
Circuits and Systems, 2013, 4, 202-208
http://dx.doi.org/10.4236/cs.2013.42027 Published Online April 2013 (http://www.scirp.org/journal/cs)

Timing-Driven Variation-Aware Partitioning and
Optimization of Mixed Static-Dynamic CMOS Circuits

Kumar Yelamarthi
School of Engineering and Technology, Central Michigan University, Mt Pleasant, USA

Email: k.yelamarthi@ieee.org

Received August 20, 2012; revised November 6, 2012; accepted November 13, 2012

Copyright © 2013 Kumar Yelamarthi. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The advancement in CMOS technology has surpassed the progress in computer aided design tools, creating an avenue
for new design optimization flows. This paper presents a design level transistor sizing based timing optimization algo-
rithms for mixed-static-dynamic CMOS logic designs. This optimization algorithm performs timing optimization
through partitioning a design into static and dynamic circuits based on timing critical paths, and is further extended
through a process variation aware circuit level timing optimization algorithm for dynamic CMOS circuits. Implemented
on a 64-b adder and ISCAS benchmark circuits for mixed-static-dynamic CMOS, the design level optimization algo-
rithm demonstrated a critical path delay improvement of over 52% in comparison with static CMOS implementation by
state-of-the-art commercial optimization tools.

Keywords: Timing Optimization; Dynamic CMOS Circuits; Process Variations; Delay Uncertainty

1. Introduction

The advancement in CMOS technology has created an
avenue for several new initiatives, while at the same time
has also presented challenges such as timing uncertainty

max min , where Tmax and Tmin are maximum and
minimum delays from process variations, timing closure,
reliability and leakage current. At 180 nm CMOS tech-
nology, process variations have caused about 30% varia-
tion in chip frequency, along with 20× variation in chip
leakage [1]. This magnitude of process variations is pre-
dicted to increase and cause detrimental effects as CMOS
technology is transitioning to 22 nm. For instance, the
magnitude of intra-die channel length variations have
been estimated to increase from 35% of total variation in
130 nm, to 60% in 70 nm CMOS technology; and varia-
tion in wire width, height, and thickness is also expected
to increase from 25% to 35% [2], highlighting the re-
quirement for new and efficient timing optimization me-
thods.

 T T  

Significant literature exists on transistor sizing [3-6],
but most existing transistor sizing algorithms focus to-
wards static CMOS circuits and technologies using dual
threshold voltages. TILOS [4] presented an algorithm
used for iteratively sizing transistors by a factor in the
critical path. However, this algorithm does not guarantee
a convergence of timing optimization and is not a deter-

ministic approach. MINFLOTRANSIT [5] is an algo-
rithm proposed for transistor sizing based on iterative re-
laxation method but requires generation of directed acy-
clic graphs iteratively for timing optimization.

Several methods to reduce the effect of process varia-
tions were presented in [1,7-10]. These methods deal
with statistical variations and are not optimal for designs
with large number of parameter variations. The Adaptive
Body Biasing (ABB) technique presented in [1,9] is im-
plemented on post-silicon designs where each die re-
ceives a unique bias voltage thus reducing uncertainty of
the frequency variation. However, it is not feasible for
addressing intra-die variations, as each block in the de-
sign requires a unique bias voltage. Another limitation
using this method is the increased leakage power due to
reduction in the threshold voltage. A keeper based method
was presented in [10] for designs with large number of
parallel stacks similar to NOR gates, but is not optimal
for designs without parallel stacks as it requires addi-
tional hardware to program the keepers.

Timing being a crucial factor in defining performance
of a design, requirements to meet timing constraints have
been gaining importance. One of the circuit styles that
have been used predominantly for timing optimization is
the dynamic CMOS logic. The absence of complemen-
tary logic implementation in dynamic logic reduces the

Copyright © 2013 SciRes. CS

K. YELAMARTHI 203

overall capacitance and aids towards increasing the tim-
ing performance compared to its static CMOS counter-
part. This advantage comes at the cost of power con-
sumption, and increased complexity in transistor sizing
due to charge sharing, noise-immunity, and sensitivity to
process variations. With static and dynamic circuits hav-
ing their unique advantages, using both the circuit styles
efficiently results in superior design performance. Tim-
ing constraints can be met through optimizing the critical
path delay at the cost of increasing delay in non-critical
paths. Based on these properties and our previous work
[11,12], this paper presents a design level timing optimi-
zation flow for mixed-static-dynamic CMOS logic. This
algorithm performs timing optimization by finding the
timing critical paths in the design, substituting them with
performance optimized custom dynamic CMOS circuits,
to result in an effective balance of power, timing, and
area. One of the unique advantages of the proposed algo-
rithm is its ability to embed into the existing optimization
flows for easy adaptability.

