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Abstract 
 
This paper investigates the effects of various parameters on the terminal voltage and frequency of self ex-
cited induction generator using genetic algorithm. The parameters considered are speed, capacitance, leakage 
reactance, stator and rotor resistances. Simulated results obtained using genetic algorithm facilitates in ex-
ploring the performance of self-excited induction generator. The paper henceforth establishes the application 
of user friendly genetic algorithm for studying the behaviour of self-excited induction. 
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1. Introduction 
 
The self-excited induction generators (SEIG) have been 
found suitable for energy conversion for remote locations. 
Such generators may be commonly used in the remote 
areas. These machines can be used to meet the local de- 
mand of remote areas in the absence of a grid. SEIG has 
many advantages such as simple construction, absence of 
DC power supply for excitation, reduced maintenance 
cost, good over speed capability self short-circuit protec- 
tion capability and no synchronizing problem [1]. In the 
last two decades self excited induction generator has 
attached considerable attention due to its application as a 
standalone generator using conventional and non con- 
ventional energy sources. 

Self excitation in an induction machine occurs when 
the rotor is driven by a prime mover and a suitable ca- 
pacitance is connected across the stator terminals the 
machine operating in this mode is called a self excited 
induction generator (SEIG) which has been increasingly 
utilized in stand-alone generation systems that employ 
wind or hydro power. The frequency and value of the 
voltage generated by these generators are highly de- 
pendent on speed, excitation capacitance and load [2,3]. 
The performance characteristics of a self-excited induc- 
tion generator can be obtained after the determination of 
two unknown parameters, such as the magnetizing reac- 
tance and frequency. Usually, Newton-Raphson method 
and Nodal-Admittance. 

Method are used to determine the generator’s un- 

known parameters which are the conventional methods 
used since three decades. If either of these two methods 
is used, lengthy mathematical derivations should be car- 
ried out to formulate the required equations in a suitable 
simplified form. The real and imaginary term separations 
are carried out by hand [4]. Genetic algorithm (GA) is a 
stochastic optimization technique. It is simple, powerful, 
reliable, derivative-free stochastic global optimization tech-
nique (search algorithm) inspired by the laws of natural 
selection and genetic. This algorithm is derivative-free in 
the sense that it does not need functional derivative in-
formation to search for a set solution that minimizes (or 
maximizes) a given objective function [5]. This paper 
deals with the implementation of intelligent approach, 
based on genetic algorithm, for the performance analysis 
of self-excited induction generator. Unlike conventional 
methods of analysis, lengthy algebraic derivations or 
accurate initial estimates are not required. In addition, 
the same objective function is to be minimized irrespec-
tive of the unknown parameters. The other important 
feature of the present approach is the possibility of de-
termining more than two unknown parameters simulta-
neously. Therefore, it can be used to obtain the perform-
ance characteristics of three-phase self-excited induction 
generator 
 
2. Analysis of SEIG 
 
The steady-state operation of the self excited generator 
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may be analyzed by using genetic algorithm, the equiva- 
lent circuit representation [6] is shown in Figure 1. 

RS, RR, RL are the stator, rotor and load resistances re- 
spectively. XS, XR, XM, XC are the stator, rotor, and 
mag-netizing and excitation reactance respectively. YS, 
YR, YM, YL, YC are the stator, rotor, magnetizing, load and 
excitation admittances respectively. F is the P.U fre-
quency. v is the P.U speed which is the ratio between 
rotor speed and synchronous speed. IS, IR, IL, are the sta- 
tor, rotor and load currents respectively. Vg, VT, E1 are the 
P.U air gap, terminal voltage and air gap voltage at rated 
frequency respectively. 

The total current at node “a” in Figure 1 can be writ-
ten as in the following Equation (1): 

 1 1 0M RE Y Y Y                  (1) 
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Under self-excitation E1 ≠ 0, therefore the sum of total 
admittance connected across the air gap must be zero 
[7,8], i.e. 

1 0M RY Y Y                      (3) 

 1Real 0M RY Y Y                 (4) 

 1Imag 0M RY Y Y                (5) 

For given value of the shaft speed, generator parame- 
ters, excitation capacitance and load impedance, solution 
of Equation (4) gives the frequency F in P.U. 

Then, corresponding value of magnetizing reactance 
XM can be calculated from Equation (5) using the value 
of F obtained from Equation (4). 

