queue & busy jobs. 
3) GPFS File System: usage, status. 
4) InfiniBand: connection status, IB card.  
5) Users abnormal actions: Such as running the job with high demand of 

memory at the submit node; command file with an infinite loop which will run 
out the resources of the node to make other jobs being held. 

6) Special Nodes including logon nodes, service nods, management nodes and 
I/O nodes. 

7) Process Monitor: SMS server (rpc process), LoadLeveler status. 
8) I/O nodes: waiting status. 

3. Challenges 

There are several challenges we face in order to provide high reliability and bet-
ter service for our users in meteorological field, including how to find the failure 
chain, how to reduce failure detection rate and improve false alarm rate, how to 
take actions before affecting the application, all in a word, to improve user expe-
rience and the efficiency of maintenance. 

1) A Failure Chain 
Some errors are isolated from others, to fix them directly will solve the prob-
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lem; while some failures are correlated to others. A sequence of successive fail-
ures may occur sometimes. 

How to improve the failure prediction based on failure correlations and ana-
lyze the propagation pattern of failures in different system layer, quantify fail-
ures’ impact within their effectiveness zone, all of these are the challenges for 
monitoring and maintenance. 

2) Failure Detection Rate and False Alarm Rate 
Detection Rate [5] represents the percentage of failed drives that are predicted 

correctly as failed. False Alarm Rate is another important metric which 
represents the fraction of good drives that are miss-classified as failed. 

For example, we use the mmdiag command to query various aspects of the 
GPFS internal state for troubleshooting and tuning purposes. This information 
can be very helpful in troubleshooting deadlocks and performance problems. For 
each thread, the thread name, wait time in seconds, and wait reason are typically 
shown. From Figure 6, we can see a high proportion of IO waiting. However, 
the alerts of the long wait are momentary values, which do not represent the real 
situation. But there are some cases which the long waiting time are the indicator 
of the failure of IO node. So how to increase the failure detection rate and reduce 
the false alarm rate is the challenge. 

3) Failure Discovery Lag behind the Application Performance 
Each system has the “cluster master” server which collects syslog data from all 

other nodes in the cluster. In CMA HPCS, there are two management servers 
which run periodic scripts to collect the data for checking the health status. The 
cluster master then forwards the logs to a dedicated monitoring server system, 
which filters the incoming data and analyzes the data and then makes alerts to 
the operations staff using the monitoring website. All the syslog is stored for 
further research. 

Such monitoring method has proved useful for handling most day-to-day is-
sues, as it works very well for alerting on well-characterized issues with 
easy-to-parse error logs. However, it provides little information which cannot be 
easily caught using system logs, especially for the application issues. It is easy to 
check the users’ job descriptions, including the jobs submitted time, started time, 
ended time, input scripts, output and error files. It limits the ability to analyze 
other types of issues, such as the always-challenging question—“Why is my job 
so slow” “Why is the system so slow”. Poor job performance is not noticed until 
it has affected other related jobs. To monitor the system’s latent failure before it 
influences the application is our great challenge. 

4. Solutions and Maintenance Strategies 

There is no such thing as a “best” monitoring tool; rather, the best tool is the one 
that we can use and understand and the one that solves our problems. 

From the Figure 8, it is clear that what to monitor: 
1) Hardware monitoring—the processor, memory, local disk, fan, adapter of 

the computer nodes and the I/O nodes, the disk array and the switches. 

https://doi.org/10.4236/gep.2017.512002


X. X. Chen, J. Sun 
 

 

DOI: 10.4236/gep.2017.512002 37 Journal of Geoscience and Environment Protection 
 

 
Figure 8. Architecture of the CMA HPC maintenance system. 
 

2) Software monitoring—operating system, file system, resource manager (job 
scheduler), cluster management HPC programming tools, application libraries 
and debuggers, keep track on any new packages or versions. 

3) Application—there are NWP and climate models running on the HPC. 
Focus on the jobs, the user experience (when the job was submitted, when the 
job started, how long it sat in the queue, how many jobs are in the queue at any 
one time, which queues have the most jobs waiting, the most popular day of the 
week and time of day jobs are submitted) and workflow execution. 

There is a HPC monitoring system, to check the status of normal computing 
nodes, normal IO nodes, special computing nodes, login nodes, management 
nodes. We also use the HPC resource management system to analyze the re-
source usage to provide better services for users. For example, to exploit a new 
queue for those special jobs under circumstances, to dispatch more compute 
nodes to the queue which is always very busy, to adjust the quota limit for cer-
tain users who behave badly. 

Based on the previous work of maintenance and HPC resource support, we 
argue that a minimum set of maintenance strategies including scheduled inspec-
tion, scheduled preventive maintenance and emergency maintenance (Figure 9). 