This paper is organized as follows. Section 2 intro-
duces dynamic CMOS circuit logic and a new circuit
level optimization (CLO) algorithm for optimization of
worst-case delay, delay uncertainty, and delay sensitivity.
Validation of the proposed CLO algorithm is presented
in Section 3 through implementation on several ISCAS
benchmark circuits. Further, based on the circuit level
timing optimization algorithm, a design level optimiza-
tion algorithm for mixed-static-dynamic CMOS logic cir-
cuits is presented in Section 4, and validation through
implantation on ISCAS benchmark circuits is presented
in Section 5. Finally, conclusion is presented in Section 6.

2. Circuit Level Optimization

The delay of dynamic CMOS circuits is highly depend-
ent on the number and size of transistors on the critical
path. Increasing transistor sizes in a critical path in-
creases the discharging current, thus reducing path delay.
However, increasing transistor sizes to reduce delay in-
creases load capacitance of channel-connected transistors
on other paths and also their respective delays. Consider
a 2-b Weighted Binary-to-Thermometric Converter
(WBTC) as shown in Figure 1 with two timing paths:
path-A and path-B highlighted. An experiment of opti-
mizing path-A was performed by gradually increasing
sizes of T7, T8, T12 and T18. This reduced the delay of
path-A by 4%, but increased delay of path-B by 9.3%
due to common channel connections of transistors in
both the paths. Increasing widths of T7, T8, T12 and T18 in
path-A causes the capacitive load of T4, T11, T15 and T16
to increase, thus increasing delay of path-B. This com-
plexity of effective transistor sizing for increased design
performance increases along with the number of transis-
tors and paths in the design.

Figure 1. 2-b weighted BTC.

Typically, delay is identified based on the mean (μ)
value from the delay distribution accounting only for
intra-die variations. As inter-die variations are equally
important, standard deviation (σ) from the delay distribu-
tion should be considered as well. The proposed circuit
level optimization (CLO) algorithm ranks the critical
paths based on the sum of mean and standard deviation
(μ + σ), thus accounting for both intra-die and inter-die
variations. In addition to critical path delay, CLO algo-
rithm also minimizes delay sensitivity (τ = σ/μ) from pro-
cess variations.

As charge/discharge time of transistors near vdd/ground
is higher compared to the transistors near the output, high
importance (weight) is assigned to transistors near vdd/
ground. As increasing size of transistor that appears in
the most number of paths reduces the overall delay, the
number of timing paths a transistor is present in is com-
puted and denoted as repeats. The initial step in CLO
algorithm is to size adjacent transistors on every path
with a fixed size ratio of 1.1 for faster convergence. Once
the repeat and the weight of all transistors are found, pro-
cess-variation aware Monte Carlo simulations are per-
formed to obtain delay profiles of each path. Then tran-
sistors on the top 20% critical paths are grouped to set-x,
and their new sizes are increased and calculated by
Equation (1).

As delay of critical path is dependent on loading from
common channel-connected transistors, reducing loading
reduces the overall delay. The 1st order connection tran-
sistors in the set-x are identified and grouped to set-y.

Copyright © 2013 SciRes. CS

K. YELAMARTHI 204

Then, transistors in set-y that are not in set-x of the cur-
rent iteration are grouped to set-z. For each transistor in
set-z, it is checked if the transistor is present in set-x of
previous iteration. If so, its size is decreased and calcu-
lated by Equations (2) and (3). If not, its size is decreased
and calculated by Equation (4). Once new transistor sizes
are determined, process-variation aware Monte Carlo si-
mulations are performed to identify the new top 20% cri-
tical paths. If the new worst-case path delay is higher
than in the previous iteration, sizes of transistors in set-z
of the new worst-case path are changed to the average of
new and old sizes. Iterations are repeated until the solu-
tion converges to an optimum.

new old

repeat
Size Size 1

1 repea
 



s
weight

ts

 
 


 (1)

temp old

repeat
Size Size 1

1 rep
 


s

weight
eats

 
 

 
 (2)

old tempSize

2

 
 
 

new

Size
Size  (3)

new old

repeat
Size Size 1

1 repeat
 


s

weight
s

 
 

 

 T T  

of various sizes and structures.

onvergence profile.