After determining the values of F and XM, the air gap 
voltage E1 can be determined from the experimentally 
obtained magnetization curve, which relates Vg/F and XM. 
By applying mesh current method, to the model given in 
Figure 1, the stator current (IS) and the current of the 
load (IL) can be determined from the following equation 
(6), 
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Figure 1. Per phase equivalent circuit of SEIG. 

 
3. Genetic Algorithm 
 
Different from conventional optimization methods, the 
GA was developed based on the Darwinian evolution 
theory of “survival of the fittest”. It has produced good 
results in many practical problems and has become a 
powerful tool for solving nonlinear equations. The GA 
manipulates strings of binary digits and measures each 
string’s strength with a fitness value. The main idea is 
that stronger strings advance and mate with other strong 
strings to produce offspring. Finally, one string emerges 
as the best. Another important advantage is that it offers 
parallel search, which can overcome local optima and 
then finally find the globally optimal solution. 

The mechanics of the GAs are elementary, involving 
nothing more than copying strings, random number gen- 
eration, and swapping partial strings. A common GA is 
mainly composed of three operators: reproduction, cross-
over, and mutation. GA for this particular problem has 
the following components [9]: 

1) Genetic representation for potential solutions to the 
problem. 

2) A way to create an initial population of potential 
solutions. 

3) Evaluation function that plays the role of the envi- 
ronmental rating solutions in terms of their “fitness”. 
This is because the population undergoes a simulated 
evolution at each generation. This role of an environment 
helps relatively “good” solutions to reproduce, while rela-
tively “bad” solutions die.  

4) Genetic operators then alter the composition of 
children. The multidirectional search is performed by 
maintaining a population of potential solutions and en- 
courages information exchange between these directions.  

5) Values for various control parameters that the GA 
uses (e.g., population size, probabilities of applying GA). 
 
Genetic Algorithm Based Modeling of SEIG 
The genetic algorithm [10] has been implemented to find 
the optimum value of the frequency (F) and magnetic 
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reactance (XM), Equation (3) can be considered to be the 
objective (Fitness) function for the GA.  
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The objective function is minimized subjected to con- 
strain shown in Equation (7). The first constrain involves 
that the induction generator must operate in the satura- 
tion region which means the magnetizing reactance is 
always less than the unsaturated value and the second 
constraint involves that the obtained frequency must be 
less than the prime mover’s speed.  

The 1st step comes with GA optimization started with 
a population of randomly generated individuals repre-
senting a set of solutions for the problem. Each individ-
ual is composed of the problem’s variables the popula-
tion size is chosen to be 160. The 2nd step comes with 
computing the fitness function for the entire available 
elements for such parameter. The 3rd step select two 
parents from a population according to their fitness (the 
better fitness, the bigger chance to get selected) which 
the roulette wheel selection is applied followed by uni-
form cross over with probability of 0.8. The 4th step is 
the death process eliminate all population, which have 
bad fitness according to a crossover probability of 0.8 the 
5th step is the crossover process to generate offspring to 
keep up the same number of population and to have im-
proved parameters values. The crossover process uses 
the parents with best fitness, a binary coding is used to 
express weight’s magnitudes, and single-point crossover 
method is used in our case. The 6th step is the mutation 
process with mutation probability of 0.05, finally, the 
new population is formed and procedures repeated until 
reaching the accuracy € < 0.001 [11-13].  

After determining the values of F and XM, the air gap 
voltage Vg can be determined from the experimentally 
obtained magnetization curve, which relates Vg/F and XM. 
By applying mesh current method, to the model given in 
Figure 1, the stator current (IS) and the current of the 
load (IL) can be determined from the Equation (6).  

The flowchart describing the GA optimization tech- 
nique implemented in this paper is shown in Figure 2. 
 
4. System Results and Simulation 
 
The simulated results are obtained by using GA toolbox 
on machine with specifications given in Appendix, Ta- 
ble 1 gives the details of each data set taken on test ma- 
chine the range of speed and value of terminal capaci- 
tance have been chosen to enable the machine to supply 
power to the connected load at rated voltage. The resis- 
tive load is not sensitive to the changes in frequency. 

Therefore, the two values of load resistance were chosen 
arbitrarily. 

Figures 3 and 4 show the variation of terminal voltage 
and generated frequency with  different speed values 
with capacitance (36 µF) and different value of resistive 
load (160 Ω, 220 Ω) , it is shown that the value of termi-
nal voltage and generated frequency increase with in-
creasing the speed. 

