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ABSTRACT 

Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Re-
laxation framework is partitioned into two stages: one is to obtain feasible SCUC states; the other is to solve the eco-
nomic dispatch of generation power among all the generating units. The core of the two stages is how to determine the 
feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of 
obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each 
scheduling time. However, a necessary and sufficient numerical condition is proposed and proven rigorously based on 
Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition. 
 
Keywords: Security Constrained Unit Commitment (SCUC); Lagrangian Relaxation; Benders Decomposition  

Feasibility Theorem; Ramp Rate Constraint 

1. Introduction 

Security-constrained Unit commitment (SCUC) is one of 
the most important daily functions for independent sys-
tem operators (ISOs) to clear the electric power market 
and for generation companies (GENCOs) to analyze ge- 
neration costs and determine bidding strategies [1-3]. 
The objective of SCUC is to minimize the total bid cost 
in current electric power market or generating cost in 
traditional power systems while satisfying the system 
constraints including system demand balance, system 
spinning reserve and related transmission security con-
straints, and individual unit operating limits such as 
minimum/maximum generation level, minimum up/down 
times, ramping rate constraints.  

Since the SCUC is an NP-hard mixed integer-pro- 
gramming problem, it is extremely difficult to obtain the 
exact optimal solution within acceptable time [4]. La-
grangian Relaxation (LR) is one of the most successful 
methods for obtaining suboptimal solutions [5], where 
Lagrange multipliers relax the system-wide constraints 
such as system demand balance, system spinning reserve 
and DC transmission constraints. Some methods, usually  
heuristics are needed to modify the dual solution into a 
feasible one. In fact, the Lagrangian based SCUC methods 

are all similar but the ways to obtain feasible solutions 
may vary significantly.  

It is clear that the core to develop an effective method 
for solving SCUC problems within the Lagrangian re-
laxation framework is how to obtain feasible solutions. 
First of all, a necessary or sufficient condition used for 
checking promptly on the feasibility of SCUC states is 
crucial. Our previous work [6] proposed such conditions. 
However, a necessary and sufficient condition for deter-
mining the feasibility of SCUC states at each scheduling 
time is not given. Furthermore, ramp rate constraints are 
not taken into consideration in those results.  

A necessary and sufficient condition for determining 
the feasibility of SCUC states at each scheduling time is 
proposed and proven rigorously in this paper based on 
the Benders Decomposition Feasibility Theorem [7,8]. 
The condition is very crucial for constructing a feasible 
solution of a SCUC problem. Numerical test example 
shows that the presented condition is very efficient. 

2. Problem Formulation of SCUC Problems  

For the convenience of presentation, some notations are 
defined as follows. 

T : commitment horizon in hours; 
*The research presented in this paper is supported by the Natural Sci-
ence Foundation of the Education Department of Shaanxi Province 
(11JK0498).  

I : number of units with the index  denoting the 
 unit; 

i
thi
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 iP t
 u t thi

t
 

  : power generation by unit i at time t; 

i : binary variable: 1 if the  unit is turned on or 
kept on during the time period , else 0; 

ix t i
 x t

: the number of time periods that Unit  has 
been up ( )or down (1i  x t 1 i ); 

i : the minimum number of time periods for which the 
unit  must be up; i

i : the minimum number of time periods for which 
the unit  must be down; 

τ
i
  C P ti i : fuel cost of producing power  iP t

i
    ,i iS x t u t i

 D t
t

 P t
t

 for 
thermal unit ; 

i

: total demand of the whole power system during 
time period ; 

: startup/shutdown cost for unit ; 

r : the spinning reserve requirement during time 
period ; 

 ir t  :   ,r P P t
t

minr t i i i i  is the spinning re-
serve requirement during time period , ir is the maxi-
mum spinning reserve requirement; 

it : the maximum generation of unit  at scheduling 
time , if unit  has no raping limit, 

P i
t i itP P i ; 

it : the minimum generation of unit  at scheduling 
time , if unit  has no raping limit, 

