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Abstract 
A mathematical analysis is investigated to obtain an analytic solution of magneto hydrodynamic 
stagnation-point flow towards permeable stretching surface with viscous dissipation and joule 
heating. In the presence of uniform suction, a transverse magnetic field normal to the surface is 
applied when the surface is stretched in its own plane with a velocity proportional to the distance 
from the stagnation-point. The governing nonlinear momentum and energy equations are solved 
by homotopy analysis method (HAM) to obtain the complete analytic solution and a good agree-
ment is found. The convergence region shows the validity of the HAM solutions. It is observed that 
the velocity at a point increases/decreases more with increase in the magnetic parameter when 
the free stream velocity is greater/less than the stretching velocity in presence of suction. An in-
teresting result of the analysis is that, in the presence of suction parameter, the temperature in-
creases with the increase in magnetic parameter at a certain distance from the stretching surface. 
Near stagnation point on the surface, heat flows from the surface to the fluid and far from the 
stagnation-point, heat flows from the fluid to surface due to combining effect of ohmic dissipation 
and strain energy inside the boundary layer. 
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1. Introduction 
The laminar flow and heat transfer of an incompressible fluid over a stretching surface have significant applica-
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tions in several technologies of process industry. A number of manufacturing industries process and include 
both metal and polymer sheets during the production of sheeting materials. This kind of motion of a fluid close 
to the rigid or stretching surface can be investigated from a standard boundary layer equation. The quality of the 
final product depends to a large extent on the rate of heat transfer at the stretching surface. It is, therefore, of in-
terest to know the fluid behavior over a stretching surface which determines the rate of cooling. Hiemenz [1] 
first analyzed an exact solution of the stagnation point flow of a viscous fluid over a rigid surface. The axisym-
metric three-dimensional cases for the rigid surface are investigated by Homann [2]. The steady flow of an in-
compressible viscous fluid over an elastic sheet was studied by Crane [3] where the flow being caused solely by 
stretching of sheet in its own plane. The temperature distribution in the flow over a stretching surface subject to 
uniform heat flux was studied by Dutta et al. [4]. The steady two-dimensional orthogonal stagnation point flow 
of an incompressible viscous fluid towards a stretching surface which is held at constant temperature, was inves-
tigated by Mohapatra and Gupta [5]. Later, Mohapatra and Gupta [6] extended his work to study the momentum 
and heat transfer characteristic of stagnation-point flow of a viscoelastic fluid over a stretching surface. Hassa-
nien [7] analyzed the similarity solution for the flow and heat transfer of a viscoelastic fluid over a stretching 
sheet. The temperature distribution for the stagnation point flow of a micro polar fluid past a stretching sheet 
was investigated by Nazar et al. [8]. 

In the region of adverse pressure gradient the flow in a boundary layer separates. Due to separation, it leads to 
increase in drag on the body immersed in the flow and adversely affects heat transfer from the surface of the 
body. Flow separation can be prevented by applying suction to remove the directed fluid particle from the 
boundary layer. On the other hand, the wall shear stress and hence friction drag is reduced by blowing. Wall 
suction and blowing have many applications such as turbine blade cooling, transition delay and prevention se-
paration. The effect of suction on the Hiemenz problem was studied by Schlichting and Bussmann [9]. An ap-
proximate solution to the problem of uniform suction is given by Ariel [10]. The effect of uniform suction on the 
Homann problem where the flat plate oscillates in its own plane is considered by Weidman and Mahalingam 
[11]. The effect of uniform suction or injection on the two- or three-dimensional stagnation-point flow of a con-
ducting fluid was given by Attia [12] [13] in the presence of an externally applied uniform magnetic field. The 
effect of uniform suction or injection on two-dimensional stagnation point flow towards a stretching surface 
with heat generation was given by Attia and Seddeek [14]. 

