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ABSTRACT 

The advancement in CMOS technology has surpassed the progress in computer aided design tools, creating an avenue 
for new design optimization flows. This paper presents a design level transistor sizing based timing optimization algo- 
rithms for mixed-static-dynamic CMOS logic designs. This optimization algorithm performs timing optimization 
through partitioning a design into static and dynamic circuits based on timing critical paths, and is further extended 
through a process variation aware circuit level timing optimization algorithm for dynamic CMOS circuits. Implemented 
on a 64-b adder and ISCAS benchmark circuits for mixed-static-dynamic CMOS, the design level optimization algo- 
rithm demonstrated a critical path delay improvement of over 52% in comparison with static CMOS implementation by 
state-of-the-art commercial optimization tools. 
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1. Introduction 

The advancement in CMOS technology has created an 
avenue for several new initiatives, while at the same time 
has also presented challenges such as timing uncertainty 

max min , where Tmax and Tmin are maximum and 
minimum delays from process variations, timing closure, 
reliability and leakage current. At 180 nm CMOS tech- 
nology, process variations have caused about 30% varia- 
tion in chip frequency, along with 20× variation in chip 
leakage [1]. This magnitude of process variations is pre- 
dicted to increase and cause detrimental effects as CMOS 
technology is transitioning to 22 nm. For instance, the 
magnitude of intra-die channel length variations have 
been estimated to increase from 35% of total variation in 
130 nm, to 60% in 70 nm CMOS technology; and varia- 
tion in wire width, height, and thickness is also expected 
to increase from 25% to 35% [2], highlighting the re- 
quirement for new and efficient timing optimization me- 
thods. 

 T T  

Significant literature exists on transistor sizing [3-6], 
but most existing transistor sizing algorithms focus to- 
wards static CMOS circuits and technologies using dual 
threshold voltages. TILOS [4] presented an algorithm 
used for iteratively sizing transistors by a factor in the 
critical path. However, this algorithm does not guarantee 
a convergence of timing optimization and is not a deter- 

ministic approach. MINFLOTRANSIT [5] is an algo- 
rithm proposed for transistor sizing based on iterative re- 
laxation method but requires generation of directed acy- 
clic graphs iteratively for timing optimization. 

Several methods to reduce the effect of process varia- 
tions were presented in [1,7-10]. These methods deal 
with statistical variations and are not optimal for designs 
with large number of parameter variations. The Adaptive 
Body Biasing (ABB) technique presented in [1,9] is im- 
plemented on post-silicon designs where each die re- 
ceives a unique bias voltage thus reducing uncertainty of 
the frequency variation. However, it is not feasible for 
addressing intra-die variations, as each block in the de- 
sign requires a unique bias voltage. Another limitation 
using this method is the increased leakage power due to 
reduction in the threshold voltage. A keeper based method 
was presented in [10] for designs with large number of 
parallel stacks similar to NOR gates, but is not optimal 
for designs without parallel stacks as it requires addi- 
tional hardware to program the keepers. 

Timing being a crucial factor in defining performance 
of a design, requirements to meet timing constraints have 
been gaining importance. One of the circuit styles that 
have been used predominantly for timing optimization is 
the dynamic CMOS logic. The absence of complemen- 
tary logic implementation in dynamic logic reduces the  
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overall capacitance and aids towards increasing the tim- 
ing performance compared to its static CMOS counter- 
part. This advantage comes at the cost of power con- 
sumption, and increased complexity in transistor sizing 
due to charge sharing, noise-immunity, and sensitivity to 
process variations. With static and dynamic circuits hav- 
ing their unique advantages, using both the circuit styles 
efficiently results in superior design performance. Tim- 
ing constraints can be met through optimizing the critical 
path delay at the cost of increasing delay in non-critical 
paths. Based on these properties and our previous work 
[11,12], this paper presents a design level timing optimi- 
zation flow for mixed-static-dynamic CMOS logic. This 
algorithm performs timing optimization by finding the 
timing critical paths in the design, substituting them with 
performance optimized custom dynamic CMOS circuits, 
to result in an effective balance of power, timing, and 
area. One of the unique advantages of the proposed algo- 
rithm is its ability to embed into the existing optimization 
flows for easy adaptability. 