Iteration
tainty

 (4)

3. Implementation of CLO Algorithm

Figure 1 shows a 2-b weighted binary-to-thermometric-
converter (WBTC) used in parallel adders. At the onset
of the CLO algorithm implementation, the critical path in
2-b WBTC is path-1 with a delay of 355 ps. After the
first iteration, critical path delay reduced from 355 ps to
244 ps. Repeated iterations of the CLO algorithm re-
duced the delay to converge at an optimum of 157 ps
while accounting for a 55.77% delay improvement. In
addition, CLO algorithm also reduced delay uncertainty

max min from 158 ps to 62 ps while accounting
for 60.75% improvement as presented in Table 1.

Table 2 shows the percentage reduction in delay sen-
sitivity (τ = σ/μ) of 2-b WBTC at different operating tem-
peratures. With an average 9% reduction in delay sensi-
tivity, the CLO algorithm works efficiently at different
temperatures. This reduction in delay sensitivity of criti-
cal paths came at the cost of increase in delay sensitivity
of non-critical paths (4, 5, 13, 14, 18, 28 and 31). Ranks
from delays of these paths are shown in Table 3. In-
crease in delay sensitivity of these paths is acceptable as
majorityof paths except path-31 are not critical paths. Ef-
ficiency of the CLO algorithm is further demonstrated
through implementation on several circuits using IBM
130 nm CMOS process. The design profiles along with
performance improvement are shown in Table 4, vali-
dating that CLO algorithm works effectively for circuits

Table 1. 2-b WBTC delay c

Critical Worst-case delay (μ + σ) Delay uncer
path (psec) (psec)

0 1 355 158

1 1 244 112

2 1 209 91

3 3 185 84

4 25 171 77

5 19 170 76

6 25 166 72

7 21 166 65

8 25 161 67

9 8 157 57

10 25 157 5762

Im vement)pro (% 55.77 60.75

Table 2. 2-b WBTC delay se sitivity improvement (%) at

emp 75˚C Temp 100˚C Temp 120˚C

n
different temperatures.

 Temp 27˚C T

Path-1 21.86 20.48 19.74 18.9

Path-2 21.86 20.48 19.74 18.9

Path-3 17.6 21.24 16.12 17.07

Path-4 −6.89 13.93 −6.39 −7.03

Path-5 16.26 −9.08 14.88 15.03

Path-6 14.36 17.12 14.02 13.87

Path-7 6.23 14.68 6.89 7.78

Path-8 16.26 3.98 14.88 15.03

Path-9 14.36 17.12 14.02 13.87

Path-10 6.23 14.68 6.89 7.78

Path-11 6.93 1.62 5.62 5.75

Path-12 6.31 6.94 4.25 4.19

Path-13 −0.97 6.52 −1.23 −1.03

Path-14 −10.86 −9.35 −11.03 −10.6

Path-15 14.95 5.97 14.45 14.58

Path-16 15.16 14.5 15.09 14.94

Path-17 15.2 11.84 14.71 14.22

Path-18 15.19 −0.17 10.01 9.92

Path-19 14.95 29.77 14.45 14.58

Path-20 15.16 14.5 15.09 14.94

Path-21 15.2 11.84 14.71 14.22

Path-22 7.9 14.88 8.91 9.01

Path-23 9.81 6.87 9.84 10.29

Path-24 8.37 4.9 8.51 8.4

Path-25 4.45 6.92 2.52 1.72

Path-26 10.7 14.37 12.87 12.49

Path-27 4.38 2.57 3.79 3.58

Path-28 4.14 −5.07 5.97 6.18

Path-29 10.7 17.49 12.87 12.49

Path-30 4.29 7.48 7.91 8.71

Path-31 2.27 −7.1 1.78 1.29

Path-32 5.43 6.77 4.62 4.58

Path-33 7.7 1.85 7.1 6.82

Path-34 2.49 3.06 2.68 2.94

Average 9.35 8.92 9.00 8.98

Copyright © 2013 SciRes. CS

K. YELAMARTHI

Copyright © 2013 SciRes. CS

205

e 3. 2-b C path s at different iterations and temperatures.

