
Circuits and Systems, 2011, 2, 217-224
doi:10.4236/cs.2011.23031 Published Online July 2011 (http://www.SciRP.org/journal/cs)

Copyright © 2011 SciRes. CS

Algorithmic Optimization of BDDs and Performance
Evaluation for Multi-level Logic Circuits with Area and

Power Trade-offs

Saurabh Chaudhury1, Anirban Dutta2
1Department of Electrical Engineering, National Institute of Technology, Silchar, India

2Department of Electronics & Communication Engineering, National Institute of Technology, Silchar, India
E-mail: saurabh1971@gmail.com

Received April 27, 2011; revised May 20, 2011; accepted May 27, 2011

Abstract

Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence
the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable or-
dering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in
minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a
genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order.
Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have
evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-
mental results show a substantial saving in area and power. We have also compared our techniques with
other state-of-art techniques of variable ordering for OBDDs and found to give superior results.

Keywords: Algorithmic Optimization, BDDs, Genetic Algorithm, Branch & Bound, Variable Ordering,

Area-Power Trade-offs

1. Introduction

Binary decision diagram (BDD) is an important data
structure which finds wide applications specially, in the
area of Boolean logic manipulation, logic synthesis, for-
mal verification and testing. A Boolean function that
describes a digital circuit can be represented as a BDD
which is a directed acyclic graph with respect to an order
and satisfying a set of properties. The number of its non-
terminal nodes gives their size. For multiplexer based
design styles such as Pass Transistor Logic (PTL), a
smaller number of nodes directly transfers to a smaller
chip area. A BDD can be implemented either in canoni-
cal form, reduced order (ROBDD) or in any other spe-
cific order (OBDD). If all identical nodes are shared and
all redundant nodes are eliminated, the OBDD is said to
be reduced (an ROBDD). The size of a BDD is strongly
dependent on the order of input variables.

In the current problem of variable ordering, a number
of algorithms exist in this context. These variable order-
ing algorithms can be broadly classified as static vari-

able ordering, dynamic variable ordering and evolution-
ary algorithms. Most of the variable ordering algorithms
from circuit topology are based on a depth first traversal
through a circuit from the primary outputs to the primary
inputs [1,2]. Such an ordering works well if the circuit is
tree-structured. Yet another approach to variable order-
ing is gradual improvement based on variable exchange
[3,4]. Though this approach is effective, the results de-
pend on the initial variable orders and hence on circuit
topology. R. Rudell [5] describes a dynamic variable
ordering technique for an OBDD and propose two algo-
rithms. The technique allows maintaining all advantages
provided by the ordered BDD data structure, such as,
canonicity and efficient recursive algorithms. A new
variable ordering algorithms for multiple output circuits
has been presented in [6] use variable interleaving, while
conventional algorithms use variable appending. Chris-
toph Meinel and Fabio Somenzi [7] propose another al-
gorithm called linear shifting, which in many cases it
leads to substantially more compact diagrams when
compared to simple variable reordering. Another heuris-

S. CHAUDHURY ET AL.

218

1

tic technique for deciding which BDD variables to reor-
der is simulated annealing (SA) [8]. But this technique is
very slow, especially if the cost function is expensive to
compute. A first attempt to use evolutionary algorithms
for the variable ordering problem for BDDs is presented
in [9] where the main genetic operations are partially-
mapped crossover and mutation which yield better re-
sults (smaller BDDs) than other dynamic reordering
techniques, but they are comparably slow. Many such
evolutionary algorithms are presented in [10-12]. In [13],
a low power optimization technique for BDD mapped
circuits using temporal correlation has been presented.
Output phase assignment technique for area and power
minimization has been proposed in [14], which optimizes
the BDD by finding suitable output polarity of a multi-
output circuit using genetic algorithm. A new and pow-
erful class of optimization techniques based on scatter
search [15] has been proposed, which is very aggressive
and attempts to find high quality solutions at a fast rate.
Scatter search optimization techniques offers a reason-
able compromise between quality (BDD size) and time.
In [16] we see a technique to minimize the BDD com-
plexity and the time of evaluation of the function based
on minimum path length which is decided by initial
variable order. A detailed survey of static variable or-
dering heuristics (such as topological, influential, priority
ordering and variable weighing etc.) has been presented
in [17] in order to minimize the overall size of resulting
decision diagram. Prasad, Assi, Harb and Prasad [18]
propose an improved variable ordering method to obtain
the minimum number of nodes in ROBDD which uses
the graph topology to find the best variable ordering.

Most recently, a double hybridized genetic algorithm
has been proposed in [19] for the optimization of vari-
able order in ROBDD. The proposed technique combines
a branch & bound technique with the basic genetic algo-
rithm and then uses the linear shifting algorithm as the
second hybridization to find ROBDD with reduced com-
plexity.

We can see that variable ordering has been potentially
used for reducing the size of OBDDs. In this paper, we
propose some efficient variable ordering algorithms,
namely, a genetic algorithm based technique and a
branch and bound technique. Each of which not only
reduces the size of the BDD but at the same time also
minimizes power consumption. Section 2 defines the
problem with some examples and then Section 3 de-
scribes the methodology of adopting the two algorithms
with respect to the current problem, followed by results
of experimentation. Convergence to global optimum is
given in Section 4. Analysis and comparison of results
with other techniques are presented in Section 5. Finally,

Section 6 draws the conclusion.

2. Defining the Problem of Variable

Ordering in BDDs

Digital integrated circuits often represented as Boolean
functions can be best-manipulated graphically in the
form of Binary Decision Diagrams (BDD). A BDD can
be expressed mathematically as follows.

 : , 0,f B B B (1)

where f is a switching function and π—a total order on a
fixed set of Boolean variables x1, x2, ···, xn. An OBDD
with respect to order π is a single rooted direct acyclic
graph that satisfies the properties as described in [20]. It
is already mentioned that the size of a BDD is strongly
dependent on the ordering of variables and is also ex-
plained in Figure 1.

Improving the variable ordering of BDDs is NP-
Complete and finding the best order is NP-hard. How-
ever, the most tedious job in case of OBDDs is to find an
optimal variable order. An optimal variable order has a
greater impact on power minimization also, as because,
node switching and leakage is dependent on the number
of BDD nodes and its order. Majority of the heuristic
techniques discussed here has stressed only upon the size
or complexity of the resulting BDD. However, power is
considered to be one of the critical design issues espe-
cially when there is drastic device scaling and increasing
use of portable, battery-operated digital devices in recent
times. In this paper, due weightage is given to both the
area (complexity) and power consumption of the result-
ing BDD after optimization.

The next section proposes two techniques to tackle the
problem of finding optimal variable order in order to
minimize BDD complexity (area) and power.

(a) (b)

Figure 1. The influence of the variable ordering for f(a,b,c,d)
= ab + cd with the order a, b, c, d (a) and order a, c, b, d (b).

Copyright © 2011 SciRes. CS

S. CHAUDHURY ET AL.

219

3. Proposed Approaches

We have attempted two different algorithmic approaches
for efficient ordering of variables in OBDD, namely, the
genetic algorithm which is an excellent multi-objective
optimization technique and a branch and bound optimi-
zation approach, which is an exact method. At first, we
will put our variable ordering problem in the framework
of GA and constitute a GA-based program to obtain the
best possible order decided by the minimal node count
and power consumption of the resulting BDD. This will
be followed by the experimentation with a number of
benchmark circuits. The flowchart of Figure 2 shows a
pictorial representation of the proposed GA based tech-
nique.

Next, we will go for the same variable ordering prob-
lem by adopting a branch and bound (BB) based greedy
algorithmic approach which is also an excellent optimi-
zation technique for multi-objective problems and has a
finite but usually very large number of feasible solutions.
A BB algorithm searches the complete space of solutions
(exact method) for a given problem for optimum solution.
However, in the current variable ordering problem for
optimizing area and power, in combinational logic cir-
cuits realized as BDDs, explicit enumeration is normally
impossible due to the exponentially increasing number of
potential solutions (factorial n number of solutions), so a
modified BB algorithm is taken up, the details of which
we will see in Section 3.2.

 Input
benchmark ckt

terminate

Get BDD

Reorder

Get NC and SA

buddy2.4 GA-generated
solutions

Rank sol(s)

Is consistent
solution ?

Figure 2. Flow-chart of the proposed GA-based technique.

3.1. Genetic Algorithm Based Approach

Genetic Algorithms (GA) are stochastic optimization
based on principle of natural selection and natural genet-
ics. They start with an initial population (solution space)
consisting of a set of randomly generated solutions.
Based on some reproductive plan especially, the cross-
over and mutation, they are allowed to evolve over a
number of generations. After each generation, the chro-
mosomes are evaluated based on some fitness criteria.
Depending upon the selection policy and fitness value,
the set of chromosomes for next generation are selected.
Finally, the algorithm terminates when there is no im-
provement in solution over a fixed number of genera-
tions. The best solution at that generation is accepted as
the solution produced by GA.

The formulation of Genetic Algorithm for any prob-
lem involves the careful and efficient encoding of the
solutions to form chromosomes, cross-over and mutation
operators and a cost function measuring the fitness of the
chromosomes in a population. We discuss each of these
in subsequent sections.

3.1.1. Solution Representation
Here, given a multilevel, multi-output circuit with n
number of input (variables), the problem is to find an
optimal order and as such the chromosome is a set of n
variables (i1, i2, i3, i4, i5, ···, in) of any order with no repe-
tition of variables. For example, a combinational logic
circuit consisting of 7 variables (inputs) then according
to above,

2 3 1 4 5 7 6

is a chromosome, where, each decimal number represents
an input (variable) taken in some order.

3.1.2. Genetic Operators
Two types of genetic operators namely the crossover and
the mutation, are applied to selected parents for generat-
ing offspring. Crossover is performed between two se-
lected individuals, called parents, by exchanging parts of
their features (i.e. encodings) to form two new individual,
called offspring. The crossover point is selected ran-
domly, and the substrings of two parent chromosomes
are exchanged to form the offspring. Care must be taken
to see that neither a variable is repeated in a chromosome
nor a duplicate chromosome is generated as offspring. To
generate better offspring, whole population is sorted ac-
cording to fitness value and the best-fit chromosomes
take part in crossover.

The mutation operator brings variety into population
by selecting a chromosome randomly from the popula-
tion and modifies the chromosome at a point depending

Copyright © 2011 SciRes. CS

220 S. CHAUDHURY ET AL.

upon the value of a generated random number. To mod-
ify a chromosome, a randomly selected bit is comple-
mented if the chromosome is a binary string. Here, as the
chromosome is a string of n variables so it can be done
by subtracting the randomly selected variable, ni from n
and swapping it with the variable ni. This becomes the
new chromosome. Once again the generated chromo-
some cannot be a duplicate.

3.1.3. Fitness Measure
The fitness function is used to determine how better a
particular solution is. In this problem, initially we take it
as a linear combination of area (node count) and switch-
ing activity (neglecting leakage) which can be deter-
mined by using the following formula.

Fitness Value (F1)
= A × Number of nodes + B × Switching Activity (2)

Next, we consider the leakage which is no longer a
negligible quantity. In fact, it is a dominant contributor to
the total power consumption in today’s device scaling
scenario. So the modified fitness function (F2) becomes,

Fitness (F2)
= A × Number of nodes + (1 − A)
× (B × Switching Activity + (1 − B) × leakage) (3)

where number of nodes for each BDD representation
based on a particular order is given by the standard BDD
package (such as, buddy-2.4) and switching activity is
obtained by traversing through the BDD in a bottom up
fashion. Since this fitness value is dominated by area
(node count) a modified fitness function is taken where
switching activity (for dynamic power) and number of
nodes at any generation is divided by the corresponding
maximum values of first generation. Lesser the value of
fitness function better is the offspring.

For a particular chromosome, the two-level circuit is
represented with a BDD. Each BDD-node is essentially a
multiplexer and suppose the function to be relaized is f =
a − c + bc, then Prob (f = 1) = Prob (a = 1) × Prob (c =
0) + Prob (b = 1) × Prob (c = 1) and Prob (f = 0) = 1 −
Prob (f = 1). So the switching activity of a BDD node (f)
is then, = 2 × Prob (f = 1) × Prob (f = 0). Thus SA’s of
all individual nodes are added up to get the overall SA
for the BDD.

