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Abstract 
In this work, a newly fabricated organic solar cell based on a composite of fullerene derivative 
[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) and regioregular poly (3-hexylthiophene) 
(P3HT) with an added interfacial layer of AgOx in between the PEDOT:PSS layer and the ITO layer 
is investigated and an equivalent circuit model is proposed for the device. Incorporation of the 
AgOx interfacial layer shows an increase in fill factor (by 33%) and power conversion efficiency 
(by 28%). Moreover, proper correlation has been achieved between the experimental and simu-
lated I-V plots. The simulation shows that device characteristics can be explained with accuracy by 
the proposed model. 
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1. Introduction 
Organic solar cells (OSCs), offers tremendous promise as an alternative to conventional Si-based solar photo-
voltaics (PV) technology as it requires less production cost and effort because organic semiconductors are sim-
ple to process than the inorganic cells due to much lower processing temperatures [1]-[11]. Although it is in 
early stage of technology, the vision is mass production of these devices with less stringent and less thermal 
budget requirements than those needed for traditional silicon solar cells. The production potential may possibly 
exceed 1000 m2 per hour [5]. Because of the development of newer materials, new designs and interfacial layers 
it can exhibit very high power conversion efficiency (PCEs). 

The most promising designs are a combination of electron-accepting and electron-donation molecular mate-
rials, so as to develop a p-n heterojunction. Efficient charge carrier extraction from the active layer to the re-
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spective electrodes is essential for optimal functioning of OSCs and depends on the character of the interface of 
each layer. One way to obtain efficient charge extraction is to match the work function of anode and cathode 
with the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) ener-
gies of the active layer [12] [13]. The introduction of self-assembled mono-layers of molecules on ITO sub-
strates with appropriate direction and magnitude of dipole moment, improves the performance of organic solar 
cells [14] [15]. This method decreases the injection barrier between the HOMO level and the ITO and it also ef-
fectively changes the work function of ITO. Another way to increase the efficiency is the formation of an inter-
facial energy step [16] [17]. 

One particular interest is that the donor-acceptor heterojunction is formed from a blend of conjugated polymer 
with a fullerene derivative [18]-[23]. An example of promising OSCs, is a blend of the fullerene derivative [6, 
6]-phenyl-C61 butyric acid methyl ester (PCBM) and regioregular poly (3-hexylthiophene) (P3HT) heterojunc-
tion, which has been experimentally studied earlier [24]. A phase-separated bulk heterojunction (BHJ) nano-
structure of large interfacial area is formed from this blend [25]. A thin poly (3, 4-ethylenedionythiophene): poly 
(styrenesulfonate) (PEDOT:PSS) layer is used as an anode contact because the work function of PEDOT:PSS 
matches with the HOMO of P3HT and this allows for effective extraction of holes from the active layer [26]. 
The PEDOT:PSS layer planarizes the ITO surface without affecting the light absorption by the active layer sig-
nificantly. PEDOT:PSS has high electrical conductivity and low temperature solution processability, which 
makes it an ideal hole transport material. Though it is used as a hole transport layer, its electrical inhomogeneity 
property prevents it to be an electron blocking layer [27]. Moreover, the hygroscopic and acidic nature of 
PEDOT:PSS can degrade the device performance. Metal oxides like VOx, NiOx and MnOx have been used as a 
replacement of PEDOT:PSS but the rough interfaces formed by metal oxides can also degrade device perfor-
mances [28] [29]. The future of P3HT:PCBM organic solar cells will depend on the improvement of their con-
version efficiency. Currently organic solar cells shows relatively lower efficiency (3.5% or lower) when com-
pared to the inorganic solar cells. Therefore, more studies are needed to enhance and understand the conversion 
efficiency of these devices. In addition, the traditional equivalent OSC circuit used to describe OSC does not 
accurately describe devices that have incorporated novel interfacial layers [30]. 

The goal of this work is to investigate the properties of OSC devices with an added AgOx interfacial layer 
between the PEDOT:PSS and ITO and to develop a model that best describes this device. The added AgOx layer 
increases the fill-factor (FF), power conversion efficiency (PCE) and reduces the physical contact of PEDOT:PSS 
with ITO. While developing a revised model, we also revisit some earlier models for different solar cells. This 
methodology will correlate between theoretically constructed current-voltage (I-V) plots and experimental I-V 
plots. Then based on the I-V correlation results a model will be suggested that bests describes the P3HT:PCBM 
organic solar cell. 