This paper is organized as follows. Section 2 intro- 
duces dynamic CMOS circuit logic and a new circuit 
level optimization (CLO) algorithm for optimization of 
worst-case delay, delay uncertainty, and delay sensitivity. 
Validation of the proposed CLO algorithm is presented 
in Section 3 through implementation on several ISCAS 
benchmark circuits. Further, based on the circuit level 
timing optimization algorithm, a design level optimiza- 
tion algorithm for mixed-static-dynamic CMOS logic cir- 
cuits is presented in Section 4, and validation through 
implantation on ISCAS benchmark circuits is presented 
in Section 5. Finally, conclusion is presented in Section 6. 

2. Circuit Level Optimization 

The delay of dynamic CMOS circuits is highly depend- 
ent on the number and size of transistors on the critical 
path. Increasing transistor sizes in a critical path in- 
creases the discharging current, thus reducing path delay. 
However, increasing transistor sizes to reduce delay in- 
creases load capacitance of channel-connected transistors 
on other paths and also their respective delays. Consider 
a 2-b Weighted Binary-to-Thermometric Converter 
(WBTC) as shown in Figure 1 with two timing paths: 
path-A and path-B highlighted. An experiment of opti- 
mizing path-A was performed by gradually increasing 
sizes of T7, T8, T12 and T18. This reduced the delay of 
path-A by 4%, but increased delay of path-B by 9.3% 
due to common channel connections of transistors in 
both the paths. Increasing widths of T7, T8, T12 and T18 in 
path-A causes the capacitive load of T4, T11, T15 and T16 
to increase, thus increasing delay of path-B. This com- 
plexity of effective transistor sizing for increased design 
performance increases along with the number of transis- 
tors and paths in the design. 

 

Figure 1. 2-b weighted BTC. 
 

Typically, delay is identified based on the mean (μ) 
value from the delay distribution accounting only for 
intra-die variations. As inter-die variations are equally 
important, standard deviation (σ) from the delay distribu- 
tion should be considered as well. The proposed circuit 
level optimization (CLO) algorithm ranks the critical 
paths based on the sum of mean and standard deviation 
(μ + σ), thus accounting for both intra-die and inter-die 
variations. In addition to critical path delay, CLO algo- 
rithm also minimizes delay sensitivity (τ = σ/μ) from pro- 
cess variations. 

As charge/discharge time of transistors near vdd/ground 
is higher compared to the transistors near the output, high 
importance (weight) is assigned to transistors near vdd/ 
ground. As increasing size of transistor that appears in 
the most number of paths reduces the overall delay, the 
number of timing paths a transistor is present in is com- 
puted and denoted as repeats. The initial step in CLO 
algorithm is to size adjacent transistors on every path 
with a fixed size ratio of 1.1 for faster convergence. Once 
the repeat and the weight of all transistors are found, pro- 
cess-variation aware Monte Carlo simulations are per- 
formed to obtain delay profiles of each path. Then tran- 
sistors on the top 20% critical paths are grouped to set-x, 
and their new sizes are increased and calculated by 
Equation (1). 

As delay of critical path is dependent on loading from 
common channel-connected transistors, reducing loading 
reduces the overall delay. The 1st order connection tran- 
sistors in the set-x are identified and grouped to set-y. 
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Then, transistors in set-y that are not in set-x of the cur- 
rent iteration are grouped to set-z. For each transistor in 
set-z, it is checked if the transistor is present in set-x of 
previous iteration. If so, its size is decreased and calcu- 
lated by Equations (2) and (3). If not, its size is decreased 
and calculated by Equation (4). Once new transistor sizes 
are determined, process-variation aware Monte Carlo si- 
mulations are performed to identify the new top 20% cri- 
tical paths. If the new worst-case path delay is higher 
than in the previous iteration, sizes of transistors in set-z 
of the new worst-case path are changed to the average of 
new and old sizes. Iterations are repeated until the solu- 
tion converges to an optimum. 
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of various sizes and structures. 

onvergence profile. 

