

Measurement of Gamma Emitting Radionuclides for Assessment, Environmental Hazards of Radiation in Rock and Soil Samples of Shabwah and Hadramout Regions, Yemen

Sherif S. Nafee^{1,2}, Dheya Al-Othmany³, Safia H.Q. Hamidalddin⁴, J.H. Al-Zahrani⁴, W.R. Alharbi⁴, Hanan M. Barashed⁴

¹Physics Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
 ²Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
 ³Nuclear Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
 ⁴Physics Department, Girls Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
 Email: snafee@kau.edu.sa

How to cite this paper: Nafee, S.S., Al-Othmany, D., Hamidalddin, S.H.Q., Al-Zahrani, J.H., Alharbi, W.R. and Barashed, H.M. (2017) Measurement of Gamma Emitting Radionuclides for Assessment, Environmental Hazards of Radiation in Rock and Soil Samples of Shabwah and Hadramout Regions, Yemen. *Journal of Geoscience and Environment Protection*, **5**, 66-75. https://doi.org/10.4236/gep.2017.55005

Received: April 10, 2017 **Accepted:** May 19, 2017 **Published:** May 22, 2017

Copyright © 2017 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

The natural radioactivity of ²²⁶Ra, ²³²Th and ⁴⁰K and the fallout of ¹³⁷Cs in soils and granite rocks of two regions in Yemen (Shabwah and Hadramout) were measured by using gamma-ray spectrometry (HPGe) detector. The average values of the radionuclides ²²⁶Ra, ²³²Th and ⁴⁰K in the soil samples are 14.34, 25.78 and 566.05 Bq/kg respectively. For rock samples, the average activity concentration for ²²⁶Ra, ²³²Th and ⁴⁰K are 45, 106 and 1235 Bq/kg respectively. Low concentration values of ¹³⁷Cs in soil and rock samples under investigation, are not radiologically important. The radium equivalent activity (Raeq) and external hazard index (Hex) of all samples are less than the limits of 370 Bq·kg⁻¹ and unity, respectively. The average values of total absorbed dose rate due to three primordial radionuclides in soil and rock samples are 46.5 nGy/h and 138.36 nGy/h, respectively, where the absorbed average value of the granite is higher than the permitted limit. So, the local people must avoid using these granite samples as the interior decorative materials of dwelling without radioactivity control.

Keywords

Gamma Spectrometry, Annual Effective Dose, External Hazard Index

1. Introduction

The natural radioactivity of soil and rock samples is usually determined from the

²²⁶Ra, ²³²Th and 40 K contents [1]. A significant amount of man-made radionuclides ¹³⁷Cs, may also present in the environment as a result of testing of nuclear weapons in the atmosphere, accidents and the routine discharge of radionuclides from nuclear installations [2]. The specific level radiation in the crust varies from one region to another as the concentrations of these natural radioactive elements vary due to their non-uniform nature in soils and the types of rock from which the soil originates [3]. The knowledge of radiation levels in the environment is an important for assessing the effects of radiation exposure. So, the aim of the present study is to measure the natural radioactivity levels for estimating the radiogecal hazard indices in soils and granite rocks. This work can be used as a baseline guideline for assessing the exposure of the natural radiation in the study region, especially, in this area, the rocks and soils are used as building materials. The studied regions located in southwestern Yemen (Figure 1).

2. Material and Methods

2.1. Samples Collection and Preparation

A total of twenty soil sample at depths (0 - 5, 5 - 50, 50 - 60 and 60 - 70 cm) underground and 6 granite rock samples were collected from different locations in Shabwah and Hadramout regions, Yemen, respectively. The sampling locations were chosen mostly in a wide area that we believe that it's representative of the important region. All soil samples collected from undisturbed sites located away from buildings, trees and roads to ensure that there was no influence of manmade structures and anthropogenic activities. The collected samples (soil and

Figure 1. Location map of studying regions.