P i
t i it iP P



  , 1iu t
      

   i iu t D t

 D t k

   i i ru t P t

; 

i

The objective of the unit commitment problem is to 
minimize the total operating cost as the following mixed 
integer-programming problem:  

: the maximum ramp rate;  

      
1 1

min
T I

i i i i i
t i

C P t u t S x t
 
 , (1) 

subject to 

2.1. System Level Constraints 

1) System demand constraint 

 
1

I

i

P t

 ,           (2) 

where is the demand at bus ;  k

2) Spinning reserve constraint: 

 
1

I

i

r t

 ,             (3) 

where     , ir P P tminr t i i i  is the maximum spin-
ning reserve requirement. 

3) Transmission security constraints: 

     ,
1 1

                          1, , ,

I K

l l l i i
i k

, ,l k k lF F t P t

l L
 

     


 



D t F    (4) 

2.2. Individual Unit Constraints 

4) The minimum up/down time constraint: 

   , if 1i i ix t u t   1, 0iu t  ,          (5) 

  , if 1 0, 1i i iix t u t u t   

 

,          (6) 

5) The relation between the unit state and unit up/ 
down decision 

       
     

1 1 ,if 1 1 1

,if 1 1

i i i i

i

i i i

x t u t x t u t
x t

u t x t u t

       
   

 (7) 

6) Generation constraint 

   
   

, if 0,

0, if 0.

it i it i

i i

P P t P x t

P t x t

   


 
         (8) 

7) Ramp rate constraints: if  
   1 1 and 1i ix t x t    then  

   1i i iP t P t    ,             (9) 

8) Minimal power generation constraint at the first/last 
up hour:  

      
   

, , 0,
if 1 1

ii i i i

i i

P t P r x t P t
u t u t

 
  

 
 

, , , 0
min ,

y Y z Z g y z

     (10) 

3. The New Necessary and Sufficient  
Condition for Checking the Feasibility of 
SCUC States 

A mixed-integer programming problem can be repre-
sented as 

f y z
  

nY R

,            (11) 

where  is assumed to be a nonempty convex set 
and g  is concave on Y for each fixed , mz Z R  y  
and  are continuous and discrete variables, respec-
tively.  

z

z Z
0y Y

Definition: A vector 0  is called to be quasi- 
feasible if there exists a vector  such that 
 , 0g y z 

Y

0 0

Benders Decomposition Feasibility Theorem [7,8]: 
For problem (11),  and 

. 

Z  are nonempty and  is 
convex, the vector function 

Y
 ,g y z

z Z
 is concave vector 

function for each  . Furthermore, the set 

   | , for somem
zW w R G y z w y Y   

z Z

  (12) 

is closed for each  . Then 0  is quasi- 
feasible if and only if the following inequalities are satis- 
fied for 

z Z V 

   

   0sup , 0T

y Y
c g y z 


,         (13)  

1

| 0, 1
m

i
i

  


where 

     
 

 ,                (14) 

   : , 0, for someV z G y z y Y   ,        (15) 
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Note 1: The result still h for all olds 0 
Note 2: A SCUC problem can be written as the form 

of

. 

 Equation (11), where 

 1
, , , ,

ni iy y y Y P P P P 
1 1 n ni t i t i t i t    

   
 scartes product 24 0,1

1 0,1  

 ,            (17) 

and n  is the number of generating 
time t , i  are the indices of generating units, 

      , (16) 

De

0,Z


units at scheduling 

k itP  and 

itP  a  the minimal and maximal power generation of unit 
i  lev l, pectively.  ,

re
e res g y z  is a 2 3-dime onalL   

ctor function, of which the first and second dimensions 
orresponds to the syste and co  

constraint can be represented as two inequalities), the 
third relates to the spinning reserve constraint, and the 
rest dimensions correspond to 2L  transmission security 
constraints.  ,

nsi
ve
c nt (since suchm dem nstrai

f y z  is the total cost including the fuel 
cost of all generating units at e t  and their startup 
cost.  