Electrically conducting fluid like a liquid metal, electrolyte or plasma under the influence of magnetic field 
induces electric current. This type of fluid has many applications in industries, for example, to drive flow, in-
duce stirring, levitation or control heat transfer and turbulence. An exact similarity solution to the MHD boun-
dary layer equations for the steady two-dimensional flow of an electrically conducting incompressible fluid due 
to the stretching of a plane elastic surface in the presence of a uniform transverse magnetic field was given by 
Pavlov [15]. Chakrabarti and Gupta [16] studied the MHD flow of a Newtonian fluid over a stretching sheet. In 
the presence of uniform transverse magnetic field Andersson [17] investigated the MHD flow of a viscoelastic 
fluid past a stretching surface. Liao [18] developed Homotopy analysis method (HAM) which is one of the most 
successful and efficient methods to solve a non-linear differential equation. This method is based on a funda-
mental concept in topology, i.e., Homotopy (Hilton [19]) which is widely used in numerical techniques (Grigo-
lyuk and Shalashilin [20]). 

In this present work, HAM is employed to find the new analytic solution of the effect of uniform transverse 
magnetic field as well as suction or blowing on a steady two-dimensional orthogonal stagnation point flow of an 
electrically conducting fluid towards a permeable stretching surface. For a very small magnetic Reynolds num-
ber the induced magnetic field can be neglected. We assume the wall and free stream temperature to be constant. 

2. Flow Analysis 
Consider the two dimensional stagnation point flow of a viscous incompressible electrically conducting fluid 
impinging orthogonally to a permeable stretching surface coinciding with plane 0y = , the being in the region 

0y > . Two equal and opposite forces are applied to the sheet along the x-axis such that the surface is stretched 
keeping the origin fixed as shown in Figure 1. The flow is permeated by a uniform magnetic field of strength 

0B  applied transverse to the plate. The plate is assumed to be electrically non-conducting and is subject to uni-
form suction or blowing. 

Let u  and v  are the velocity components along x  and y  directions, respectively. The velocity in the 
free flow is given by  
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Figure 1. Physical sketch of the problem. 

 
( ) ( ),     U x ax V y ay= = −                                 (1) 

where 0a >  is proportional to the free stream velocity far away from the surface. Under these assumptions, 
along with the Boussinesq approximation and boundary layer approximations, the governing equations for the 
steady two-dimensional stagnation point flows by introducing Lorentz force are 

0u v
x y
∂ ∂

+ =
∂ ∂

                                      (2) 

( )( )
22
0

2

Bu u U uu v U U x u
x y x y

σ
ν

ρ
∂ ∂ ∂ ∂

+ = + + −
∂ ∂ ∂ ∂

                        (3) 

( )
22

22
02

P P

T T T uu v B u ax
x y c y cy

µ σκ
ρ ρ

 ∂ ∂ ∂ ∂
+ = + + − ∂ ∂ ∂∂  

                     (4) 

where T  represents the temperature and ρ , µ , ν , σ , κ  and Pc  are the density, the viscosity, the ki-
nematic viscosity, these electric conductivity of the fluid, thermal diffusivity and the specific heat of the fluid at 
constant pressure, respectively, and ( )U x  is horizontal component of the inviscid potential flow velocity over 
the body surface. At the stretching surface, the velocity in the x  direction is equal to the moving surface ve-
locity cx , where c  is a positive constant. So boundary conditions are 

0            at    , ,  0Wu cx v v T T y= = − = =                            (5) 

( )         as   ,   u U T T yx ∞→ → →∞                             (6) 

where 0v  is the constant velocity at the plate with 0 0v >  for suction and 0 0v <  for blowing and WT  and 
T∞  are constants with WT T∞> . 

