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Abstract 
In this paper, we discuss the mixture model of two extreme lower bound dis-
tributions. First, some properties we obtain of the model with hazard function 
are discussed. In addition, the estimates of the unknown parameters via the 
EM algorithm are obtained. The performance of the findings in the paper is 
showed by demonstrating some numerical illustrations through Monte Carlo 
simulation. 
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1. Introduction 

Recently, the extreme value distribution is becoming increasingly important in 
engineering statistics as a suitable model to represent phenomena with usually 
large maximum observations. In engineering circles, this distribution is often 
called the extreme lower bound model. It is one of the pioneers of extreme value 
statistics. The extreme lower bound distribution is one of the probability 
distributions used to model extreme events. The generalization of the standard 
extreme lower bound distribution has been introduced by Nadarajah and Kotz 
[1] and Abd-Elfattah [2]. There are over fifty applications ranging from 
accelerated life testing through to earthquakes, floods, rain fall, queues in 
supermarkets, sea currents, wind speeds and track race records, see Kotz and 
Nadarajah [3]. Mixture models play an important role in many practical 
applications. For example, direct applications of finite mixture models are in 
fisheries research, economics, medicine, psychology, palaeoanthropology, 
botany, agriculture, zoology, life testing and reliability. Direct applications 
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include outliers, Gaussian sums, cluster analysis, latent structure models, 
modeling prior densities, empirical Bayes method and nonparametric density 
estimation. In many applications, the available data can be considered as data 
coming from a mixture population of two or more distributions. This data 
enables us to mix statistical distributions to get a new distribution which has the 
properties of its components. For an excellent survey of estimation techniques, 
discussion and applications, mixture distribution have been considered 
extensively by many authors, see Titterington [4], Maclachlan and Basford [5], 
Lindsay [6], Maclachlan and Krishnan [7] and Maclachlan and Peel [8]. 
Recently, there are many authors [4] [9] [10] who discuss the mixture models, 
Mohie El-Din et al. [11] [12] [13]. In this paper, we discuss some important 
measures of two extreme lower bound distributions. Also, we estimate the vector 
of unknown parameters of a mixture model via the EM algorithm proposed by 
Dempster et al. [9]. Further, we carry out some simulated illustrations using 
Monte Carlo method. 

2. Description of the Model 

The mixture of two extreme lower bound distributions has its pdf as 

( ) ( ) ( )1 1 1 2 2 2 1 2, , , : 1f x H f x H f x H HΘ = Θ + Θ + =          (2.1) 

where ( ) ( )1, , , , , 1, 2j j j j jH c jβ θΘ = Θ Θ = =  and ( ), jf x Θ , the density func- 
tion of jth  component, is given by  

( ) ( )
1

exp , , 0, 0 .
j jc c

j j j
j

j j j

c x x
f x x c

θ θ
θ β

β β β

− − −     − − = − > > >              
 (2.2) 

The cdf of the mixture of two extreme lower bound distributions is given by  

( ) ( ) ( )1 1 1 2 2 2 1 2, , , : 1F x H F x H F x H HΘ = Θ + Θ + =         (2.3) 

where ( ),jF x Θ , the cdf jth  component, is given by  

( ) ( )exp , , 0, 0 .
jc

j
j

j

x
F x x c

θ
θ β

β

−  − = − > > >     
         (2.4) 

Such that, We study this case, when c  and β  are the parameters unknown 
and θ  is the parameter known. 

3. Properties 

In this section we obtain some properties for two extreme lower bound distri- 
bution by extending the corresponding results of the two parameters extreme 
lower bound distribution where (2.3) θ  is known as follow. 