Since for SCUC state vector z Z  at each schedul-
ing tim

tim

e t  the neration of units not being 
st the se

 power ge
arted up need not be optimized, t Y is determined 

by z  and is a convex cube of nR . For the given SCUC 
state vector z Z ,  ,g y z  is the cont uous concave 
vect  function over the closed c vex set Y , and hence 

in
onor

zW  is closed ach scheduling time t , the 
SCUC problem is a mixed-integer programming of the 

 (11), which satisfies the conditions of the above 
Benders Decomposition Feasibility Theorem.  

To obtain the desired result, the units are classified 
into three categories at time t: E  is the set

. Th

form

 of units 
w

 ho
E

, E

erefore, at e

1t

hich is on the normal generating state; 2tE  is the set 
of units at the first/last generating ur; 3tE  is the set of 
units with ramp rate constraints. The set 3t  is further 
classified into four types, named as 0

3tE 1
3t , 2

3tE  and 
3
3tE  respectively, as follows: 

      
 
 
 

0
3 3| , 1, 1 st t 1t t i iE i i E x t x t i    

1
3 3

2
3 3

3
3 3

, fir las

| ,

| ,

| ,

t t it i i

itt t i i

itt t i i it

E i i E P P r

E i i E P r P

E i i E P P r P

 

   

   

    

 

Using the Benders Decomposition Feasibility Theorem, 
we obtain the desired necessary and sufficient condition 
fo

value of the following 
no

r SCUC states to be feasible. 
Theorem: SCUC states at scheduling time t  is quasi- 

feasible if and only if the optimal 
nlinear program is nonnegative:  

 min c





,                (18) 

where  

  

 

 

 

 

1

1

0
1 3 3

1
3

1
3

2
3 3

2
3 3

3
, 0

3
,0

,

3
, 0

3
, 0

3 3
,

3 3
,

  

 

 

 

t i

t i t

t i t

t i

t i

t i

t i

ii
i E

i i i i
i E

ii i i
i E i E

iti i
i E

i it i
i E

iti i
i E

i it i
i E

c P r

P r

P P

P r

P r

P P

P P



 

 





 

 

  

  

 

 

 

  

  

 

  

  

 

 

 

 

 

    

 

 

   

    

    

 i



 









 

 

 

     

   

 

3
3

3
3 3

3
3 3

2

3
, 0

3
,0

3 3
,

1 2 3

3 3
1 1

3 3
1

 

 

t i

t i

t i

t

iti i
i E

i i i i
i E

i it i
i E

ii r
i E

L K

L l l lk k
l k

L

l L l l
l

P r

P r

P P

P D t P t

D t

F



 

 

 

  

  

   

 

 

 

  

 



  
 

  


 

    

    

   

  

 









 



 

and 

 

1 2
1 2 3

1 2
3 3

1 2 2 1

1

, ,
, , 1, ,

t t t

l lt L l lt
L

i t t lt lt li
l

l L
     
   

    
  



  
  

    
  

Proof: The left hand side of the Benders ecomposi-
tion Feasibility Theorem is  

 D

       

     

   

   

2 3

1 3

1 2

3

2 1

1

1

m

                                   

t t

t t

t t

t

i E i E

t i i r
i E i E

L

ilt lt li i li
l i E i E

K

li i lk k
i E k

1

1 2ax
t

it t i i
i E

P t P P t D t 


r t r t P t

P t P

P t D t



 

 

 

  

 

        
  

 
   

 
      
 

   

 

  



 


  

    
      

1 2

1

, , min ,

max ,
t i it i i i iit

L

lt lt l
l

i i i
i E P P t P r t r P P t

F

f P t r t C

 


    





  


 









(19) 

where  
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2

2

1 2

2 1

1 2

1

t

t

it t
i E

ilt lt li
l i E

L

lt lt l
l

C P

F

 

 

 



 



 
   

 

  

 



 



1 1

t r

L K

lk k
k

D t P t

P D t







 
  

 
  

The solution of problem (19) depends on the following 
subproblems since the problem (19) is decomposable 
with respect to units:  

i) S blem 1: 1ti E , we have ubpro

        
   