To examine the flow regime, we introduce the following similarity transformation 

( ) ( ) ( ) ( ),
, , , ,            

W

T x y T cu cxf v c f x y
T T

η ν η θ η η
ν

∞

∞

−
′= = − = =

−
               (7) 

Here prime denotes differentiation with respect to η . Using above equation, the continuity Equation (2) is 
satisfied automatically and Equations (3) and (4) becomes 

2
2 2

2 0a af ff f H f
c c

 ′′′ ′′ ′ ′+ − + − + = 
 

                           (8) 
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where 0H B
c
σ
ρ

=  is the Hartman Number. Setting  

( ) ( ) ( )
2

0 1, cxxθ η θ η θ η
ν

= +                                (10) 

In Equation (9) and equating the coefficients of 0x  and 2x  we obtain the following equations for ( )0θ η  
and ( )1θ η : 

0 0Pr 0fθ θ′′ ′+ =                                     (11) 

( ) ( )
2

2 2
1 1 1Pr 2 Pr. . Pr. . af f E f E H f

c
θ θ θ  ′′ ′ ′ ′′ ′+ − = − − − 

 
                   (12) 

where ( )P WE c c T Tν ∞= − , is the Eckert number which is a measure of viscous dissipation. 
The corresponding boundary conditions (5) and (6) can be written as 

( ) ( ) ( )0 0,    ,    1  af A f f
c

′ ′= = ∞ =                             (13) 

( ) ( )0 0,  0 1 0  θ θ= ∞ =                                  (14) 

( ) ( )1 1,  0 0 0  θ θ= ∞ =                                  (15) 

Here 0v
A

cν
= ±  is the suction parameter ( 0A >  for suction and 0A <  for injection). For boundary layer 

flow, the wall skin friction wτ  is given by 

0
w

y

u
y

τ µ
=

 ∂
=  ∂ 

                                    (16) 

Using ( )U x ax=  as a characterized velocity, the skin friction coefficient fC  can be defined as 

2
w

fC
U
τ
ρ

=                                       (17) 

Substituting (7) and (16) in (17) we get 

( )0f xC Re f ′′=                                    (18) 

where xRe xU ν=  is the local Reynolds number. 

3. Homotopy Analysis Solution 
The velocity ( )f η  and the temperature ( )0θ η , ( )1θ η  can be represented in terms of a set of base function 

exp 1 : 0, 0  are integersm an m n
c

η η
  

− − ≥ ≥  
  

                      (19) 

as 

( ) ,
0 0

exp 1m
n m

n m

af a n
c

η η η
∞ ∞

= =

 
= − − 

 
∑∑                           (20) 

( )0 ,
0 0

exp 1m
n m

n m

ab n
c

θ η η η
∞ ∞

= =

 
= − − 

 
∑∑                           (21) 

and 

( )1 ,
0 0

exp 1m
n m

n m

ac n
c

θ η η η
∞ ∞

= =

 
= − − 

 
∑∑                           (22) 
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where ,n ma , ,n mb  and ,n mc  are the coefficients. Looking into the boundary condition and the base function we 

choose the initial guess ( )0f η , ( )0,0θ η  and ( )1,0θ η  as 

( )0 1 exp 1 sgn 1a a af A
c c c

η η η
    = + − − − − −    

   
                     (23) 

( )0,0 exp 1a
c

θ η η 
= − − 

 
                                (24) 

and 

( )1,0 exp 1 1 exp 1a a
c c

θ η η η
    

= − − − − −    
    

                       (25) 

The auxiliary linear operators fL , 
0

Lθ  and 
1

Lθ  can be taken as 

( ) ( ) ( )3 2

3 2

d ; d ;
; 1

d df

f q f qaL f q
c

η η
η

η η
= + −                           (26) 

( ) ( ) ( ) ( )
0 1

2

2

d ; d ;
; ; 1

dd
q qaL q L q

cθ θ

θ η θ η
θ η θ η

ηη
= = + −                         (27) 

where [ ]0,1q∈  is an embedding parameter. The auxiliary linear operators fL , 
0