Temp Temp = 120˚C

Tabl WBT rank

 = 27˚C Temp = 75˚C Temp = 100˚C

Iter-1 Iter-10 Iter- 10 Iter- -10 Iter -10 1 Iter- 1 Iter -1 Iter

Path-4 23 8 24 9 25 10 25 10

Path-5 5 12 5 15 5 16 5 17

Path-13 25 11 25 10 24 9 24 9

Path-14 26 10 26 11 26 11 26 13

Path-18 9 21 9 22 9 4 9 4

Path-28 17 24 17 24 17 23 17 23

Path-31 13 2 13 2 13 2 14 2

Ratio did not decr Ratio did not decrease and path became ical ease crit

Table 4. Timing optimization esults from CLO algorithm.

Design # Inputs # Outputs) Improvement (%)

 r

Paths # Transistors # Iterations Initial Delay (ps) Final Delay (ps

CCT-2 8 6 6 7 10 226 99 56.19

2-

C

Average 55.31

b WBTC 4 6 34 28 9 355 135 61.97

4-b UWBTC 4 15 83 83 6 152 89 41.44

74181-CLA 10 6 18 24 10 209 94 55.02

74181-E mod 8 6 6 7 9 225 97 56.88

C2670-CLA 24 1 15 39 7 218 93 57.33

C3540-CC5 7 1 4 7 9 484 192 60.33

C3540-CC8 7 3 35 17 10 427 202 52.69

C3540-CC9 8 3 22 47 7 283 156 44.87

3540-UM12-7 9 1 24 50 8 485 162 66.59

4. Design Level Optimization through

Co sign and op-

common limitation in most
de

dresses some of these challenge in timing optimization,

nd optimization tool along with design con-
st

are replaced with black
bo

Mixed-Static-Dynamic Circuits

nventionally, synthesis tools perform de
timization using static CMOS logic [13,14]. It is not un-
common for the synthesis tools to not find an acceptable
solution in terms of timing. This challenge can be an-
swered through utilizing the advantage of fast timing in
dynamic logic. Dynamic logic has smaller gate capaci-
tances compared to their static CMOS counterparts, which
accounts for a significant speedup [3,15]. With static and
dynamic logic having their respective advantages of low
power and low delay, an optimal balance can be obtained
by partitioning the design to use both static and dynamic
logic in an effective manner.

At the architecture level, a
sign optimization flows is the limited accountability

for process variations. Typically after placement and
route, if a design fails to meet the timing constraints, op-
timization flow is re-iterated. Even after several itera-
tions, design may still not meet the timing constraint, and
miss the time-to-market window. The design level opti-
mization (DLO) algorithm proposed in Figure 2 ad-

and also accounts for process variations. Utilizing the
CLO algorithm proposed in previous section, the DLO
algorithm partitions the design to effectively utilize both
dynamic and static CMOS logic to meet the timing con-
straints.

The high level description of a design is input to a
synthesis a

raints and target library. After synthesis and optimiza-
tion, Static Timing Analysis (STA) is performed to iden-
tify the critical modules in the design. A strategy similar
to the circuit level optimization algorithm is followed to
find the critical modules in the design. These modules
are identified based on the number (repeats) and length
(weight) of critical paths in each. Once identified, custom
dynamic CMOS circuits are designed at transistor level
for greater flexibility, and timing optimization is per-
formed using the circuit level optimization algorithm
presented in the previous section.

Next, timing critical static CMOS modules from the
commercial tool optimized design

x models generated from the dynamic CMOS circuits.
With the new design comprising both static and dynamic

K. YELAMARTHI 206

Figure 2. Design level optimization algorithm.

circuit ock
skew, setup and hold time v lation) is performed. If the

emented
 ISCAS

5). Though STA, modules CC5 and

s, clock tree design and timing verification (cl
io

timing constraints have been met, the design is exported
for placement and routing. If not, the new timing critical
modules are further identified and optimized using circuit
level optimization algorithm presented in the previous
section. This iterative process is a deterministic approach
moving towards the optimum.