Leakage is again dependent mainly on sub-threshold
and junction leakage at 0.18 um technology level con-
sidered here for realizing the BDD nodes with PTL. It
however also depends on input patterns, gate fan-outs.

3.1.4. Experimental Results
The GA based program as defined above is implemented
with C codes and experimented by running on a Pentium
core-2 duo processor having 1Gb of RAM with a number

of benchmark combinational logic circuits from LGSynth
93 benchmark suite. The GA based program takes a
population size of 500 for large circuits (having more
than 20 inputs) and 200 for small sized circuits (less than
20 inputs) with 80% crossover rate and 5% mutation rate.
The result of experimentation for about 30 benchmark
circuits with different area and power weights have been
displayed in Figure 3. The average power reduction is
more than 75% (highest) and average saving in area is
about 39.35% as shown in bar diagram of Figure 3.
When the emphasis is mostly on power the chart shows
that although we achieve highest reduction in power,
there is absolutely no control on area minimization (NC)
and instead it becomes negative for many circuits which
mean there is an increase in area. When we give more
emphasis on area, it keeps on reducing, which is quite
natural. Similarly, when we keep on increasing the em-
phasis on power, we achieve a gradual improvement in
power reduction. However, we can take the best trade-off
point to be at around A = 0.4 and 0.6, when both area
and power reductions are considerably high and are
found to be more than 32% and 71% respectively. Fig-
ure 4 shows the area, dynamic power and leakage trade-
offs (for A = 0.4, B = 0.6 and A = 0.4, B = 0.8). Overall
improvement in area, dynamic power and leakage is
found to be 33.163%, 57.28% and 29.234% respectively.

Figure 3. Bar diagram of average area and power reduc-
tions for different trade-offs.

Figure 4. Plot showing area, dynamic power and leakage
trade-offs.

Copyright © 2011 SciRes. CS

S. CHAUDHURY ET AL.

221

It is also observed that the area saving can be as high as
97.33% (with 100% area weight) and power reduction of
97.46% (with 100% power weight) for a large circuit,
such as, seq which is quite promising. In fact the benefit
of area and power reduction is more for large circuits.

3.2. Branch and Bound Algorithm

In this section, we take up the problem of BDD optimi-
zation by formulating a branch and bound algorithm
(BB). As the target is for an optimal trade-off between
area and power, we propose here a greedy search tech-
nique using BB for the current variable ordering problem.
A BB algorithm searches the whole solution space for
the best solution. This is done by an iteration process
which has three main components: selection of the solu-
tion set for bound calculation, and branching. The se-
quence of these may vary according to the strategy cho-
sen for selecting the next solution set to process. Here the
selection of next solution set is based on the bound value
of the solution sets obtained after branching from the
previous level. For each of these iterations, it is checked
whether the subspace consists of a lower bound, in that
case, it is compared with the current best solution
thereby retaining the better of the two while pruning the
other sets.

3.2.1. Branching Scheme
This step is called branching as its recursive application
defines a tree structure (the search tree) whose nodes are
obtained from the previous level by a splitting procedure
i.e. subdivision of the solution space of the nodes into
two or more subspaces to be investigated in a subsequent
iteration. Since the efficiency of the method depends
strongly on the node-splitting procedure and on the lower
bound estimators, we start the search from a set of sorted,
non-duplicate potential solutions and applied variable’s
sequence inversion of a solution and the technique can be
categorized as variable appending. Accordingly, we have
three different types of solutions space, namely left-
side_inverted, rightside_inverted and bothside_inverted.
This splitting technique provides maximum non-over-
lapping subsets or no overlapping subsets as shown in
Figure 5.

3.2.2. Bounding Scheme
The next step of the proposed BB technique is a proce-
dure that computes only the lower bounds of the solu-
tion_set by calculating the bounds for each of the solu-
tions, within the given solution_set. This step is called
bounding. The lower bounds are calculated by setting the
objective function of the proposed problem based on the
fitness as defined in Equations (2) and (3). The key idea

of the BB algorithm is: if the lower bound for some tree
nodes (set of candidates) A is greater than the lower
bound for some other node B in the same level, then A
may be safely discarded from the search. This step is
called pruning, and is usually implemented by maintain-
ing a global variable m (shared among all nodes of the
tree) that records the minimum lower bound seen among
all solutions examined so far. Any node whose lower
bound is greater than m can be discarded. Otherwise, the
bounding function for the subspace is calculated and
compared with the current best solution.