granite) were first sundried and then oven dried at 110°C to constant weight. The samples were pulverized, homogenized and sieved through 1-mm mesh [4]. 500 gm of each meshed sample was replaced in Marinelli beaker and then was stored for four weeks to reach the equilibrium state between radium and its decay products [5]. Radioactivity measurements were performed by using High purity Germanium (HPGe) detector (25% relative efficiency). The measurement time of activity or background was 82800 seconds. The radioactivity concentration of ²²⁶Ra was determined from the photopeaks of 295.09, 351.87 Kev (²¹⁴Pb), 609.31 Kev & 1120.27 keV & 1764.49 keV (²¹⁴Bi). ²³²Th radioactivity was determined from 238.58 Kev (²¹²Pb), 727.25 Kev (²¹²Bi) and 911.16 keV & 968.97 Kev (²²⁸Ac) while the ⁴⁰K radioactivity was determined from 1460.8 Kev and finally, ¹³⁷Cs was determined from the decay of ⁴⁰Ar and ¹³⁷Ba [4].

2.2. Calculations

The activity concentrations (Bq/kg) for the natural radionuclides in the measured samples were calculated after decay correction using the equation:

$$\mathbf{A}_{c} = \mathbf{N}\mathbf{c} / \left(m\beta \varepsilon_{abs} \right) \tag{1}$$

where A_c is the activity concentration (Bq/kg) in the sample, Nc is the net area under the corresponding peak/second, m the dry weight sample mass (kg), β the branching ratio, and ε_{abs} is the detection absolute efficiency of a specific energy.

The radium equivalent activity is a very useful guideline in organization the safety standards in radiation protection for humans. The index calculated by the following relation [6].

$$Ra_{eq} = A_{Ra} + (A_{Th} \times 1.43) + (A_{K} \times 0.077)$$
(2)

where A_{Ra} , A_{Th} and A_{K} are the activities of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively, in Bq/kg, The formula is based on the assumption that 370 Bq/kg of ²²⁶Ra, 259 Bq/kg of ²³²Th and 481 Bq/kg of ⁴⁰K produce the same gamma-ray dose rate [7].

The representative level index, I_{γ} is used to estimate gamma radiation associated with the natural radionuclides in soil and calculated by the following equation [1]:

$$I_{\gamma} = \frac{A_{Ra}}{300} + \frac{A_{Th}}{200} + \frac{A_{K}}{3000}$$
(3)

where A_{Ra} , A_{Th} and A_K are the activity concentrations of 226 Ra, 232 Th and 40 K, respectively in Bq/kg.

The external hazard index Hex can be calculated by the following equation [8]:

$$H_{ex} = A_{Ra} / 370 + A_{Th} / 259 + A_{K} / 4810$$
(4)

where A_{Ra} , A_{Th} and A_{K} are the activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively. The maximum value of H_{ex} to be less than unity [8].

The absorbed gamma dose rates D(nGy/h) in air at 1m above the Earth's surface for the uniform distribution of radionuclides were calculated based on guidelines given by [8]:

$$D(nG/h) = 0.427A_{\rm Ra} + 0.623A_{\rm Th} + 0.043A_{\rm K}$$
(5)

where, A_{Ra} , A_{Th} and A_K are the activity concentrations (Bq/kg) of ²²⁶Ra, ²³²Th and ⁴⁰K, respectively.

The annual effective dose rate was calculated from the absorbed dose through the application of dose conversion factor of 0.7 Sv/Gy with occupancy in the outdoor factor 0.2. [8]

$$D_{\rm eff} (mSv/y) = Dr (nG/h) \times 8760 \ h \times 0.7 (SvG/y) \times 0.2 \times 10^{-6}$$
(6)

where 8,760 h is the number of hours in 1 year. 10^{-6} is a conversion factor of nano and Milli.

3. Results and Discussion

3.1. Activity Concentrations

The results of the measured values of activity concentrations for ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs obtained from the samples are presented in **Table 1**. From this table, the average values, concentrations of ²²⁶Ra, ²³²Th, in soil and are less than the world average values [8]. ⁴⁰K activity concentrations are in the range between 510.92 in the sample (S3) to 600.75 Bq/kg in sample (S5) with an average value is

Table 1. Activity concentrations of natural radionuclides (226 Ra, 232 Th and 40 K) and the fallout nuclide 137 Cs (Bq/kg) in soil and granite samples.