Lθ  and 
1

Lθ satisfies 

1 2 3exp 1 0f
aL C C C
c

η η
  

+ + − − =  
  

                          (28) 

0 4 5exp 1 0aL C C
cθ η

  
+ − − =  

  
                            (29) 

1 6 7exp 1 0aL C C
cθ η

  
+ − − =  

  
                            (30) 

where iC , ( )1 7i = −  are arbitrary constants. 
Corresponding to the governing differential Equations (8), (11) and (12), we define the non-linear operators as 

( ) ( ) ( ) ( ) ( )
23 2 2

2 2
3 2 2

ˆ ˆ ˆ ˆ; ; ; ;ˆ ˆ;f

f q f q f q f q a aN f q f H H
c c

η η η η
η

η ηη η

 ∂ ∂ ∂ ∂    = + − − + +      ∂ ∂∂ ∂   
        (31) 

( ) ( ) ( ) ( )
0

2

2

ˆ ˆ; ;1ˆ ˆˆ ; , ;
Pr

q q
N q f q fθ

θ η θ η
θ η η

ηη
∂ ∂  = +  ∂∂

                     (32) 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2 22 2
2

2 2

ˆ ˆ ˆˆ ˆ; ; ; ; ;1ˆ ˆˆ ˆ; , ; 2
Pr

q q f q f q f q aN q f q f E EH
cθ

θ η θ η η η η
θ η η θ

η η ηη η

   ∂ ∂ ∂ ∂ ∂  = + − + + −        ∂ ∂ ∂∂ ∂   
(33) 

If fh , 
0

hθ , 
1

hθ  denotes the non-zero auxiliary parameters and ( )fG η , ( )
0

Gθ η , ( )
1

Gθ η  denotes the 
auxiliary function, we construct the zero-th order deformation equations 

( ) ( ) ( ) ( ) ( )0
ˆ ˆ1 ; ;f f f fq L f q f h G N f qη η η η   − − =                        (34) 

( ) ( ) ( ) ( ) ( )
0 0 0 00 0 0

ˆ ˆ1 ; ;q L q h G N qθ θ θ θθ η θ η η θ η   − − =                       (35) 

( ) ( ) ( ) ( ) ( )
1 1 1 11 1 1

ˆ ˆ1 ; ;q L q h G N qθ θ θ θθ η θ η η θ η   − − =                        (36) 
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subject to the boundary conditions, 

( ) ( ) ( )

0

ˆ ˆ; ;ˆ ,    ,    0; 1
f q f q af q A

c
η η

η η
η η

= →∞

∂ ∂
=

∂
==

∂
                     (37) 

( ) ( ) ( ) ( )0 1 0 1
ˆ ˆ ˆ ˆ0; 1 0; 0 ;,    ,    ,   0 ; 0 q q q q

η η
θ θ θ η θ η

→∞ →∞
= = = =                (38) 

where 

( ) ( ) ( )
0 1

exp 1f
aG G G
cθ θη η η η 

= = = − − 
 

                        (39) 

When 0q =  and 1q =  we have 

( ) ( ) ( )0 ,    ˆ ˆ;0 ;1f f f fη η η= =                               (40) 

( ) ( ) ( )0 0,0 0, ˆ ˆ  ;0 ;1 θ η θ θ η θ η= =                              (41) 

( ) ( ) ( )1 1,0 1, ˆ ˆ  ;0 ;1 θ η θ θ η θ η= =                              (42) 

Note that when the embedding parameter q  increases from 0 to 1, ( )ˆ ;f qη , ( )0̂ ;qθ η  and ( )1̂ ;qθ η varies 

from the initial approximations ( )0f η , ( )0,0θ η  and ( )1,0θ η  to the exact solution ( )f η , ( )0θ η  and 

( )1θ η  respectively. By Taylor’s theorem we express ( )ˆ ;f qη , ( )0̂ ;qθ η  and ( )1̂ ;qθ η  in the power series of 
the embedding parameter q . 