 

 Start 

Input SEIG circuit parameters and its 
magnetization curve 

Randomly generated initial population 
chromosome [Xm, F] 

Evaluate the fitness function for all the 
population space 

Genetic operators 
 

1- Reproduction  

2-Cross over  

3-Mutation  

Convergence 
Y1 + YM + YR < = 00 

Obtain SEIG performance 

Stop 
 

Figure 2. flow chart of GA for steady state analysis of 
SEIG. 

 
Table 1. The input data (N, C, R). 

Speed RPM Set 
No. 

From To 
C (µF) R (Ω) 

No. of 
Samples

1 1435 1570 36 160 6 

2 1275 1435 51 160 6 

3 1410 1565 36 220 6 

4 1290 1425 51 220 6 
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Figure 5 shows the best fitness value and average fit- 
ness versus the iterations at C = 36 µF, R = 160 Ω and N 
= 1435 r.p.m, the best fitness reach to zero at iteration 
number 51. 

 

 

Figure 3. Voltage and frequency versus speed at C = 36 µF 
and R = 160 Ω. 

 

 

Figure 4. Voltage and frequency versus speed at C = 36 µF 
and R = 220 Ω. 

 

 

Figure 5. Best fitness value and average fitness value versus 
iteration at C = 36 µF and R = 160 Ω. 

Figure 6 shows the values of the best individuals at F 
= 0.9451 P.U, XM = 102.8225 Ω (that having the best 
fitness values) in each generation at C = 36 µF, R = 160 
Ω and N = 1435 r.p.m. 

Figure 7 shows the minimum, maximum and mean 
fitness function values versus the iterations. The vertical 
line shows the range from the smallest to the largest fit- 
ness value, at C = 36 µF, R = 160 Ω and N = 1435 r.p.m. 

Figure 8 shows the average distance between the in- 
dividuals versus the iterations, which is a good measure 
of the diversity of a population at C = 51 µF, R = 160 Ω 
and N = 1435 r.p.m. 

Figure 9 shows the variation of terminal voltage and 
generated frequency with different speed values with 
capacitance (51 µF) and different value of resistive load 
(160 Ω) , as shown that the value of terminal voltage and 
generated frequency increase with increasing the speed. 

 

 

Figure 6. The best individuals values at last iteration (num-
ber 51) at C = 36 µF and R = 160 Ω. 

 

 

Figure 7. The minimum maximum and mean of fitness 
function versus iterations at C = 36 µF and R = 160 Ω. 
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Figure 8. The average distance of individuals versus itera- 
tions at C = 36 µF and R = 160 Ω. 

 

 

Figure 9. Voltage and frequency versus speed at C = 51 µF 
and R = 160 Ω. 

 
Genetic algorithms have been used for difficult prob- 

lems for machine learning and also for evolving simple 
programs. The result obtain from GA is more accurate 
from another conventional method because the GA work 
to find the optimum value of magnetization reactance 
and frequency. 

Genetic algorithm (GA) is becoming a popular method 
for optimization because it has several advantages over 
other optimization methods. It is robust, able to find 
global and local minimum, and does not require accurate 
initial estimates. In addition, detailed derivations of ana- 
lytical equations to reformulate an optimization problem 
into an appropriate forms are not required GA can be 
directly implemented to acquire the optimum solution 

using a certain fitness function. 
 
5. Conclusions 
 
In this application, intelligent approach, based on genetic 
algorithm optimization procedure, has been implemented 
successfully for steady state analysis of self-excited in- 
duction generators under different operating speed, ca- 
pacitance and resistive load conditions. The proposed tech-
nique has shown that, it is reliable accurate and simple 
compared to the conventional methods. 
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Appendix 
 

Machine Specifications: 
3-Phase, 50 Hz, 2.2 kW/3.0 HP, 4-pole, 230 Volts, 8.6 

Amp. Delta connected squirrel cage induction machine. 
Machine Parameters: 
RS = 3.35 Ω  RR =1.76 Ω 
XS =4.85 Ω  XR =4.85 Ω 

 
Magnetization characteristics of machine for determi-

nation of air gap voltage: 
E1 = 344.411 – 1.610 XM      XM < 82.292 
E1 = 465.120 – 3.077 XM        5.569 > XM > = 82.292 
E1 = 579.897 – 4.278 XM     08.00 > XM > = 95.569 
E1 = 0                     XM > 108.00 

 

http://dx.doi.org/10.1109/TEC.2005.858074�

