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Abstract 

This paper presents a control strategy for maglev system based on the sliding mode controller with 
auto-tuning law. The designed adaptive controller will replace the conventional sliding mode control (SMC) 
to eliminate the chattering resulting from the SMC. The stability of maglev system is ensured based on the 
Lyapunov theory. Simulation results verify the effectiveness of the proposed method. In addition, the advan-
tages of the proposed controller are indicated in comparison with a traditional sliding mode controller. 
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1. Introduction 

Maglev (Magnetic Levitation) train is a late-model rail-
way vehicle with many good performances such as high 
speed, comfort, low environmental pollution, low energy 
consumption and so on. Lots of countries have started up 
the engineering study of maglev train [1,2]. 

The dynamic response of vehicle/guideway system 
affects the running safety, ride comfort and system costs 
heavily, which are crucial factors for maglev train com-
mercial application [3,4]. Due to open-loop instability 
and inherent nonlinearities associated with a volt-
age-controlled magnetic levitation system, a feedback 
control is necessary to achieve a stable operation. Re-
cently, quite a few control strategies have been devel-
oped and applied widely in the industrial field of maglev 
technology, such as bang-bang control [5], adaptive 
non-smooth control [6], hybrid control [7] and H  

control method [8], etc.  
Sliding mode control is a powerful robust approach for 

controlling the nonlinear dynamic systems [9]. The ad-
vantage of sliding mode control is robustness against 
parameter matched uncertainties and external disturbance 
and so on. In general, vehicle-guide vibration of maglev 
system is easily subjected to external disturbance. Even 
though the approach of sliding mode control is one of 
potential control candidates for maglev system, it has 
some limitations such as discontinuous control law and 

chattering action, which lead to the appearance of input 
chattering, the high-frequency plant dynamics and un-
foreseen instability in real application. In order to allevi-
ate the high-frequency chattering, control researchers 
have proposed many strategies, such as the boundary 
layer technique [10,11] and parameter identification 
mechanism with self-tuning [12,13]. In [14–16], using a 
modified hyperbolic tangent function as the activation 
function, the laws for tuning boundary layer thickness 
and control gain were proposed. 

In this paper, the sliding mode control technique with 
auto-tuning law is applied to a voltage-controlled mag-
netic levitation system. The task of the control system is 
to dynamically regulate control voltage which drives the 
magnet to adjust the magnetic force to maintain a desired 
gap. Firstly, to simplify the mathematical model of 
maglev system, we discuss a 4-D maglev system via al-
ternating physical variables of maglev system. In the 
following, with regard to this maglev system, four error 
variables are chosen to define the switching surface, and 
then a traditional sliding mode controller is designed 
accordingly [17]. In order to eliminate high-frequency 
control and chattering around the sliding surface, an 
auto-tuning neuron is introduced as an adaptive control-
ler to guarantee the convergence of all states for maglev 
system. Simulations results show the control perform-
ance of our proposed method.  
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The paper is organized as follows: In Section 2, we 
give a mathematical model of maglev system, and then 
choose four error variables to determine the sliding sur-
face. In Section 3, we design a general sliding mode con-
troller and a systematic sliding mode controller with 
self-tuning law respectively. Simulation results will be 
given to validate the effectiveness of our proposed con-
troller in Section 4. Conclusions are drawn in Section 5. 

2. Sliding Surface Design of the Maglev  
System 

The maglev system is a complicated system with ma-
chinery, controlling and electromagnetic elements inte-
grated together. Figure 1 shows its working elements. 

According to [3], m denotes the weight of the elec-
tromagnet; and  represents the absolute displacement 
of the electromagnet in the vertical.  is the resistance 
of the electromagnet. 

m
z

R
I  and ( )V t  are current and 

voltage of the electromagnet winding, respectively. The 
control current I  is driven by control voltage ( )V t  to 

maintain the air gap  at its nominal value. Define 

1 2 3
, then dynamical and electro-

magnetic equations of the system are given as 
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where 2
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4
k N S 0 ,   is the magnetic permeability 

in vacuum,  is the number of turns of coil, and  

is the effective pole area of electromagnet. 

N
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Note that this electromagnetic suspension system is 
unstable without control voltage . In closed-loop sys-
tem, gap sensor measures the relative interval between 
electromagnet and guideway while accelerometer meas-
ures the absolute kinetic acceleration of the electromag-
net. Based on feedback signals from sensors, the con-
troller can generate certain control voltage according to 
control algorithm. With the calculated control voltage, 
the electromagnet can produce suitable electromagnetic 
force to keep itself suspending under the guideway 
stably. 