3.2.3. Termination Criteria
The search terminates when we reach Level-(n-2), where
n is the number of variables and the optimal solution is
then the one recorded as “current best”. Ideally the pro-
cedure stops when all nodes of the search tree are either
pruned or solved. At that point, all non-pruned sub-re-
gions will have their upper and lower bounds equal to the
global minimum of the function. To check whether the
solution obtained converges to the local minimum or not,
we have repeated the above algorithmic steps by starting
the search from a different solution set obtained by re-
versing the set of Level-1.

3.2.4. Experimentation and Result
The proposed BB algorithms is written in C and exhaus-
tive experimentation has been done with the same set up
as was done for GA based algorithm, with the same set
of benchmarks. An input combinational logic circuit is
first converted to BDD, the order of which is decided by
the proposed algorithm while trading off area and power.
The trade off is done by taking different weights for area
(node count) and power (switching activities). Simula-
tion is carried out for n-2 levels where n is the number of
inputs in the circuit. The parameters taken for the ex-
perimentation purpose are as follows:

1A = 2 1 3 4 5 6

7 8 10 9

2A = 3 4 2 1 5 6

7 10 9 8

1A = 1 2 9 10 8

7 6 5 4 3

2A = 4 3 8 9 10

7 6 5 1 2

1A = 2 1 9 10

8 7 6 5 4 3

2A = 3 4 8 9

10 7 6 5 1 2

L_inv B_inv R_inv

Level-1

L-2

A1 = 1 2 | 3 4 5 6 7 8 10 9
A2 = 4 3 | 2 1 5 6 7 10 9 8

· · · · · · · · ·

Figure 5. Branching scheme.

Copyright © 2011 SciRes. CS

222 S. CHAUDHURY ET AL.

Solution Set size-50 for large circuits (inputs > 20) and
100 for small and medium circuits (inputs < 20)

The weights varies from 0 to 1 (0, 0.2, 0.4, 0.6, 0.8
and 1 are taken in present work). The result of experi-
mentation for about 30 benchmark circuits taking differ-
ent area and power weights has been shown in Figure 6.
It shows the results in terms of percentage improvement
in area and power against different weights. As it is clear
from the bar diagram that the average power reduction is
more than 78% (highest) and average saving in area is
about 38.225%. It is also to be noted that even for the
area weights A = 0.8 and A = 1.0, there is no negative
values of switching activity, which means in almost all
circuits there is a reduction in power consumption or
zero reduction but no increase in power consumption.
When power weight of B = 0.0, area is optimized maxi-
mally. Again, when the emphasis is mostly on power the
chart shows that although we achieve highest reduction
in power, but there is absolutely no control on area
minimization (NC). When we give more emphasis on
area, saving in power keeps on reducing, which is quite
natural. Similarly, when we keep on increasing the em-
phasis on power, we achieve a gradual improvement in
power reduction. However, we can take the best trade-off
point to be at around A = 0.4 and 0.6, when both area
and power reductions are considerably high and are
found to be more than 30% and 70% respectively.

It is also observed that the area saving can be as high
as 95.9% (with 100% area weight) and power reduction
of 98.429% (with 100% power weight) for a large cir-
cuits, such as, seq and cps, which is quite promising. In
fact, the benefit of area and power reduction is more for
large circuits.

4. Convergence of the Approaches

In this section we will see the convergence of the pro-
posed GA based and BB based approaches towards

Figure 6. Bar diagram of average area and power reduc-
tions (BB based approach) for different trade-offs.

global optimum by framing an exhaustive search pro-
gram and running it for a few benchmarks circuits taking
all possible input (variable) orders. To minimize CPU
time, we have confined our simulations to circuits having
variables (inputs) less than 7. When we compare the GA
based optimization results with exhaustively searched
ones, we find that both GA and BB results in same area
reduction for the five benchmarks circuits considered i.e.
converges to exhaustive search. However, for power, we
find that the convergence is about 1.50% to 4.44% (for
A = 0.4 and B = 0.6) to optimum value. Whereas, with
BB algorithm, we find the convergence of power is about
1.05% to 9.09% (for different area and power trade-offs)
to optimum value. This explains that the GA based ap-
proach converges more to the optimum value than the
BB based approach, thus indicating the effectiveness of
the GA based approach.