1) Scheduled Inspections 
Regular health check by running the scripts and pushing the data to the 

web-based monitoring system with 7 × 24 operators is one of the most effective 
way to guarantee the system’s high performance and reliability. 

Failure Finding Inspections: inspect the equipment on a scheduled basis to 
discover failures. If the equipment is found to be failed, initiate corrective main-
tenance. Fix the errors when it fails. Restart the related service or replace the 
hardware. Almost all hard drive manufacturers have implemented Self-Monitoring, 
Analysis, Reporting Technology (SMART) in their products [6], which monitor 
internal attributes of individual drives and raise an alarm if any attribute exceeds 
a pre-defined threshold. For example, disk storage or local disk usage will raise 
an alarm if the usage exceeds a pre-defined threshold. 
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Figure 9. Maintenance strategy map. 

 
On-Condition Inspections: Inspect the equipment on a scheduled or ongoing 

basis to discover conditions indicating that a failure is about to occur. If the 
equipment is found to be about to fail, initiate preventive maintenance. Isolate 
the nodes with latent fault such as multiple times of mmfs error log or SYSVMM 
may signal the file system is bad or some service is abnormal. So the first action 
is to isolate the node. When a part of an application running on a node that 
seems to respond very slowly or likely to fail, which may lead to failure of the 
whole application, fault tolerant techniques, such as replication and erasure code 
are often used. For example, an error of a computing node may cause the un-
availability of the access of the file system, IO node waiting for itself causes a 
deadlock, which slows down the whole system. 

2) Scheduled Preventive Maintenance 
Failure avoidance is done by taking a preventive action [7]. There is one regu-

lar maintenance before flood season. Through the shutdown action, some re-
placement of the hardware, software update, scripts deployment will be ex-
ecuted. Each time, each step and the amount of time, replay actions will all be 
considered in advance. 

Techniques such as pinging a node or running a small script on a node can 
inform the master whether a node is alive. An alternative way to do this is to 
have the master node to see if a node is alive. If the command runs successfully, 
the node is “alive”. This can also capture slow-running nodes that have some is-
sues and can’t complete the command for a long time. 

3) Emergency Maintenance 
The above two strategies cannot cover all the failures discovery, user expe-

rience and application execution server as a plus. Some latent failure are not le-
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thal if there are no jobs running on the nodes. For example, the adapter of the 
disk array chassis can survive with only one in case of the outage of another one 
in most circumstances. But with some exception both of them go shutdown, 
causing the whole disk array offline. This is a chain failure, making the file sys-
tem unavailable for the operational models to read to delay its run. Take another 
example, hundreds of jobs failed to be submitted through SMS while they were 
submitted successfully through manual way, which never happened before. After 
checking the whole system, we finally found that the local file system of schedu-
ler node had been full. It was the subtle mistake that cause the breakdown of the 
operational application. After that we figured that there had been alarm for the 
threshold of the scheduler node which was set aside. Then we change our moni-
toring policy demanding each operator to check the previous errors occurred 
before his or her duty week. Both technology and management strategies work 
together can improve the performance and reliability of the system. 

4) Maintenance WIKI 
With the rapid development of HPC in CMA, we have built different systems 

to satisfy the increasing demand either in maintenance or in management filed. 
Collect and analyze failure information for improving the monitoring and re-
source management design. Through the record of operator, we have established 
a maintenance wiki, which enables other engineer to search for the possible so-
lutions when error occurs. With the help of the cloud desktop technology, we are 
able to check the system anywhere anytime. Wechat is one of the most popular 
application, which catches and sends the errors to the operator directly, serving 
as a quick and time-saving method. 

5) User Guide and Scheduling Policies 
User habits can make influence on the HPCS. From the top level, we make a 

set of principles to follow, such as how to submit the jobs, how to write the 
command jobs. Adjust the scheduling policies according the resource usage and 
performance.  

As specified on user guide, the jobs’ running time that exceeds their WCR 
limits would be forced to terminate hence yield incomplete results. Some users 
don’t write the WCR limits while some users take the incentive to overestimate 
their jobs’ WCR to prevent unexpected termination.  

As a result, the larger WCR estimates, in principle, increase the job’s queuing 
time as it reduces the chance of fitting in smaller but vacant space [8]. We en-
courage user to choose values of WCR that are more exact, which could reduce 
the efficiency of backfilling for better packing.  

5. Concluding Remarks 

In this paper, we have illustrated the system failures and application failures. The 
main aims were to study the relationship between resource and application, to 
increase the performance of HPC, and to improve the reliability of HPC. 

Combined with the analysis of monitoring system and resource management 
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system, we summarize a set of principle to follow to better predict the failures 
and make an effective user guideline and scheduling policy. 

As a future work we can include the effect of changing the policy. Other direc-
tion is to continue to expand and analyze the failure dataset to discover the la-
tent failures. A third direction is to apply the learning model to the online detec-
tion system to fix the problems before it affects the application. 
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