3.1. The Expected Value and Variance 

The expected value of the pdf of the two extreme lower bound distribution 
obtain in (2.1) and (2.3) is  
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( ) 1 1 2 2
1 2

1 11 1E x H H
c c

β β
   

= Γ − + Γ −   
   

              (3.5) 

and the variance is given by  
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   
− Γ − Γ −   
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           (3.6) 

3.2. Mode and Median 

The mode of the mixture of two extreme lower bound distribution is obtained by 
solving the following nonlinear equation with respect to x  

( )
( )

2
2

0
e 1

c j
jj j

j

xc c
j j

j j j
i j j

x x
H c c

θ
βθ θ

β β

−
 −− + −
 − 
 

=

    − − − + +           
∑       (3.7) 

By using (2.4) and (3.5), the median of the mixture of two extreme lower 
bound distribution is obtained by solving the following nonlinear equation with 
respect to x  

1 2

1 2e e 0.5

c c
j jx x

j jH H
θ θ
β β

− −− −   
− −      
   + =                 (3.8) 

From Table 1, we obtain the median and the mode of the mixture two 
extreme lower bound distribution based on different choices of the parameters 

iH  and jΘ  for each 1, 2j =  from this table we observe that the mode is 
slightly affected by the variation in the values of the mixing proportion 1H , 
while one mode is stable in the bimodal case. In addition, for unimodal case, the 
median increases when 1H  increases. From the bimodal case, we observe that 
the median decreases when 1H  icreases. 

3.3. Reliability and Failure Rate Function 

The reliability function of the mixture two extreme lower bound distribution is 
given by  
 
Table 1. The median and the mode of the mixture of two extreme lower bound distribution.  

Bimodel case    

( )1 1 2 2 2, , , ,H c cβ βΘ =  (0.2, 2.5, 2, 1, 2.9) (0.4, 2.5, 2, 1, 2.9) (0.6, 2.5, 2, 1, 2.9) 

Median 1.0286 0.9201 0.7852 

Mode 0.326, 0.885 0.326, 0.863 0.326, 0.798 

Unimodel case    

( )1 1 2 2 2, , , ,H c cβ βΘ =  (0.2, 1, 2, 2, 3) (0.4, 1, 2, 2, 3) (0.6, 1, 2, 2, 3) 

Median 0.635 0.733 0.882 

Mode 0.459 0.469 0.882 
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1 21 e 1 e
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− −   
   

   
   = − + −   
      

           (3.9) 

By using (2.4) and (3.5) it can be seen the failure rate function (hazard rate 
function) of the mixture two extreme lower bound distribution is given by  

( )

( ) ( )

( )
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1 1 2
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1 1 2 2

e e
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Which can be written as  

( ) ( ) ( ) ( )( ) ( )1 21r x k x r x k x r x= + −               (3.11) 

where  

( ) ( )
( ) ( ) ( ) ( )
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and  
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11 e
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θ
β

−− 
−  
 = −  

The failure rate function of the mixture two extreme lower bound distribution 
given in (3. 10) satisfies the following limits  

( ) ( )
0

lim 0 and lim 0
x x

r x r x
→∞ →

= =                (3.12) 

4. Estimation via EM Algorithm 

The EM algorithm provides a simple computational method for fitting mixture 
models. We use the EM algorithm to estimate the parameters of the pdf of the 
mixture two extreme lower bound distribution which given in (2.1) and (2.3). 
We focus in this section, the Maximum likelihood fitting of two extreme lower 
bound distributions mixture via the EM algorithm. Maclachlan and Peel [9], the 
essential nature of the algorithm is the alternation of expectation and 
maximization steps.  
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         (4.14) 

then, Concerning the E-step on the ( )1m +  iteration, the updated estimate of 
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the j  mixing proportion jH  is given by  

( )1
1

1m
jH

n
ξ+ =                         (4.15) 

From (4.13) we obtain the M-step of the ( )1m +  iteration, the updated 
estimates ( )1m

jc +  and ( )1m
jβ

+  for each 1, 2j =  are obtained, respectively, by 
solving the following systems of equations  
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                      (4.16) 
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  (4.18) 

The estimates of 1 1 2, , ,H c cβ  and 2β  are obtained by solving (4.15), (4.17) 
and (4.18). Equations (4.15) and (4.17) are written explicitly but Equation (4.18) 
has to be solved numerically with random choices of the initial values. 

5. Numerical Illustration 

In order to calculate the estimates of the five parameters 1 1 2, , ,H c cβ  and 2β  
where 1θ  and 2θ  are known that appear in the pdf of the mixture two extreme 
lower bound distribution given in (2.1) and (2.3) by using EM algorithm in a 
Monte Carlo simulation as follows:  

Generate random sample of size 50n =  and 100 from the mixture two 
extreme lower bound distribution distribution with for each choice of the 
parameters 1 1 1 2 2, , , , , ,H c cβ θ θ  and 2β . Some of choices caver the unimodal 
case and other caver the bimodal case. 