5. Implementation of DLO Algorithm

The design level optimization algorithm was impl
on a number of combinational circuits, including
benchmarks, and a high performance 64-b adder using
IBM 130 nm CMOS process. Figure 3 shows the block
diagram of the ISCAS benchmark c3540, an 8-b ALU
with 1669 gates. After synthesis and optimization using
the commercial tool, STA was performed. Delays of top
5 critical paths (highlighted) in c3540 were found to be
3.59 ns, 3.46 ns, 3.16 ns, 3.13 ns, and 2.97 ns respec-
tively. Modules with highest delay in c3540 were found
to be M5 with a delay of 1.63 ns, followed by M4 with a
delay of 0.78 ns, and M12 with a delay of 0.63 ns (high-
lighted in Figure 3). The modules chosen for timing op-
timization from the STA are M5 and M12. Although M4
had the second highest delay, it was not chosen for opti-
mization, as it does not repeat in as many critical paths as
M5 and M12. This method of choosing only the critical
modules during optimization is similar to circuit optimi-
zation algorithm, and helps limit the increase in area and
power consumption.

Figure 4 shows the data flow schematic of M5-UM5_6
(critical module in M

Figure 3. ISCAS benchmark-C3540 [16].

Figure 4. Timing critical modules in M5-UM5_6 of C3540.

Copyright © 2013 SciRes. CS

K. YELAMARTHI

Copyright © 2013 SciRes. CS

207

Table 5. Design level optimiz

Delay (ns)

ation algorithm results.

Design # Inputs # Outputs # Gates
Commercial Tool Proposed Algorithm

Improvement (%)

74181 14 8 74 0.87 0.37 57.47

c2670 233 140 1193 1.34 0.73 45.52

c3540 50 22 1669 3.59 2.13 40.66

adder64 130 65 1491 1.64 0.58 64.63

Average 52.07

CC9 are found to be critical modules (highlighted in Fig-
ure 4), and are optimized using circuit level optimization
algorithm. Accordingly, delays of these custom dynam
CMOS circuits were reduced by
tively. Prior to implementing the circuit level optimiza-
tion a , CC5 ay i rst
stage of M5-UM5_6. This optimization reduced delay of
CC5, de CC8 to he modu with highe ay
in the tage of M M5_6. cceptable, as
CC8 ot reside i he top 2 critical
C354 ot to limi overall ormance

A similar approach was followed in optimi 2-
UM12_7 using the design level optimization algorithm,

e de-
la

MOS logic ci
with high number of timing paths. Second, we propose a

robust to process variation-aware load balance of multi-
ple paths algorithm for timing optimization of dynamic
CMOS logic. And last, we demonstrate the robustness of

delay, delay uncertainty, and
delay sensitiv her, this paper also presented a de-

-
logi ented it on several

ISCA nchmark circui d a 64-b adder. Efficiency
of th level optimi n algorithm flo rther
valid hrough demon ng an average t-case
dela ment of 64 comparison w e-of-
the-art commercial optimization tools.

REFERENCES

ic
57% and 39% respec- algorithm in optimization of

lgorithm had the highest del n the fi

but ma be t le st del
 first s 5-U This is a
does n n t 0% paths in
0 so as n t the perf .

zing M1

and its delay was reduced from 485 ps to 178 ps, a 63%
improvement. One iteration of algorithm reduced delays
of top five critical paths to 2.42 ns, 2.29 ns, 2.28 ns, 2.38
ns, 2.22 ns respectively. Through implementation of this
optimization algorithm, the worst-case delay of c3540
was reduced from 3.59 ns to 2.13 ns, a 40% improvement
over the results obtained from the commercially available
state-of-the-art optimization tool. Similarly, the design
level optimization algorithm was implemented on several
other ISCAS benchmark circuits and a 64-b adder. Through
implementation on c2670, the algorithm reduced th

y from 1.34 ns to 0.73 ns, a 45% improvement over the
results obtained from acommercial tool. Also, the pro-
posed algorithm reduced delay of 64-b adder from 1.64
ns to 0.58 ns. Timing optimization results obtained from
the implementation of proposed design level optimiza-
tion algorithm are shown in Table 5.

6. Conclusion

Effective performance optimization techniques are vital
to the success of VLSI circuits as timing optimization
and noise tolerance become ever-increasing problems
with the relentless scaling of CMOS process technology.
A desirable performance optimization technique should
be able to improve the circuit robustness against all these
challenges, be suitable for all logic functions, and have
very low overhead in silicon area, delay, and power con-
sumption. In this paper, such a performance optimization
technique is proposed. First, we identify the complexity
in timing optimization of dynamic C rcuits

ity. Furt
ptimization alsign level o

namic CMOS
gorithm for

c, and has implem
 mixed-static-dy

S be ts an
e design zatio w is fu
ated t strati wors

y improve % in ith stat

[1] J. Tschanz, K. Bowman and V. De, “Variation-Tolerant
Circuits: Circuit Solutions and Techniques,” Design
Automation Conference, San Diego, 13-17 June 2005, pp.
762-763.