Iteration
tainty

     (4) 

3. Implementation of CLO Algorithm 

Figure 1 shows a 2-b weighted binary-to-thermometric- 
converter (WBTC) used in parallel adders. At the onset 
of the CLO algorithm implementation, the critical path in 
2-b WBTC is path-1 with a delay of 355 ps. After the 
first iteration, critical path delay reduced from 355 ps to 
244 ps. Repeated iterations of the CLO algorithm re- 
duced the delay to converge at an optimum of 157 ps 
while accounting for a 55.77% delay improvement. In 
addition, CLO algorithm also reduced delay uncertainty 

max min  from 158 ps to 62 ps while accounting 
for 60.75% improvement as presented in Table 1. 

Table 2 shows the percentage reduction in delay sen- 
sitivity (τ = σ/μ) of 2-b WBTC at different operating tem- 
peratures. With an average 9% reduction in delay sensi- 
tivity, the CLO algorithm works efficiently at different 
temperatures. This reduction in delay sensitivity of criti- 
cal paths came at the cost of increase in delay sensitivity 
of non-critical paths (4, 5, 13, 14, 18, 28 and 31). Ranks 
from delays of these paths are shown in Table 3. In- 
crease in delay sensitivity of these paths is acceptable as 
majorityof paths except path-31 are not critical paths. Ef- 
ficiency of the CLO algorithm is further demonstrated 
through implementation on several circuits using IBM 
130 nm CMOS process. The design profiles along with 
performance improvement are shown in Table 4, vali- 
dating that CLO algorithm works effectively for circuits 

Table 1. 2-b WBTC delay c

Critical Worst-case delay (μ + σ) Delay uncer
path (psec) (psec) 

0 1 355 158 

1 1 244 112 

2 1 209 91 

3 3 185 84 

4 25 171 77 

5 19 170 76 

6 25 166 72 

7 21 166 65 

8 25 161 67 

9 8 157 57 

10 25 157 5762 

Im vement )pro  (% 55.77 60.75 

 
Table 2. 2-b WBTC delay se sitivity improvement (%) at 

emp 75˚C Temp 100˚C Temp 120˚C

n
different temperatures. 