( ) ( ) ( )0
1

ˆ ; m
m

m
f q f f qη η η

∞

=

= +∑                              (43) 

( ) ( ) ( )0 0,0 0,
1

ˆ ;0 m
m

m
qθ η θ η θ η

∞

=

= +∑                             (44) 

( ) ( ) ( )1 1,0 1,
1

ˆ ;0 m
m

m
qθ η θ η θ η

∞

=

= +∑                             (45) 

where 

( ) ( )
0

;1
!

m

m m
q

f q
f

m
η

η
η

=

∂
=

∂
                               (46) 

( ) ( )0
0,

0

;1
!

m

m m
q

q
m

θ η
θ η

η
=

∂
=

∂
                              (47) 

( ) ( )1
1,

0

;1
!

m

m m
q

q
m

θ η
θ η

η
=

∂
=

∂
                              (48) 

If the auxiliary parameters fh , 
0

hθ  and 
1

hθ  are properly chosen such that the series converges at 1q =  
then we have  

( ) ( ) ( )0
1

m
m

f f fη η η
∞

=

= +∑ ,                               (49) 

( ) ( ) ( )0 0,0 0,
1

m
m

θ η θ η θ η
∞

=

= +∑ ,                              (50) 

( ) ( ) ( )1 1,0 1,
1

m
m

θ η θ η θ η
∞

=

= +∑ .                              (51) 
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Differentiating the zero-th-order Equations (34), (35), (36) m -times with respect to the embedding parameter 
q , then setting 0q = , and finally dividing by !m , we have m -th-order deformation equation 

( ) ( ) ( ) ( )1
f

f m m m f f mL f f h G Rη χ η η η−− =                           (52) 

( ) ( ) ( ) ( )0
0 0 00, 0, 1m m m mL h G Rθ
θ θ θθ η χ θ η η η− − =                        (53) 

( ) ( ) ( ) ( )1
1 1 11, 1, 1m m m mL h G Rθ
θ θ θθ η χ θ η η η− − =                         (54) 

subject to the boundary conditions 

( ) ( ) ( )0 0 0 0,    ,    0m m mf f f′ ′= = ∞ =                             (55) 

( ) ( )0, 0,,  0 0 0  m mθ θ= ∞ =                                 (56) 

( ) ( )1, 1,,  0 0 0  m mθ θ= ∞ =                                 (57) 

where 

( ) ( )
21

2 2
1 1 1 1 2

0
1

m
f

m m n m n n m n m m
n

f a aR f f f f f H H
c c

η χ
−

− − − − − −
=

 
′′′ ′′ ′ ′= + − − + − ′ +

 
∑ ,             (58) 

( )0
1

0, 1 0, 1
0

1
Pr

 
m

m m n m n
n

R fθ η θ θ
−

− − −
=

′′ ′′= +∑ ,                            (59) 

( ) ( )1
2 1

2 2 2
1, 1 1 1, 1 1, 1 1 12

0

1 2 1 2
Pr

m

m m m m n m n n m n n m n n m n
n

a aR EH f EH f f Ef f EH f f
c c

θ η θ χ θ θ
−

− − − − − − − − − −
=

′′ ′ ′ ′ ′ ′′ ′ ′= − + − + − + +∑ (60) 

and 
0 1
1

,    
,    1m

m
m

χ
≤

=  >
                                    (61) 

Let ( )mf η∗ , ( )0,mθ η∗ , ( )1,mθ η∗  denote the special solution of Equations (52), (53) and (54). We have 

( ) ( ) ( ) ( )1
1

f
m m m f f f mf f h L G Rη χ η η η∗ −

−  = +   ,                        (62) 

( ) ( ) ( ) ( )0
0 0 0

1
0, 0, 1m m m mh L G Rθ

θ θ θθ η χ θ η η η∗ −
−  = +   ,                      (63) 