5. Comparison of Different Approaches

If we observe the results of our GA-based approach and
BB approach then we find that the overall results are
much better compared to the most binate sort of ordering
as shown Table 1. Output phase assignment technique
[14] for area and power minimization on the other hand
can produce a maximum of 15.72% and 19.18% saving
in area and power respectively. While with dynamic
variable ordering as proposed in [5] and the hybrid algo-
rithm in [9], the average area reduction is as high as 45%
and 30%, respectively, compared to the initial value.
However they do not take power minimization into ac-
count. We then compare the results of the proposed two
algorithms, with the most recent heuristic search algo-
rithm based on scatter search [15], for some of the
benchmark circuits as shown in Table 1.

The average results for each of the algorithms in terms
of percentage improvement in area are shown in the last
row of Table 1. We can see that the modified BB algo-
rithm and the GA based algorithm will be a better option
when the area reduction is given the highest priority,
while the scatter search approach will be preferable from
the point of view of minimal computational time com-
plexity (of the order of 0.053 hr) as shown in Figure 7.

6. Conclusions

Presented here two techniques for BDD optimization
namely, GA based optimization and Branch and Bound
based Greedy optimization. Exhaustive experimentation
has been done with ISCAS93 benchmark circuits to see
the effectiveness of the proposed two techniques for area
and power optimization. Finally, the comparison with
other established techniques such as, scatter search tech
nique and dynamic variable ordering have been done and

Copyright © 2011 SciRes. CS

S. CHAUDHURY ET AL.

Copyright © 2011 SciRes. CS

223

Table 1. Percentage Improvement in Area for the Various Heuristic Approaches.

Benchmark
circuits/PLA

Complexity
% improvement in Area for

BB based optimization
% improvement in Area for

GA based optimization

% improvement in Area for
scatter search heuristics

algorithm [15]

% improvement in Area for
Most Binate Ordering

algorithm

apex1 45 92.64204645 93.20777 81.6123 94.07568783

clip 9 64.09266409 64.09266 58.323 34.74903475

cm162a 14 58.10810811 56.75676 55.6234 43.24324324

con1 7 25 25 25.5123 0

b12 15 42 36 35.2345 14

cm163a 16 53.96825397 52.38095 52.7123 36.50793651

Cu 14 47.36842105 44.73684 45.734 1.315789474

sao2 10 44.93670886 43.67089 30.7345 37.97468354

AVERAGE 53.51452532 51.98073375 48.1625 32.73329692

Figure 7. Comparison of various heuristic approaches.

found that the proposed two techniques are superior com-
pared to others in fulfilling the objectives.

7. References

[1] S. Malik, A. R. Wang, R. K. Brayton and A. Sangio-

varmi-Vincentelli, “Logic Verification Using Binary Deci-
sion Diagrams in a Logic Synthesis Environment,” Pro-
ceedings of International Conference on Computer-Aided
Design, Santa Clara, 7-10 November 1988, pp. 6-9.
doi:10.1109/ICCAD.1988.122451

[2] M. Fujita, H. Fujisawa and Y. Matsnnaga, “Variable Or-
dering Algorithms for Ordered Binary Decision Diagrams
and Their Evaluation,” IEEE Transactions on Com-
puter-Aided Design, Vol. 12, No. 1, 1993, pp. 6-12.
doi:10.1109/43.184839

[3] M. Fujita, Y. Matsmraga and T. Kakuda, “On Variable
Ordering of Binary Decision Diagrams for the Applica-
tion of Multi-level Logic Synthesis,” Proceedings of
European Design Automation Conference, Amsterdam,

25-28 February 1991, pp. 50-54.
doi:10.1109/EDAC.1991.206358

[4] N. Ishiura, H. Sawada and S. Yajima, “Minimization of
Binary Decision Diagrams Based on Exchange of Vari-
ables,” 1991 IEEE International Conference on Com-
puter-Aided Design, Santa Clara, 11-14 November 1991,
pp. 472-475. doi:10.1109/ICCAD.1991.185307