 Temp 27˚C T

Path-1 21.86 20.48 19.74 18.9 

Path-2 21.86 20.48 19.74 18.9 

Path-3 17.6 21.24 16.12 17.07 

Path-4 −6.89 13.93 −6.39 −7.03 

Path-5 16.26 −9.08 14.88 15.03 

Path-6 14.36 17.12 14.02 13.87 

Path-7 6.23 14.68 6.89 7.78 

Path-8 16.26 3.98 14.88 15.03 

Path-9 14.36 17.12 14.02 13.87 

Path-10 6.23 14.68 6.89 7.78 

Path-11 6.93 1.62 5.62 5.75 

Path-12 6.31 6.94 4.25 4.19 

Path-13 −0.97 6.52 −1.23 −1.03 

Path-14 −10.86 −9.35 −11.03 −10.6 

Path-15 14.95 5.97 14.45 14.58 

Path-16 15.16 14.5 15.09 14.94 

Path-17 15.2 11.84 14.71 14.22 

Path-18 15.19 −0.17 10.01 9.92 

Path-19 14.95 29.77 14.45 14.58 

Path-20 15.16 14.5 15.09 14.94 

Path-21 15.2 11.84 14.71 14.22 

Path-22 7.9 14.88 8.91 9.01 

Path-23 9.81 6.87 9.84 10.29 

Path-24 8.37 4.9 8.51 8.4 

Path-25 4.45 6.92 2.52 1.72 

Path-26 10.7 14.37 12.87 12.49 

Path-27 4.38 2.57 3.79 3.58 

Path-28 4.14 −5.07 5.97 6.18 

Path-29 10.7 17.49 12.87 12.49 

Path-30 4.29 7.48 7.91 8.71 

Path-31 2.27 −7.1 1.78 1.29 

Path-32 5.43 6.77 4.62 4.58 

Path-33 7.7 1.85 7.1 6.82 

Path-34 2.49 3.06 2.68 2.94 

Average 9.35 8.92 9.00 8.98 
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e 3. 2-b C path s at different iterations and temperatures. 

Temp Temp = 120˚C 

Tabl  WBT  rank

 = 27˚C Temp = 75˚C Temp = 100˚C 
 

Iter-1 Iter-10 Iter- 10 Iter- -10 Iter -10 1 Iter- 1 Iter -1 Iter

Path-4 23 8 24 9 25 10 25 10 

Path-5 5 12 5 15 5 16 5 17 

Path-13 25 11 25 10 24 9 24 9 

Path-14 26 10 26 11 26 11 26 13 

Path-18 9 21 9 22 9 4 9 4 

Path-28 17 24 17 24 17 23 17 23 

Path-31 13 2 13 2 13 2 14 2 

Ratio did not decr Ratio did not decrease and path became ical ease  crit

 
Table 4. Timing optimization esults from CLO algorithm. 

Design # Inputs # Outputs ) Improvement (%)

 r

# Paths # Transistors # Iterations Initial Delay (ps) Final Delay (ps

CCT-2 8 6 6 7 10 226 99 56.19 

2-  

C

Average 55.31 

b WBTC 4 6 34 28 9 355 135 61.97 

4-b UWBTC 4 15 83 83 6 152 89 41.44 

74181-CLA 10 6 18 24 10 209 94 55.02 

74181-E mod 8 6 6 7 9 225 97 56.88 

C2670-CLA 24 1 15 39 7 218 93 57.33 

C3540-CC5 7 1 4 7 9 484 192 60.33 

C3540-CC8 7 3 35 17 10 427 202 52.69 

C3540-CC9 8 3 22 47 7 283 156 44.87 

3540-UM12-7 9 1 24 50 8 485 162 66.59 

 
4. Design Level Optimization through 

Co sign and op- 

common limitation in most 
de

dresses some of these challenge in timing optimization, 

nd optimization tool along with design con- 
st

are replaced with black 
bo

 

Mixed-Static-Dynamic Circuits 

nventionally, synthesis tools perform de
timization using static CMOS logic [13,14]. It is not un- 
common for the synthesis tools to not find an acceptable 
solution in terms of timing. This challenge can be an- 
swered through utilizing the advantage of fast timing in 
dynamic logic. Dynamic logic has smaller gate capaci- 
tances compared to their static CMOS counterparts, which 
accounts for a significant speedup [3,15]. With static and 
dynamic logic having their respective advantages of low 
power and low delay, an optimal balance can be obtained 
by partitioning the design to use both static and dynamic 
logic in an effective manner. 

At the architecture level, a 
sign optimization flows is the limited accountability 

for process variations. Typically after placement and 
route, if a design fails to meet the timing constraints, op- 
timization flow is re-iterated. Even after several itera- 
tions, design may still not meet the timing constraint, and 
miss the time-to-market window. The design level opti- 
mization (DLO) algorithm proposed in Figure 2 ad- 

and also accounts for process variations. Utilizing the 
CLO algorithm proposed in previous section, the DLO 
algorithm partitions the design to effectively utilize both 
dynamic and static CMOS logic to meet the timing con- 
straints.  

The high level description of a design is input to a 
synthesis a

raints and target library. After synthesis and optimiza- 
tion, Static Timing Analysis (STA) is performed to iden- 
tify the critical modules in the design. A strategy similar 
to the circuit level optimization algorithm is followed to 
find the critical modules in the design. These modules 
are identified based on the number (repeats) and length 
(weight) of critical paths in each. Once identified, custom 
dynamic CMOS circuits are designed at transistor level 
for greater flexibility, and timing optimization is per- 
formed using the circuit level optimization algorithm 
presented in the previous section. 