( ) ( ) ( ) ( )1
1 1 1

1
1, 1, 1m m m mh L G Rθ

θ θ θθ η χ θ η η η∗ −
−  = +   .                       (64) 

where 1
fL− , 

0

1Lθ
− , 

1

1Lθ
−  denotes the inverse operator of 

0 1
,  ,  fL L Lθ θ  respectively. Thus the solution of the m -th- 

order deformation equations as 

( ) ( ) 1 2 3exp 1m m
af f C C C
c

η η η η∗  
= + + + − − 

 
                       (65) 

( ) ( )0, 0, 4 5exp 1m m
aC C
c

θ η θ η η∗  
= + + − − 

 
                         (66) 

( ) ( )*
1, 1, 6 7exp 1m m

aC C
c

θ η θ η η 
= + + − − 

 
                         (67) 

Here the integral constants iC , ( )1,2,3, ,7i =   are determined by the boundary conditions (55), (56) and 
(57) as 

( ) ( )0,
1 3 2 3

0

,    ,  10 0
1

  m
m

f
C C f C C

a
c η

η
η

∗
∗

=

∂
= − − = =

∂−
                    (68) 
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( ) ( )4 5 0, 6 7 1,,    ,    ,    0 0 0 0m mC C C Cθ θ∗ ∗= = − = = −                       (69) 

Therefore, it is easy to solve linear non-homogeneous Equations (52), (53) and (54) subject to the boundary 
conditions (55), (56) and (57) by using MATHEMATICA one after other in the order 1, 2,3,m =   

4. Convergence of Homotopy Solutions 
We observed that the Equations (52), (53) and (54) consist of the auxiliary parameters fh , 

0
hθ  and 

1
hθ . These 

auxiliary parameters are important in controlling the convergence of series solutions the functions ( )f η , 

( )0θ η  and ( )1θ η . For this analysis, the admissible values of fh , 
0

hθ  and 
1

hθ  curves are plotted for 12th- 

order of approximations. Figure 2 shows the admissible values of fh  of ( )0f ′′  for 12th-order of approxima-
tion with 0.1a c =  for several values of H . It is observed that fh  curves have parallel lines segment that 
correspond to the regions 1.5 0.3fh− ≤ ≤ − , 1.0 0.2fh− ≤ ≤ −  and 0.6 0.3fh− ≤ ≤ −  for 0,1, 2H = , respec-

tively. To analyze the admissible range of 
0

hθ  and 
1

hθ  of ( )0 0θ ′  and ( )1 0θ ′  are displayed in Figure 3 for 

12th-order of approximation with 0.1a c = , 2H =  and Pr 5.0= . It is observed that the converging ranges 
are 

0
2.3 0.5hθ− ≤ ≤ −  and 

1
1.8 0.7hθ− ≤ ≤ − . From these figures we have examined that by choosing the val-

ues of convergence control parameter from these range we will get the convergent result up to higher decimal 
place. 

5. Results and Discussion 
The nonlinear boundary value problem given by Equations (8), (11) and (12) with boundary conditions (13), 
(14), and (15) cannot be solved in closed form. So these equations are solved by Homotopy Analysis Method 
(HAM) to get an analytical solution. Extensive calculation has been performed by using symbolic computation 
software MATHEMATICA to obtain the velocity and temperature profiles for various values of physical para-
meter such as Suction parameter A, Hartmann Number H, Prandtl number Pr, Eckert number E, (which charac-
terizes viscous dissipation in the flow) and the parameter a c  (ratio of external velocity and stretching veloci-
ty). Figure 4 shows the variation of horizontal velocity component with distance from the surface for several 
values of Hartmann Number H in the presence of suction parameter 1.0A =  and 0.1a c =  i.e., stretching 
velocity more than the straining velocity. It can be viewed that horizontal velocity decreases with increase in 
Hartmann Number H. It is interesting that the flow has inverted boundary layer structure because of stretching 
velocity cx  exceeds the velocity of external stream ax  (i.e. 1a c < ). Whereas, in the presence of suction 
parameter 1.0A =  and 3a c = , the velocity increases with increase in H, as shown in Figure 5. 