The random samples of the mixtures are generated with respect to two 
uniform variables 1u  and 2u . If 1 1u H< , then use 2u  to generate a random 
variable x from the mixture two extreme lower bound distribution by using (3.5) 
as ( )1

1 2x F u−= , but if 1 1u H< , then ( )1
2 2x F u−= . 

The bias and the mean square errors of the estimates are calculated based on 
10,000 Monte Carlo simulation and the results are illustrated in Table 2 and 
Table 3. We see that in most of the considered cases, the mean square errors of 
the estimated parameters decrease as n increase. 

6. Conclusion 

In this paper, the behaviors of the mode and median of the mixture two extreme  



F. H. Riad 
 

522 

Table 2. Bais of the estimate of Θ̂  based on EM algorithm. 

Bimodal       

( )1 1 1 2 2, , , ,H c cβ βΘ =  n  1Ĥ  1̂c  
1̂β  2ĉ  

2β̂  

(0.2, 2.5, 2, 1, 2.9) 50 −0.116 −1.204 −0.313 0.299 −1.203 

 100 −0.056 −1.189 −0.333 0.313 −1.242 

(0.4, 2.5, 2, 1, 2.9) 50 −0.068 −0.770 −0.411 0.729 −1.309 

 100 −0.001 −0.757 −0.421 0.743 −1.333 

(0.6, 2.5, 2, 1, 2.9) 50 0.006 −0.614 −0.398 0.894 −1.270 

 100 0.015 −0.611 −0.379 0.886 −1.295 

Unimodal       

( )1 1 1 2 2, , , ,H c cβ βΘ =  n  1Ĥ  1̂c  
1̂β  2ĉ  

2β̂  

(0.2, 1, 2, 2, 3) 50 −0.042 0.864 0.487 −0.136 −0.514 

 100 −0.025 0.850 0.423 −0.131 −0.542 

(0.4, 1, 2, 2, 3) 50 0.011 0.565 −0.019 −0.483 −1.025 

 100 0.005 0.569 −0.015 −0.438 −0.101 

(0.6, 1, 2, 2, 3) 50 0.024 0.465 −0.089 −0.613 −1.170 

 100 0.006 0.494 −0.074 −0.573 −1.132 

 
Table 3. MSE of Θ̂  based on EM algorithm. 

Unimodal       

( )1 1 1 2 2, , , ,H c cβ βΘ =  n  1Ĥ  1̂c  
1̂β  2ĉ  

2β̂  

(0.2, 2.5, 2, 1, 2.9) 50 0.025 1.0002 0.1003 0.098 1.003 

 100 0.006 1.0001 0.120 0.095 1.0001 

(0.4, 2.5, 2, 1, 2.9) 50 0.202 1.127 0.1003 0.200 2.005 

 100 0.309 1.0007 0.1001 0.199 2.002 

(0.6, 2.5, 2, 1, 2.9) 50 0.002 0.377 0.108 0.798 2.002 

 100 0.0005 0.369 0.1008 0.789 2.000 

Unimodal       

( )1 1 1 2 2, , , ,H c cβ βΘ =  n  1Ĥ  1̂c  
1̂β  2ĉ  

2β̂  

(0.2, 1, 2, 2, 3) 50 0.0021 0.7002 0.2384 0.0189 0.2005 

 100 0.0005 0.7003 0.1798 0.0183 0.2004 

(0.4, 1, 2, 2, 3) 50 0.0084 0.5987 0.0725 0.0482 0.5000 

 100 0.0024 0.5169 0.0248 0.0430 0.5023 

(0.6, 1, 2, 2, 3) 50 0.0020 0.2145 0.0083 0.3001 1.000 

 100 0.0002 0.2003 0.0061 0.3000 0.9998 

 
lower bound distribution are investigated, based on different choices of the 
parameters. Also, the behaviors of the failure rate function are discussed through 
some different graphs. In addition, the estimation of the unknown parameters is 
obtained using the EM algorithm. Finally, a Monte Carlo simulation based on 
10,000 runs is carried out. 
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