2. Experimental Details 
The fabrication of the device consists of five layers. Figure 1 shows the device structure of the organic solar cell.  
 

 
Figure 1. Device structure of the organic solar cell. 
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Patterned ITO coated glass substrates were cleaned in ultrasonic baths of methanol, acetone and isopropanol, 
followed by 15 min ultraviolet ozone (UVO) treatment. On top of the ITO, 1 nm of Ag metal was deposited by 
thermal evaporation at a pressure of ~10–7 Torr followed by 1 min UVO treatment. Using Ocean Optics double 
channel spectrometer (model DS200) optical transmittance of bare ITO and ITO with AgOx layer, were measured 
in 300 - 800 nm wavelength range. Electron acceptor material PCBM and electron donor P3HT were weighed 
(1:1 w/w) and dissolved in 1, 2-dichlorobenzene (DCB). PEDOT:PSS solution was spin coated at 5000 rpm for 
60 s. After that photoactive layers were spin-coated at 600 rpm for 1 min. It was then annealed at 120˚C on a hot 
plate for 30 mins, which corresponds to a layer thickness of 250 nm. Finally, 0.7 nm of LiF was thermally depo-
sited followed by 80 nm Al cathodes in vacuum. During thermal evaporation a shadow mask was used to define 
0.2 cm2 of active area. Under simulated AM 1.5 global solar irradiation photo current density-voltage (J-V) 
measurements were performed using a xenon-lamp solar simulator. 

3. Equivalent Circuit 
In order to understand the electrical behavior and observe how the device parameters changes with any kind of 
applied treatment (bias, illumination, etc.) to the device, it is modeled with discreet electrical components such 
as voltage or current sources, diodes and resistors. It provides a scientific and realistic physical explanation for 
the OPV behavior. 

3.1. The Single Diode Model 
PV solar cells typically can be represented by an equivalent circuit consisting of a single diode as shown in Figure 
2. The resistor and current values depend on the illuminated area. But the dark current depends on the actual de-
vice area. 

Assuming that, for voltage dependence of the current the Shockley diode equation can be used and ID is the 
current through the ideal diode D then applying Kirchoff’s current and voltage laws in currents nodes and vol-
tage loops we can formulate the following equation: 

0 exp 1SH S SH
L

SH SH S SH S

R V IR RVI I I
R R R nkT q R R

    +
= − − − ⋅    + +    

                   (1) 

Now, considering an ideal solar cell that comprises only ideal [31] diode D in the dark so that RSH = ∞ and 
RS = 0 then Equation (1) can be rewrite as: 

0 exp 1D
VI I

nkT q
  

= −  
  

                               (2) 

Under illumination, the light generates a photo current IL which is simply added with the normal rectifying 
characteristics of the diode D: 

0 exp 1D L
VI I I

nkT q
  

= − −  
  

                             (3) 

 

 

IL 
D RSH 

RS 

 
Figure 2. The single diode model equivalent circuit. 
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By setting the output current to zero (I = 0) in Equation (1), we obtain: 

0

ln 1L OC SH
OC

I V RnkTV
q I

 −
= + 

 
                           (4) 

 

3.2. The Two Diode Model 
The two-diode model can be described from the lumped parameters of Figure 3. Using the Shockley diode equ-
ations, we obtain: 

01 02exp 1 exp 1SH S SH S SH
L

SH SH S SH S SH S

R V IR R V IR RVI I I I
R R R nkT q R R nkT q R R

        + +
= − − − − −        + + +        

  (5) 

Setting I = 0, we get the equation for VOC which is 

01 02

ln 1L OC SH
OC

I V RnkTV
q I I

 −
= + − 

                             (6) 

Lower mobility and smaller charge carrier concentration lead to considerably smaller currents in most organic 
solar cells. In fact, both the dark and light currents are about 1000 times smaller; hence, the light current in these 
devices is about as large as the dark current in silicon devices. The dark current is still about 900 times smaller 
and according to Equation (6) a similar VOC is expected. 