Sample type	Sample code	Activity concentrations (Bq/kg)				
		²²⁶ Ra	²³² Th	⁴⁰ K	¹³⁷ Cs	
	S1	15.37	28.29	546.35	0.83	
	S2	14.93	25.90	560.05	0.17	
	\$3	14.38	22.85	510.92	1.56	
	S4	13.90	24.56	595.18	0.01	
Soil	\$5	13.10	24.07	600.75	L.D.L	
	S6	13.97	29.03	583.05	0.25	
	Range	13.10 - 15.37	22.85 - 29.03	510.92 - 600.75	0.01 - 1.56	
	Average	14. 28	25.78	566.05	0.56	
	UNSCEAR 2000	30	35	400		
Granite rock samples	G1	42.25	102.36	1480.26	1.15	
	G2	37.36	83.93	1031.26	0.87	
	G3	53.33	109.22	1058.50	0.75	
	G4	45.17	103.89	1489.20	0.61	
	G5	53.67	128.75	1076.01	0.57	
	G6	38.21	104.71	1272.81	0.04	
	Range	37.36 - 53.67	83.93 - 128.75	1031.26 - 1489.2	0.04 - 1.15	
	Average	45	106	1235	0.67	
	UNSCEAR 2000	50	50	500		

higher than the world average value [8]. Higher concentration values of ⁴⁰K were obtained from the soil of Shabwah region, probably because the use of inorganic fertilizer in some locations and could also be attributed to the wearing away from the weathered surfaces of the potassium rich, igneous rocks which dominate a part of the geology of this region. The artificial radionuclide of ¹³⁷Cs concentrations in the soil samples are within the global atmospheric fallout and lower than the reported data for other countries. For granite samples, ²²⁶Ra, ²³²Th and ⁴⁰K average concentrations are 45, 106, and 1235 Bq/kg respectively. The average values of ²²⁶Ra fall within the worldwide average values. While, ²³²Th and ⁴⁰K average values are twice the worldwide average values (50, 50 and 500 Bg/kg) respectively [8]. The content of ⁴⁰K in granite samples is the highest in all the sampling areas. So, it is the most abundant radionuclide of the total $(^{238}\text{U} + ^{232}\text{Th})$ + ⁴⁰K), it is abundant about 89% followed by ²³²Th 7.7%. And finally ²²⁶Ra is 3.3%. ¹³⁷Cs is detected in all granite samples under investigation. The mean concentration of ¹³⁷Cs is 0.67 Bq/kg. These values are not radiologically important. Table 2 shows the comparison between the activity concentrations of soil samples with that of other countries of the World. The variations in the activity concentrations in the soil of the various locations of the world, depend upon the geological and geographical conditions of the area and the extent of fertilizer applied to the agricultural lands [8]. Table 3, shows that, for granite samples results obtained in the present work are consistent with previous results and all results being within the range given in the report [8]. In general, the radioactivity in granite samples varied from one country to another [8]. Figure 2 shows a comparison between the obtained average values activity concentrations in soil and granite and the recommended values by UNSCEAR2000.

3.2. Radiological Hazard Indices in Soil and Granite Rock Samples

The computed results of the radiological hazard indices were listed in Table 4.

	Average a			
Country	²²⁶ Ra	²³² Th	⁴⁰ K	– References
Yemen	14.28	25.78	566.05	Present study
India	45.68	17.11	1535.44	[9]
Saudi Arabia (Al-Qassim)	9.3	12.3	535	[10]
Nigeria	12.12	60.117	426.51	[11]
Malaysia	57	68	427	[12]
Egypt	16.4	7.1	102	[13]
Turkey	21.0	23.5	363.5	[14]
Jordan	57.7	18.1	138.1	[15]
World average	30	35	400	[8]

Table 2. Comparison of natural radioactivity concentrations (Bq/kg) in the present soil samples with the reported values from different countries of the world.