Table 1 shows the value of dimensionless wall shear stress i.e., skin-friction coefficient (see Equation (18)) 
for several values of H and a c  in the presence of suction. It gives that for fixed value of suction parameter 

1A = , the magnitude of the wall shear stress increases with increase in H and a c . In order to have correctness 
of our analytical result, we have examined the comparison result in the value of ( )0f ′′−  for different values of 
A and H in the present study and with the corresponding values by Mahapatra et al. [21] (shown in Table 1). 

It is observed that during the motion of electrically conduction fluid, a certain amount of energy is stored up 
in the fluid as strain energy and some energy is lost due to viscous and ohmic dissipation. So in the fluid flow, 
energy is balanced by the internal energy, the conduction of heat, the convection of heat with the flow, the gen-
eration of heat with the flow, the generation of heat through viscous and ohmic dissipation, the strain (or defor-
mation) energy in the fluid and energy due to wall suction effect. At a distance X  (Dimensionless length) 
from stagnation-point, the temperature distribution consists of two functions, first part of temperature distribu-
tion denoted by ( )0θ η  which depends on the Hartmann Number and suction parameter and second part de-
noted by ( )1θ η  which depends on viscous dissipation and Joule Heating. 

In the presence of suction parameter 1.0A = , the variation of temperature distribution ( )0θ η  with η  is 
displayed in Figure 6 for several values of Hartman Number H with Pr 5.0= , 0.1a c = . It is observed that for 
fixed value of Pr, 1.0A = , the temperature at point increases with increase in the Hartman Number when 

0.1a c < . But Figure 7 shows that when 1a c > , ( )0θ η  decreases with increase in H. In the presence of wall  
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Figure 2. The fh  curve of ( )0f ′′  at the 12th order of approximation. 

 

 
Figure 3. The h curve of ( )0θ′  at the 12th order of approximation. 

 

 
Figure 4. Variation of ( )f η′  with η  for several values of H with 

0.1a c = , 1.0A = . 
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Figure 5. Variation of ( )f η′  with η  for several values of H with 

3.0a c = , 1.0A = . 
 

 
Figure 6. Variation of ( )0θ η  with η  for several values of H with 

0.1a c = , 1.0A = . 
 

 
Figure 7. Variation of ( )0θ η  with η  for several values of H with 

3.0a c = , 1.0A = . 
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Table 1. Values of ( )0f ′′ . 

a c  H A T. R. Mahapatra et al. [2001] Present Result 

0.1 

0 0 −0.9643 −0.964443 

2 0 −2.0198 −2.01671 

3 0 −2.8222 −2.82039 

0 1 - −1.50512 

2 1 - −2.53697 

3 1 - −3.26112 

3.0 

0 0 4.6800 4.68192 

2 0 6.0952 6.09427 

3 0 7.4891 7.48876 

0 1 - 5.94725 

2 1 - 7.33498 

3 1 - 8.74062 

 
suction, viscous and ohmic dissipation and stored deformation energy in the flow ( )0E = , the variation of the 
temperature distribution given by ( )1θ η  with η  is shown in Figure 8, for several values of H with Pr 5.0=  
and 1a c > . It is observed that a novel result, that in the presence of suction parameter 1.0A = , ( )1θ η  in-
creases with the increase in Hartmann Number H where as in the absence of suction parameter Mahapatra et al. 
[22] shows that in the vicinity of the stretching surface ( )1θ η  increases with increase in H but after a certain 
distance from the stretching plate, the trend reverse. Figure 9 depicts that the variation of ( )1θ η  with η  for 
several values of H with Pr 5.0=  and 1.0A =  when 0.1a c = . 