   

    
 

    
   

, min ,

3

* *

* *
3

max

                                      

, if 0,

, if 0

,

, if , ,

i i i i i ii
i i

P P t P r t r t P P t

i i

i i i i

i i i i i

i i i i i

i i i i i

f P t

P t

P r P t

P r

P t P r r t r

P P t P

  

   

  

   

 

  

     

  


 

* *

3 3

,

,

,

0

i

t i

i i i i

r t

r t

P r t r

r t

 



 



ii) Su  2: 0
3ti E , we have 

 

bproblem

      
    

      
   

   

3
in ,

, if , 0

i
i i i

r

i ii i iP P t P r t  

 3: 1
3ti E , we have 

, min ,

, m

max ,

max

it i i i it iit
i i i

P P t P r t r P P t

P P t P r t

f P t r t

P t r t 

   

  
   

* *

it i i it iit P P t

iii) Subproblem

      
    

      
   

   
   

, min ,

, min ,

3

3

max ,

max

,if 0,

, if 0,

it i i i it iit

it i i i it iit

i i
P P t P r t r P P t

i i
P P t P r t r P P t

iti i i i

i it i i i

f P t

P t

P r P t

P r P t

  

  

   

   

   
 

3

* *

* *

,

,

i

i

it i i

it i i

r t

r t

P r t r

P r t r

  

 

 

 

iv) Su m 4: 2
3ti E , we have bproble

      
    

      
   

 
    

 
    

in ,

3
, min ,

3 3

* *

3 3

* *

,

max

,if ,

 ,

,

 ,

it i i i it iit

it i i i it iit

i
r P P

i i i
P P t P r t r P P t

it iti i i

it

i it i it i

i it i i it

r t
, m
max i i

P P t P r t t
f P t

, if

iti i i

P t r t

P P P

P t P r t P P

P

P t P r t P P

 

   



   
 

   

   


   

 

v) blem 5: 3
3ti E , we have 

P P   
 

  

  

 Subpro

      
   

      
   

    
 
    

 
 

, min ,

3
, min ,

* *
3

3 3

* *

3 3

* *

max ,

max

,if 0, ,

, if ,

  ,

, if ,

  ,

it i i i it iit

it i i i it iit

i i i
P P t P r t r P P t

i i i
P P t P r t r P P t

it iti i i i i i

i

i i i i i

i it i it i

i it i

f P t r t

P t r t

P r P t P r t r

r

P t P r r t r

P P P

P t P r

 

  

   

   

   
 



0i i ii
P r   

  

   

  

  

   

i itt P P









  

 

By Benders Decomposition Feasibility Theorem, we 
have the desired result. Q.E.D. 

Note 3: The all subproblems above are linear pro-
gramming problems with simple constraints. Thus, by 
comparing the values of all extreme points, the optimal 
solutions and corresponding optimal values can be ob-
ta

Note 4: It should be noted that the theorem still hold 
for 0




ined easily.  

  . 

4. The Numerical Solution of the Problem

Consider the SCUC problem at scheduling time t  with 
0 being the objective 

 0

max 0,

, 0,

,

g y z

y Y


 
 

               (20) 

where y , Y and 

 

Z  are defined in Equations (16)-(17). 
The dual problem of the problem (20) is  

 
0

min c





,               (21) 

By the theorem and the note 4, 0z  is quasi-feasible if 
and only if and only if the optimal value of  c   is 
nonnegative over the positive orthant 0  . While the 
problem (21) can be solved by using subgradient method 
[9], and the value  c   can be obtained by Equation 
(19) for the given Lagrange multiplier vector  , the 
Lagrange multiplier can then be updated by subgradient 
meth inod. S ce the best multiplier vector in the dual itera-

lier tion of the SCUC problem is taken as the initial multip

0 , the rate of convergence of   is quite promptly. 