[2] P. S. Zuchowski, P. A. Habitz, J. D. Hayes and J. H.
Oppold, “Process and Environmental Variation Impacts
on ASIC Timing,” IEEE/ACM International Conference
on Computer Aided Design, San Jose, 7-11 November
2004, pp. 336-342.

[3] M. Zhao and S. S. Sapatnekar, “Timing-Driven Partition-
ing and Timing Optimization of Mixed Static-Domino
Implementations,” IEEE Transactions on CAD of Inte-
grated Circuits and Systems, Vol. 19, No. 11, 2000, pp.
1322-13360. doi:10.1109/43.892856

[4] J. P. Fishburn and A. E. Dunlop, “TILOS: A Posynomial
Programming Approach to Transistor Sizing,” Interna-
tional Conference on Computer Aided Design, Delft, 7-10
October 1985, pp. 326-328.

[5] V. Sundararajan, S. S. Sapatnekar and K. K. Parhi, “Fast
and Exact Transistor Sizing Based on Iterative Relaxa-
tion,” IEEE Transactions on CAD, Vol. 21, No. 5, 2002,
pp. 568-581.

[6] A. R. Conn, I. M. Elfadel, W. W. Molzen Jr., P. R.
O’Brien, P. N. Strenski, C. Visweswariah and C. B.
Whan, “Gradient-Based Optimization of Custom Circuits
Using a Static-Timing Formulation,” Design Automation
Conference, New Orleans, 21-25 June 1999, pp. 452-459.

[7] K. A. Bowman, S. G. Duvall and J. D. Meindl, “Impact of
Die-to-Die and Fluctuations on the Within-Die Parameter
Maximum Clock Frequency Distribution for Gigascale
Integration,” IEEE Journal of Solid-State Circuits, Vol.
37, No. 2, 2002, pp. 183-190. doi:10.1109/4.982424

K. YELAMARTHI 208

[8] P. S. Zuchowski, P. A. Habitz, J. D. Hayes and J. H.
Oppold, “Process and Environmental Variation Impacts

Parameter Variations and Impact on

nsor for Nanometer

on ASIC Timing,” IEEE/ACM International Conference
on Computer Aided Design, San Jose, 7-11 November
2004, pp. 336-342.

[9] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Kesha-
varzi and V. De, “

Circuits and Microarchitecture,” Design Automation Con-
ference, Anaheim, 2-6 June 2003.

[10] C. H. Kim, K. Roy, S. Hsu, R. Krishnamurthy and S.
Borkar, “A Process Variation Compensating Technique
with an On-Die Leakage Current Se
Scale Dynamic Circuits,” IEEE Transactions on VLSI
Systems, Vol. 14, No. 6, 2006, pp. 646-649.
doi:10.1109/TVLSI.2006.878226

[11] K. Yelamarthi and C.-I. H. Chen, “Process Variation-

SM.2008.2011665

Aware Timing Optimization for Dynamic and Mixed-
Static-Dynamic CMOS Logic,” IEEE Transactions on

Semiconductor Manufacturing, Vol. 22, No. 1, 2009, pp.
31-39. doi:10.1109/T

t Technology Confer-

l Confer-

[12] V. Chandrasekhar, C.-I. H. Chen and K. Yelamarthi, “Low-
Cost Low-Power Self-Test Design and Verification for
On-Chip ADC in System-On-a-Chip Applications,” IEEE
Instrumentation and Measuremen
ence, Sorrento, 24-27 April 2006.

[13] Synopsys Design Compiler, http://www.synopsys.com

[14] Cadence Encounter, http://www.cadence.com

[15] R. Puri, “Design Issues in Mixed Static-Dynamic Circuit
Implementation,” Proceedings of Internationa
ence on Computer Design, San Jose, 5-7 October 1998,
pp. 270-275.

[16] M. Hansen, H. Yalcin and J. P. Hayes, “Unveiling the
ISCAS-85 Benchmarks: A Case Study in Reverse Engi-
neering,” IEEE Design and Test, Vol. 16, No. 3, 1999, pp.
72-80. doi:10.1109/54.785838

Copyright © 2013 SciRes. CS