V

In order to simplify the original nonlinear system (1), 
we choose the variable 
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Figure 1. Structure of the maglev system. 
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where  is the derivatives of 

. And the values of the state variables at 

the balance point are 

' * * * *
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, where  

is a nominal value of the air gap . 

0z

z
Moving the equilibrium to the origin, letting 

1 2 3 4[ , , , ]TX x x x x , where *
1 1 0x x z  , *

2 2x x , 
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where  
' * * * *
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The system output is 1[1,0,0,0]Y X  . For conven-

ience, denote
2
3
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T , 

*
3x  represents electromotive force of the electromagnet 

winding which has actual physical meanings. Then the 
model (1) can be transformed as following: 

Even now, a control scheme is presented to stabilize 
the states of maglev system. Our control objective is to 
stabilize all states of (3) to zero, that is to design control 
input to maintain the air gap  at its nominal value. z

Similar to linear system, the sliding mode control of 
nonlinear system consists two relatively independent 
parts: firstly confirm that the motion on the sliding sur-
face is globally stable, and then design a sliding control-
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ler which causes the trajectories of the system to reach 
the sliding surface in finite time. 

Denote the error variables as 
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Then a switching surface is defined as 1 1 2 2 3 3 4s ce c e c e e   

3 2
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where  are selected to be positive constant 

numbers such that the polynomial  

is Hurwitz. The error dynamics in sliding mode are thus 
asymptotically stable. 

1 2 3, ,c c c
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The second step is to design a sliding controller such 
that the sliding surface approaches 0. And the control 
input  can be formulated as U
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where   is a positive constant. 

Theorem 1. Under the control (5), all states of (4) will 
asymptotically converge to zero. 

Proof. Select a Lyapunov function candidate: 
2

2
sV  . Differentiating V  and substituting (4)-(5) 

yield, 

1 1 2 2 3 3 4

1 1 1
1 2 2 1 3 4 4 2

3 3 3

[ ]

1
[ ( ) ( )]

2

( ) 0

V ss s c e c e c e e

f f fd
s c x c f c x x f U

f dt f f k

s sign s s 

    
  

     
  

     

     

 

(6) 
For the controller (5), inequality (6) implies that the 

system can reach the surface, , in finite time. 0s    

represents the amplitude of related to the sign-function, 
which has a relationship to the velocity of reaching the 
sliding surface. Since  are selected to be posi-

tive constant numbers such that the polynomial 
 is Hurwitz,  and  will all 

converge to zero from any initial conditions. On the ideal 
sliding mode , that is ,  

will converge to zero too. 
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 and  are stabilized. In practical 

application, the current 
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then *
3 3( mgx x k  )  should be larger than in Equa-

tion (3). It follows that 3x  has to converge to zero from 

the stability of 
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4x  will converge to zero if  is stabilized. Therefore, 

under the controller (5), the state variables of system (3) 
will all converge to the equilibrium point.  

4e

3. Adaptive Sliding Mode Controller Design 
 
In order to eliminate the chattering typically found in con-
ventional sliding mode control, we utilize the boundary 
layer technique [14,15,18]. If the control gain constant and 
the width of the boundary layer are fixed numbers, there is 
no guarantee for fast convergence. So we introduce an 
auto-tuning neuron to be the direct adaptive neural con-
troller. The structure of an auto-tuning neuron can be 
mathematically expressed as [14,15,18]: E   , 

where E represents the external input of neuron;   de-

notes threshold of bias, and   is the internal state of 
neuron. 

The auto-tuning sliding mode control law for system 
(3) is 
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where ( )   is a modified hyperbolic tangent function,  
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where  is the saturated level; and  is the slope value. 
Obviously, the shape of the nonlinear saturated function 
is governed by the values of both  and b . Figure 2 
gives the plot of (8), where two adjustable parameters  
and influence mainly the output range and the curve 
shape of the activation function. A larger  corresponds 
to a narrower boundary layer. Let 
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trol objective. The auto-tuning law is designed as 
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where ,   and   are positive constants used to ad- 
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Figure 2. Modified activation function for different a and b. 
 
just the convergence speed, and sign 1x

U
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the direction of the search for  . The accurate value of  
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U
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 is not important since the maglev system output  

monotonically increases as the control input to the con-
trolled plant increases, that is system (3) is said to be 
positive responded [18]. Then the system direction is 
written as 1. Fortunately, there are many industrial proc-
ess control systems that possess the property of posi-
tive-responded or negative-responded. 