5. Numerical Testing Result 

The standard IEEE example [5] tests the effectiveness 
and efficiency of the proposed me
has 16 units, 43 transmission lines,
is load bus). The fuel cost function of unit i  is 

thod (Figure 1), which 
 31 buses (of which 11 

Copyright © 2012 SciRes.                                                                                  EPE 



S. G. GUO 

Copyright © 2012 SciRes.                                                                                  EPE 

436 

      2
i i i i i iC P t a P t b P t   Table 1. Generation level and its coefficient of fuel cost 

function of each unit. 
The data of units, the system reserve requirement  rP t , 

 scheduling time t , the the system demand  D t  at each
m  aximal value of DC power flow lF on each transmis-
sion line l  and the amount of electric power on each 
load bus are given in Tables 1-5, respectively. Units 1 
and 4 have minimal power generation constraint at the 
first/last up hour.  
The CPU-time is within 2.3 second for checking SCUC 
states for 24 scheduling period on a DELL Computer 
with 2G RAM using MATLAB 7.01. Table 6 gives a 
feasible SCUC obtained within Lagrangian framework. 
Figure 2 presented the tendency of   kc   with  k  

8t  . Testing example shows that the numat erical 
SCUC is ef-

T istence 
of ramp rate constraints and transmission  con-
straints increases the difficulty of obtaining an analytical 
co

ng o
d

method for determining the feasibility of a 
fective and efficient. 

6. Conclusions 

The key of solving SCUC problems is to determine 
whether a SCUC is quasi-feasible or not. he ex

 security

ndition. However, a numerical necessary and sufficient 
condition for checki n the feasibility of SCUC states 
at each scheduling time is propose  and proved rigo- 
rously based on Benders Decomposition Feasibility 

Unit i iP  

(MW)
iP  

(MW)
ir  

(MW) 

ai 
(k$/MW2) 

bi 
(k$/MW)

1 300 1350 1000 0.0015 8.752 

2 360 1620 1200 0.0016 7.654 

3 360 1620 1200 0.0016 7.654 

4 360 1620 1200 0.0016 7.654 

5 300 1875 1500 0.0013 6.052 

6 300 1875 1500 0.0013 6.052 

7 240 1080 800 0.0015 9.072 

8 150 675 500 0.0015 8.752 

9 100 625 500 0.0015 8.752 

10 45 202.5 150 0.0019 12.54 

11 90 405 300 0.0018 11.62 

12 120 750 600 0.0017 9.543 

13 150 937.5 750 0.0015 8.352 

14 52 235.7 175 0.0019 13.00 

15 60 270 200 0.0018 14.62 

16 120 750 600 0.0017 9.543 

 

16

 

Figure 1. The one-line diagram for the 31-bus test system. 
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Table 2. Length of up/down time, initial states and coeffi-
cient of startup cost function of each unit. 

Unit 

Table 4. Limits of DC power flow lF  on each transmission 

line. 

Line: i > j
Capacity

(MW) 
Reactance 

(p.u.) 
Line: 
i > j 

Capacity
(MW) 

Reactance
(p.u.) 