4. Result and Discussion 
According to Equation (6), both the ideal diode D and RSH are now the components that determine VOC. This as-
sumes that RSH is not very high and the device is in the dark and by applying a positive voltage across the cell 
electrodes a voltage drop can be created across RSH which equal to the voltage VD across the ideal diode D. The 
current that can pass through the diode D at VD is determined by its I-V characteristic. The sum of the currents 
through D and RSH yields the current through the electrodes of the solar cell for a given applied voltage. Upon 
illumination, the current source generates the current IL some of which passes through the diode where a voltage 
drop is generated that is big enough to allow the rest of IL to go through RSH if the electrodes are open. The same 
voltage can be measured with a voltmeter with high internal resistor across the device electrodes and is then 
termed open circuit voltage VOC. 

Figure 4 shows that the I-V characteristics changes if the shunt resistance varies between 100 ohm and 3000 
Ohm assuming the shown values for RS, IL, and I0. If RSH > 1500 Ohm the shape (FF, VOC) of the IV curves re-
mains virtually unchanged and the current shows no significant field dependence for negative bias. 

However, clearly smaller RSH values have detrimental effects on the IV curve. The slope (field dependence) in 
the third quadrant increases considerably, VOC approaches zero and the FF reaches its theoretical minimum of 
0.25 very quickly. However, the short circuit current is not affected since the current through the shunt can be 
neglected if RS  RSH. 

 

IL 
D2 RSH 

RS 

D1 

 
Figure 3. The tewo diode model equivalent circuit. 
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Figure 5 shows the I-V characteristics with increasing series resistance, assuming the same parameters as 
above. While the slope in the third quadrant remains unchanged the slope in the first quadrant starts to decrease 
considerably when RS reaches the same order of magnitude as RSH. The effect of the large RS even extends into 
the third quadrant thereby decreasing FF to its minimum. 

Moreover, if the two resistors have similar values, the I-V curve is dominated by their Ohmic characteristics 
(the inverse slope in the 1 quadrant is equal to RS) and the ideality factor or voltage dependence of D may then 
have little influence. Note that in contrast to the effect of RSH the short circuit current can decrease but the open 
circuit voltage cannot be affected at all—since there is no current through RS at VOC. 

Once all the parameters for the equivalent circuit are determined, using the raw data we have constructed si-
mulated I-V plot in order to develop a model that best describe this particular OSC. Considering the effect of 
RSH and RS as discussed above, a resistor RS1 in series with one diode is added. RS1 accounts for the recombina-
tion of the carriers. Figure 6 shows the proposed model. The ideality factor n for both of the diodes was as-
sumed equal with an approximation corresponding to the Shockley-Read-Hall recombination current density in 
the space-charge region [32]. The current equation for the proposed two diode model is given by Equation (7). 

1
01 02exp 1 exp 1SH S S SH S SH

L
SH SH S SH S SH S

R V IR IR R V IR RVI I I I
R R R nkT q R R nkT q R R

        + + +
= − − − − −        + + +        

   (7) 
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Figure 4. Effect of RSH with hypothetical values of RS = 1 Ohm (de-
vice area 0.2 cm2), under 100 mW/cm2 illumination intensity. 
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Figure 5. Effect of RS with hypothetical values of RSH = 400 Ohm 
(device area 0.2 cm2), under 100 mW/cm2 illumination intensity. 
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Figure 6. Proposed two diode model equivalent circuit. 
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Figure 7. Simulation and experimental curves of I-V characteristics 
for the organic solar cell under 100 mW/cm2 illumination intensity 
(device are 0.2 cm2). 

 
Figure 7 shows the I-V plots for experimental data and simulated plots for the proposed model, single and 

two diode models under 100 mW/cm2 illumination intensity. It is observed that the I-V characteristics generated 
from our proposed model fits well with the experimental result. The average percentage variation is 2.38%. Us-
ing a AgOx interfacial layer between PEDOT:PSS and ITO increases the power conversion efficiency by 28%. 

5. Conclusion 
The device with added AgOx interfacial layer showed 3.5% PCE and 33% increase of FF. Earlier single diode 
and two diode models were unable to describe the device behavior; hence, a two diode model was developed. 
Based on the experimental values and the simulated result under same illuminated intensity, the two diode mod-
els correlated with the experimental result showed only a 2.4% variation. 
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