Theorem 2. Under the control (7) and (8), all states of 
the system (3) with the adaptation law (9) will aymtocally 
converge to 0. 

Proof. Consider the Lyapunov function candidate: 
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 represents system output error contributed 

by the control input [18]. 
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 while , according to the 

Lyapunov stability theory,  will decrease to zero, so 
, and 

0V 

V
) 01 0e  ( 2,3, 4ie i   . Therefore, similarly to 

the last paragraph in the proof of Theorem 1, the states of 
system (3) will all converge to zero.  

 
4. Simulation and Results 
 
In this section, we give the numerical simulation results 
of maglev system. The parameters and initial conditions 
used in the maglev system are given by 0 0.010z m ,

500m kg , 4.4R   , 0.002k  , . 

The parameters and initial conditions of the controller for 

(0) ,0)Tx  (0.00458,0,1

simulation are 2 22.25,c   , , 0.1,     0 .1,   

(0) ( 0.1,0.2,0)T   , and time interval is  0.0001,t 
As we know, the learning rate , ,    play an im-

portant role in parameter learning process. For in-
stance, a larger learning rate can accelerate the system 
response, but may also cause the system to have a lar-
ger overshoot. In the design of switching surface, 

1 1 2 2 3 3 4s c e c e c e e   

1 2 3, ,c c c

1 21.75,c

, pole placement methodology 

[19] is often adopted to place the roots of the characteris-
tic polynomial in desired region of the complex plane. 
That is, the control system denoted by the characteristic 
polynomial should have suitable damp, fast system re-
sponse, short settling time and small overshoot. There-
fore,  are often chosen such that the three order 

polynomial has a pair of conjugate complex roots with 
negative real parts and a negative real root. When 

 2 22.25,c  3c 8 , the roots of the character-

istic polynomial are 2.5 1i   and -3. 
Our control object is to design the control input to 

regulate the air gap to the desired value. Figure 3(a) and 
(b) represent the performance of state 1x  and the con-

trol input  by using the traditional sliding mode con-U
0       
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trol, and it can be seen that the chattering around 1 0x   

have occurred. The control input is regulated with 
high-frequency, which is not expected in industrial field. 
Figure 4(a) and (b) show the results by using our pro-
posed method. Here, we choose 1 12,c  2 14,c  3 6c  . 

The state 1x  is asymptotically controlled to 0 and the 

control input  is modulated. In Figure 4(a), the regu-
lation time of state 

U

1x  is about 6 second and the over-

shoot is near to 0.6 mm. In Figure 4(b), the overshoot of 
control input is reduced to 2. These verify that better co 
ntrol performance of maglev system can be achieved by 
the proposed auto-tuning controller. 
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Figure3. (a-b) represent the control performance using the 
general sliding mode control. 
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Figure 4. (a-b) show the results using the auto-tuning sliding 
mode control with control parameters 1 12,c  2 14,c  3 6c  . 
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Figure 5. (a-b) show the results using the auto-tuning slid-
ing mode control with control parameters 1 4,c  2 6,c  3 4c  . 
 

In Figure 4, the regulation time and overshoot is not 
satisfying, so here some new parameters 1 4,c   

2 6,c  3 4c   by the proposed auto-tuning sliding mode 

control are chosen to accelerate system response and 
decrease the overshoot. In Figure 5(a), the convergence 
time of state 1x  slows to 3 second and the overshoot 

1x  falls to 0. In Figure 5(b), the overshoot of control 

input is reduced to 0. It accords with the theoretical 
analysis. Based on the demand of practical application, 
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we can regulate these parameters to get a better per-
formance. 
 
5. Conclusions 
 
In this paper, we discuss the problem of vibration control 
of maglev problem via a sliding mode control approach. 
In order to eliminate the high control activity and chat-
tering caused by the general sliding mode control, we 
present an auto-tuning law based on the Lyapunov stabil-
ity theory to guarantee the convergence of the system 
states. Simulation results verify the proposed auto-tuning 
controller is better than the traditional sliding mode con- 
troller. 

It should be pointed out that only three control pa-
rameters are chosen to achieve good performance for 
maglev system in this paper, but other factors also can be 
applied to sliding mode control in practice. Next plan is 
to combine with more state variables with elastic guide-
way conditions. The expected results should improve the 
suspension performance of flexible guideway with pro-
posed control algorithms. 
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