	Average activity concentration (Bq/kg)			D. C	
Country –	²²⁶ Ra	²³² Th	⁴⁰ K	Kelerences	
Yemen	45	106	1235	Present study	
India	82	112	1908	[16]	
Yemen	54	127	1743	[17]	
Spain	84	42	1138	[18]	
Saudi Arabia	75	71	987	[19]	
Egypt	137	82	1082	[20]	
Greek	74	85	881	[21]	
Turkey	70	83	1234	[22]	
Iran	74	69	1130	[23]	
Italy	112	107	1063	[24]	
Brazil	45	106	1320	[25]	
Japan	43	72	1004	[26]	
World average	50	50	500	UNSCEAR 2000 [8]	

Table 3. Comparison of natural radioactivity concentration (Bq/kg) in the present granite samples with the reported values from different countries of the world.

Figure 2. The activity concentrations of ²²⁶Ra,²³²Th and ⁴⁰K average values in soil and granite samples under investigation and UNSCEAR2000 values.

The values of Ra_{eq} Bq/kg for soil and granite rock samples are lower than the allowed value of 370 Bq/kg [8]. Representative level index (I_y) average value is less than one, this means that the external radiation dose within the soil samples is less than the recommended dose of 1 Bq/kg [8]. The I_y average values for granite rock is higher than 1 Bq/kg. External hazard index (Hex) for soil and granite samples are less than the limit value of unity. As can be seen in **Table 4**. The total absorbed dose rate calculated for Shabowah's soil, it less than the world average value of 57 nGy/h. The presence of ⁴⁰K in Shabwah's soil contributes a maximum of 52% to the total absorbed dose rate, followed by ²³²Th of 35% and ²²⁶Ra of 13%, these contributions were illustrated in **Figure 3**.

Sample type	Sample code	Radiological Hazard					
		Ra _{eq} (Bq/kg)	Hex	I ₇ (Bq/kg)	D (nGy/h)	D (eff) mSv/y	
Soil	S1	97.89	0.26	0.38	47.68	0.032	
	S2	95.09	0.26	0.37	46.59	0.031	
	S3	86.39	0.23	0.33	42.34	0.028	
	S4	94.85	0.26	0.37	46.83	0.031	
	S5	93.76	0.25	0.36	46.42	0.031	
	S6	100.38	0.27	0.39	49.12	0.033	
	Range	86.39 - 100.38	0.23 - 0.27	0.33 - 0.39	42.34 - 49.12	0.028 - 0.033	
	Average	94.73	0.26	0.36	46.50	0.031	
Granite rock	G1	302.61	0.82	1.15	145.47	0.097	
	G2	236.79	0.64	0.89	112.58	0.075	
	G3	291.02	0.79	1.08	136.33	0.091	
	G4	308.40	0.83	1.17	148.05	0.099	
	G5	320.64	0.87	1.18	149.40	0.1	
	G6	285.95	0.77	1.08	136.28	0.091	
	Range	236.79 - 320.64	0.64 - 0.87	0.89 - 1.18	112.58 - 149.40	0.075 - 0.1	
	Average	291.68	0.79	1.08	138.36	0.092	

Table 4. Shows values of radium equivalent (Ra_{eq}) , level index (I_y) and external hazard (H_{ex}) for soil samples (Shabwah) and granite rock samples (Hadramout), Yemen.

Figure 3. Comparison between percentage contributions absorbed dose of ²²⁶Ra, ²³²Th and ⁴⁰K to total absorbed dose of soil and granite rock samples, Yemen.

The average value of annual effective dose equivalent of the study soil less than the world average value effective dose of 0.07 mSv/y [8]. According to these results of radiogecal hazard indices, one can indicate that the soil samples are safe and can be used as a construction material without posing any significant radiological threat to the population. As shown in **Table 4**, the average value of the absorbed dose rate of Hadramout region's granite samples is almost twice the world average value. So, the local people must avoid using these granite

samples in the building construction, especially in the interior decorative materials of dwelling without radioactivity control. The average total effective dose rates (D_{eff}) for granite samples is far lower than the 1.0 mSv/y recommended by [8]. This value is According to these results of radiogecal hazard indices, one can indicate that the soil samples are safe and can be used as a construction material without posing any significant radiological threat to the population. As shown in **Table 4**, the average value of the absorbed dose rate of Hadramout region's granite samples is almost twice the world average value. So, the local people must avoid using these granite samples in the building construction, especially in the interior decorative materials of dwelling without radioactivity control. The average total effective dose rates (D_{eff}) for granite samples is far lower than the 1.0 mSv/y recommended by [8].