  0iP ii i  i    h
i  S c

iS  c
i0ix 

1 5 6 5 500 - 2120.8 2597.6 12

1 - 2 1000 0.025 16 - 18 1200 0.01 
2 5 6 5 370 - 1572.9 1912.4 12

3 5 6 5 400 - 2277.5 2765.8 12

4 5 6 5 400 200 2350.7 2862.3 12

5 5 6 5 350 180 2227.5 2715.8 12

6 5 6 5 350 180 2077.5 2565.8 12

7 5 6 5 300 200 2403.9 2938.7 12

8 3 4 3 200 - 1416.0 1734.6 8 

9 3 4 3 150 200 1295.9 1570.3 8 

10 1 1 −1 0 - 36.3 38.6 2 

11 1 1 −1 0 - 27.8 33.6 2 

12 3 4 −4 0 - 1370.9 1645.3 8 

13 3 4 −4 0 - 1624.6 2019.9 8 

29.3 2 

3 4 −4 0 - 1198. 1477 8 

1 - 12 1000 0.008 16 - 19 800 0.01 

2 - 13 1000 0.054 17 - 21 1200 0.015 

3 - 14 2000 0.01 18 - 25 2500 0.0005 

3 - 15 2000 0.01 
19 - 26 
(Double 

lines) 
250 0.045 

4 - 6 1500 0.01 19 - 31 200 0.04 

5 - 6 1500 0.01 20 - 24 1000 0.03 

6 - 7 1200 0.015 20 - 28 1000 0.025 

6 - 18 
(Double 

lines) 
1200 0.046 20 - 30 1000 0.05 

7 - 16 1200 0.025 21 - 26 900 0.01 

7 - 17 1200 0.015 22 - 26 1250 0.01 

 23 - 27 1250 0.01 

3 1000 0.  2 1000 0.01

1 1000 0.0035 
 

ou
lines) 

045 

12 - 20 
(D 1000 0.05 800 0.01 

13 - 1000 26 -

13 - 1000 28 -

14 -  

15 -  

14 1 1 −1 0 - 45.8 51.6 2 

15 1 1 −1 0 - 24.6 

16  5 .6

 
Table 3. System load and system reserve requirement for 24 
sch lin ou  

Hour

edu g h rs.

 t 
 D t  

(M ) W

 rP
Hour

t  

(MW) 
 t 

D t

W

 

(M ) 

 r

W

P t  

(M ) 

1 2502 250.2 13 7995 799.5 

2 2441 244.

3 2197 219.7 15 6591 659.1 

4 2075 207.5 16 6225 622.5 

5 2502 250.2 17 6652 665.2 

6 3418 341. 2 

80 19 

85 20 

95 21 88 18.

 7  76 22 28 02.

 8  05 23 

12 8300 830 24 2807 280.7 

1 14 7201 720.1 

8 18 7812 781.

7 4809 4 .9 8056 805.6 

8 5859 5 .9 7079 707.9 

9 6957 6 .7 51  5 8 

10 690 9 40  4 8 

11 056 8 .6 3174 317.4 

8 - 22 1000 0.01

9 - 2 01 24 - 5 2 

0 - 14 
25 -
(D

31 
ble 250 0.

11 - 15 1000 0.0035 26 - 27 1200 0.025 

ouble 
lines) 

4 26 - 29 

 18 0.03  31 600 0.0333 

 20 0.01  30 1000 0.025 

 18 1780 0.00815 30 - 31 700 0.022 

 18 1780 0.00815    

 
le 5. nt o  lo aw ad 

us Per us Pe

Tab Perce f system ad dr n by lo bus. 

B cent B rcent 

1 0.024 7 0.265 

2 0.024 8 0.062 

3 0.361 9 0.024 

4 0.0 0.

0  

36 10 048 

5 0.012 11 0.12 

6 0. 24  
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Table 6. A Feasible SCUC obtaine within Lagrangian re-
laxati

d 
on framework. 

Units 
The Unit States (0 Denotes Downstate, 1 upstate) 

r -- --Hou  1 ------------ ---s----- -----------Hour 24 
1 1 0 0 0  1 1 1  1 1 1 0  0 0 0 1  1 1 1  1 1 1 1 0 0 

2 

3 

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 0 0 0  1 1  1  1 1 

 1 1 1  1 1  1  1 1 

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 1 1 1  1 1  1  1 1 

 1 1 1 1 1 1  1  1 0

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

 0 0 0 0 0  0  0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 0 1 1 1  1  0 0 

 0 0 0 0 0 0  0  0 0 

 0 0 0  0 0  0  0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 0 0 1 1  1 1 1 1 1 1 1 1 1 1 1 

4 1  1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 

6 1  1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 

7 

8 

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

 1 1 1  1 1 1 1 1 1 1 1 1  0 0 

10 0  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0  0 0 0  1 1 1 1 1 1 1 1 1 0 0 

13 

14 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

0  0 0 0  0 0 0 0 0 0 0 0 0 0 0 

15 0  0 0 0 0  0 0 0 0 0 0 0 0 0 0 0 
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first dual iteration of the SCUC problem. The SCUC at t = 8 
is feasible. 
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tive and efficient. 
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