The dimensionless rate of heat transfer at the surface 0η =  given ( ),0Xθ ′−  from Equation (10) is derived 
as 

( ) ( ) ( )0
2

1,0 0 0X Xθ θ θ′ ′ ′− = − −                              (70) 

where 
1 2cX x

υ
 =  
 

. The dimensionless heat flux at the surface ( ),0Xθ ′−  is computed from Equation (70) 

and displayed in Figure 10 and Figure 11 corresponding two distinct locations ( )0.1X =  and ( )2.0X =  on 
the stretching surface. It is observed from Figure 10 that the heat flows from the surface to fluid at the small 
value 0.1X =  (for several values of H), because ( ),0Xθ ′− . On the side, for 0.1X = , it is seen in Figure 11 

that the heat flow from the fluid to the stretching surface for several value of H because ( ),0Xθ ′−  is negative. 
It is more interesting that heat flux is more in the presence of suction. This novel result can be interpreted phys-
ically that for small value of 0.1X = , the term ( )1

2 ,0X Xθ ′−  becomes small and both ohmic dissipation and 
strain energy in the flow are not playing important roles to generate heat. So for small value of X , heat flows 
from the surface to fluid since wT T∞> . But for the large value of 3.0X = , the term ( )1

2 ,0X Xθ ′−  has sig-
nificant role due combine effect of ohmic dissipation and strain energy inside the boundary layer which causes 
to generate sufficient heat inside the boundary layer. Thus, the temperature of the fluid near the surface exceeds 
the surface temperature wT . So heat flows from fluid to surface even when wT T∞> . In this case it is also ob-
served that heat flux increase with suction for fixed value of H. 

Since, for small value of X , heat flows from the surface to the fluid and for the large value of X , heat 
flows from the fluid to surface, so it can be observed in Figure 12 that at a certain value of 0X X=  on the 
stretching surface, heat flux vanishes. It is observed from this figure that value of 0X  decreases with increase 
in H or E. This interesting result admits of a physical interpretation. Near stagnation point, heat flows from the 
surface to the fluid but due to increase in the Hartmann number and Ekart Number, ohmic dissipation and strain 
energy will increase and that will cause to generate the heat inside the boundary layer. So that the value of 0X  
will decrease with increase in H or E. 
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Figure 8. Variation of ( )1θ η  with η  for several values of H with 

3.0a c = , Pr 5.0= , 2.0E =  and 1.0A = . 
 

 
Figure 9. Variation of ( )1θ η  with η  for several values of H with 

0.1a c = , Pr 5.0= , 2.0E =  and 1.0A = . 
 

 
Figure 10. Variation of ( )0θ′  with H for several values of A at 

2.0X =  with 0.1a c = , Pr 5.0=  and 2.0E = . 
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Figure 11. Variation of ( )0θ′  with H for several values of A at 

0.1X =  with 0.1a c = , Pr 5.0=  and 2.0E = . 
 

 
Figure 12. Value of 0X  with E for several values of H with 

0.1a c = , Pr 5.0=  and 1.0A = . 

6. Conclusion 
The present study describes the effect of viscous dissipation and joule heating on magneto hydrodynamic stag-
nation-point flow towards permeable stretching surface. To analyze the new analytic solution of this problem, 
we apply homotopy analysis method. By this powerful and newly developed technique, the convergence series 
solutions are obtained. To validate the analytic solutions of velocity distribution and temperature distribution 
using HAM method, we have computed the convergence regions. The HAM solutions have an excellent agree-
ment. A novel result of this problem is that the temperature increases with the increase in Hartmann Number H 
at a certain distance from the stretching surface in the presence of suction parameter. Heat flows from the sur-
face to the fluid at near stagnation point on the surface and on the hand far from the stagnation-point, heat flows 
from the fluid to surface due to combining effect of ohmic dissipation and strain energy inside the boundary 
layer. 
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