Next, timing critical static CMOS modules from the 
commercial tool optimized design 

x models generated from the dynamic CMOS circuits. 
With the new design comprising both static and dynamic 
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Figure 2. Design level optimization algorithm. 
 

circuit ock 
skew, setup and hold time v lation) is performed. If the 

emented 
 ISCAS 

5). Though STA, modules CC5 and  

s, clock tree design and timing verification (cl
io

timing constraints have been met, the design is exported 
for placement and routing. If not, the new timing critical 
modules are further identified and optimized using circuit 
level optimization algorithm presented in the previous 
section. This iterative process is a deterministic approach 
moving towards the optimum. 

5. Implementation of DLO Algorithm 

The design level optimization algorithm was impl
on a number of combinational circuits, including
benchmarks, and a high performance 64-b adder using 
IBM 130 nm CMOS process. Figure 3 shows the block 
diagram of the ISCAS benchmark c3540, an 8-b ALU 
with 1669 gates. After synthesis and optimization using 
the commercial tool, STA was performed. Delays of top 
5 critical paths (highlighted) in c3540 were found to be 
3.59 ns, 3.46 ns, 3.16 ns, 3.13 ns, and 2.97 ns respec- 
tively. Modules with highest delay in c3540 were found 
to be M5 with a delay of 1.63 ns, followed by M4 with a 
delay of 0.78 ns, and M12 with a delay of 0.63 ns (high- 
lighted in Figure 3). The modules chosen for timing op- 
timization from the STA are M5 and M12. Although M4 
had the second highest delay, it was not chosen for opti- 
mization, as it does not repeat in as many critical paths as 
M5 and M12. This method of choosing only the critical 
modules during optimization is similar to circuit optimi- 
zation algorithm, and helps limit the increase in area and 
power consumption. 

Figure 4 shows the data flow schematic of M5-UM5_6 
(critical module in M

 

 

Figure 3. ISCAS benchmark-C3540 [16]. 
 

 

Figure 4. Timing critical modules in M5-UM5_6 of C3540. 
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Table 5. Design level optimiz

Delay (ns) 

ation algorithm results. 

Design # Inputs # Outputs # Gates 
Commercial Tool Proposed Algorithm 

Improvement (%)

74181 14 8 74 0.87 0.37 57.47 

c2670 233 140 1193 1.34 0.73 45.52 

c3540 50 22 1669 3.59 2.13 40.66 

adder64 130 65 1491 1.64 0.58 64.63 

Average 52.07 

 
CC9 are found to be critical modules (highlighted in Fig- 
ure 4), and are optimized using circuit level optimization 
algorithm. Accordingly, delays of these custom dynam  
CMOS circuits were reduced by 
tively. Prior to implementing the circuit level optimiza- 
tion a , CC5 ay i rst 
stage of M5-UM5_6. This optimization reduced delay of 
CC5, de CC8 to he modu with highe ay 
in the tage of M M5_6. cceptable, as 
CC8 ot reside i he top 2  critical 
C354 ot to limi  overall ormance

A similar approach was followed in optimi 2- 
UM12_7 using the design level optimization algorithm, 

e de- 
la

MOS logic ci
with high number of timing paths. Second, we propose a

robust to process variation-aware load balance of multi- 
ple paths algorithm for timing optimization of dynamic 
CMOS logic. And last, we demonstrate the robustness of 

delay, delay uncertainty, and 
delay sensitiv her, this paper also presented a de- 

- 
logi ented it on several 

ISCA nchmark circui d a 64-b adder. Efficiency 
of th  level optimi n algorithm flo rther 
valid hrough demon ng an average t-case 
dela ment of 64  comparison w e-of- 
the-art commercial optimization tools. 
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