4. Conclusion

The natural radioactivity levels of ²²⁶Ra, ²³²Th and ⁴⁰K have been measured in soil and granite rock samples of two regions in Yemen using gamma ray spectroscopy. The mean activity concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in soil are 14.28, 25.78 and 566.05 Bq/kg, respectively, and for the granite rock samples the mean concentrations are 45,106 and 1235 Bq/kg, respectively. These values are compared with published values of other countries. The estimated hazard indices in soil samples are well lower than the recommended limit. Therefore, the present soil can be used as a construction or building materials without posing any radiological effect to the population. In granite rocks, the calculated dose rate was observed twice the world average value of 57 μ Sv/Y, which put the users of the granite rocks and people around the area on radiological hazard. This work has established background guideline on the natural radioactivity levels in the study area, which will provide a future reference for other studies.

References

- NEA-OECD (1979) Exposure to Radiation from Natural Radioactivity in Building Materials. Report by the Group of Experts of the OECD Nuclear Energy Agency (NEA), Paris.
- [2] Kabir, K.A., Islam, S.M.A. and Rahman, M.M. (2009) Distribution of Radionuclides in Surface Soil and Bottom Sediment in the District of Jessore, Bangladesh and Evaluation of Radiation Hazard. *Journal of Bangladesh Academy of Sciences*, 33, 117-130.
- [3] Banerjee, K.S., Guin, R., Gutierrez-Villanueva, J.L., Charro, M.E. and Sengupta, D. (2012) Variation in U-238 and Th-232 Enrichment in U-Mineralized Zone and Geological Controls on Their Spatial Distribution, Singhbhum Shear Zone of India. *Environmental Earth Sciences*, 65, 2103-2110. https://doi.org/10.1007/s12665-011-1191-9
- [4] IAEA (1989) International Atomic Energy Agency. Measurement of Radiation in Food and the Environment. Guidebook. Technical Report Series No. 295, IAEA, Vienna.
- [5] Mollah, S., Rahman, N.M., Kodlus, M.A. and Husain, S.R. (1987) Measurement of High Natural Background Radiation Levels by TLD at Cox and Bazar Coastal Areas

in Bangladesh. Radiation Protection Dosimetry, 18, 39-41.

- [6] Beretka, J. and Mathew, P.J. (1985) Natural Radioactivity of Australian Building Industrial Materials, Industrial Wastes and By-Products. Health Physics, 48, 87-95. https://doi.org/10.1097/00004032-198501000-00007
- [7] Stranden, E. (1976) Some Aspects on Radioactivity of Building Materials. Health Physics, 8, 167-173.
- UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic [8] Radiation Sources, Effects and Risks of Ionizing Radiation. United Nations, New York
- [9] Bala, P., Mehra, R. and Ramola, R.C. (2014) Distribution of Natural Radioactivity in Soil Samples and Radiological Hazards in Building Material of Una, Himachal Pradesh. Journal of Geochemical Exploration, 142, 11-15.
- [10] El-Taher, A. and Alzahrani, J.H. (2015) Radioactivity Measurements and Radiation Dose Assessments in Soil of Al-Qassim Region, Saudi Arabia. Indian Journal of Pure & Applied Physics (IJPAP), 52, 147-154.
- [11] Innocent, A.J., Onimisi, M.Y. and Jonah, S.A. (2013) Evaluation of Naturally Occurring Radionuclide Materials in Soil Samples Collected from Some Mining Sites in Zamfara State, Nigeria. British Journal of Applied Science & Technology, 3, 684-692. https://doi.org/10.9734/BJAST/2013/3244
- [12] Almayahi, B.A., Tajuddin, A.A. and Jaafar, M.S. (2012) Effect of the Natural Radioactivity Concentrations and 226 Ra/238 U Disequilibrium on Cancer Diseases in Penang, Malaysia. Radiation Physics and Chemistry, 81, 1547-1558.
- [13] El-Taher, A. (2011) Terrestrial Gamma Radioactivity Levels and Their Corresponding Extent Exposure of Environmental Samples from Wadi El Assuity Protective Area, Assuit, Upper Egypt. Radiation Protection Dosimetry, 145, 405-410. https://doi.org/10.1093/rpd/ncq425
- [14] Baldık, R., Aytekin, H. and Erer, M. (2011) Radioactivity Measurements and Radiation Dose Assessments Due to Natural Radiation in Karabük (Turkey). Journal of Radioanalytical and Nuclear Chemistry, 289, 297-302. https://doi.org/10.1007/s10967-011-1077-z
- [15] Saleh, H. and Shayeb, M.A. (2014) Natural Radioactivity Distribution of Southern Part of Jordan (Ma'an) Soil. Annals of Nuclear Energy, 65, 184-189.
- [16] Sonkawade, R.G., Kant, K., Muralithar, S., Kumar, R. and Ramola, R.C. (2008) Natural Radioactivity in Common Building Construction and Radiation Shielding Materials. Atmospheric Environment, 42, 2254-2259.
- [17] Abd El-Mageed, I.A., El-Kamel, H.A., Abbady, A., et al. (2011) Assessment of Natural and Anthropogenic Radioactivity Levels in Rocks and Soils in the Environments of Juban Town in Yemen. Radiation Physics and Chemistry, 80, 710-715.
- [18] Guillén, J., Tejado, J.J., Baeza, A., Corbacho, J.A. and Muñoz, J.G. (2014) Assessment of Radiological Hazard of Commercial Granites from Extremadura (Spain). Journal of Environmental Radioactivity, 132, 81-88.
- [19] Aydarous, A.S., Zeghib, S. and Al-Dughmah, M. (2010) Measurements of Natural Radioactivity and the Resulting Radiation Doses from Commercial Granites. Radiation Protection Dosimetry, 142, 363-368. https://doi.org/10.1093/rpd/ncq216
- [20] Amin, R.M. (2012) Gamma Radiation Measurements of Naturally Occurring Radioactive Samples from Commercial Egyptian Granites. Environmental Earth Sciences, 67, 771-775. https://doi.org/10.1007/s12665-012-1538-x
- [21] Papadopoulos, A., Christofides, G., Koroneos, A., Papadopoulou, L., Papastefanou, C. and Stoulos, S. (2013) Natural Radioactivity and Radiation Index of the Major

Platonic Bodies in Greece. Journal of Environmental Radioactivity, 124, 227-238.

- [22] Cetin, E., Altinsoy, N. and Örgün, Y. (2012) Natural Radioactivity Levels of Granites Used in Turkey. *Radiation Protection Dosimetry*, 151, 299-305.
- [23] Asgharizadeh, F., Abbasi, A., Hochaghani, O. and Gooya, E.S. (2011) Natural Radioactivity in Granite Stones Used as Building Materials in Iran. *Radiation Protection Dosimetry*, **149**, 321-326.
- [24] Marocchi, M., Righi, S., Bargossi, G.M. and Gasparotto, G. (2011) Natural Radionuclides Content and Radiological Hazard of Commercial Ornamental Stones: An Integrated Radiometric and Mineralogical-Petrographic Study. *Radiation Measurements*, 46, 538-545.
- [25] Anjos, R.M.D., Ayub, J.J., Cid, A.S., Cardoso, R. and Lacerda, T. (2011) External Gamma-Ray Dose Rate and Radon Concentration in Indoor Environments Covered with Brazilian Granites. *Journal of Environmental Radioactivity*, **102**, 1055-1061.
- [26] Iwaoka, K., Hosoda, M., Tabe, H., Ishikawa, T., Tokonami, S. and Yonehara, H. (2013) Activity Concentration of Natural Radionuclides and Radon and Thoron Exhalation Rates in the Rocks Used as Decorative Wall Coverings in Japan. *Health Physics*, **104**, 41-50.

👯 Scientific Research Publishing

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals) Providing 24-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure Display of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at: http://papersubmission.scirp.org/

Or contact gep@scirp.org