[5] R. Rudell, “Dynamic Variable Ordering for Ordered Bi-
nary Decision Diagrams,” Proceedings of the 1993
IEEE/ACM International Conference on Computer-Aided
Design, Santa Clara, 7-11 November 1993, pp. 42-47.
doi:10.1109/ICCAD.1993.580029

[6] H. Fujii, G. Ootomo and C. Hori, “Interleaving Based
Variable Ordering Methods for Ordered Binary Decision
Diagrams,” Proceedings of the 1993 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Santa
Clara, 7-11 November 1993, pp. 38-41.
doi:10.1109/ICCAD.1993.580028

[7] C. Meinel and F. Somenzi, “Linear Sifting of Decision
Diagrams,” Proceedings of the 34th Annual Automation
Conference, Anaheim, 9-13 June 1997, pp. 202-207.

[8] B. Beate, L. Martin and W. Ingo, “Simulated Annealing
to Improve Variable Orderings for OBDDs,” Proceedings
of the International Workshop on Logic Synthesis, May
1995, pp. (5-1)-(5-10).

[9] R. Drechsler and N. Göckel, “Minimization of BDDs by
Evolutionary Algorithms,” International Workshop on
Logic Synthesis (IWLS), Lake Tahoe, 1997.

[10] M. A. Thornton, J. P. Williams, R. Drechsler, N.
Drechsler and D. M. Wessels, “SBDD Variable Reorder-
ing Based on Probabilistic and Evolutionary Algorithms,”
1999 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing, Victoria, 22-24 Au-
gust 1999, pp. 381-387.
doi:10.1109/PACRIM.1999.799556

[11] R. Drechsler, B. Becker, N. Göckel, “Learning Heuristics
for OBDD Minimization by Evolutionary Algorithms,”
Lecture Notes in Computer Science, Vol. 1141, 1996, pp.

http://dx.doi.org/10.1109/EDAC.1991.206358
http://dx.doi.org/10.1109/ICCAD.1991.185307
http://dx.doi.org/10.1109/ICCAD.1993.580028
http://dx.doi.org/10.1109/PACRIM.1999.799556

224 S. CHAUDHURY ET AL.

730-739. doi:10.1007/3-540-61723-X_1036

[12] W. Günther and R. Drechsler, “Improving EAs for Se-
quencing Problems,” Proceedings of the Genetic and
Evolutionary Computation Conference, 2000.

[13] R. Drechsler, M. Kerttu, P. Lindgren and M. Thornton,
“Low Power Optimization Techniques for BDD Mapped
Circuits Using Temporal Correlation,” Canadian Journal
of ECE, Vol. 27, No. 4, 2002, pp. 159-164.

[14] S. Chaudhury and S. Chattopadhyay, “Output Phase As-
signment for Multilevel Multi-output Logic Synthesis
with Area and Power Trade-offs,” 2006 Annual IEEE In-
dia Conference, New Delhi, 15-17 September 2006, pp,
1-4.

[15] W. N. N. Hung, X. Song, E. M. Aboulhamid and M. A.
Driscoll, “BDD Minimization by Scatter Search,” IEEE
transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 21, No. 8, 2006, pp. 974-979.

[16] P. W. C. Prasad, M. Raseen, A. Assi and S. M. N. A.
Senanayake, “BDD Path Length Minimization Based on

Initial Variable Ordering”, Journal of Computer Science,
Vol. 1, No. 4, 2005, pp. 520-528.

[17] M. Rice and S. Kulhari, “A Survey of Static Variable
Ordering Heuristics for Efficient BDD/MDD Construc-
tion,” Technical Report, 2008.
http://www.cs.ucr.edu/~skulhari/StaticHeuristics.pdf

[18] P. W. C. Prasad, A. Assi, A. Harb and V. C. Prasad, “Bi-
nary Decision Diagrams: An Improved Variable Ordering
using Graph Representation of Boolean Functions,” In-
ternational Journal of Computer Science, Vol. 1, No. 1,
2006, pp. 1-7.

[19] O. Brudaru, R. Ebendt and I. Furdu, “Optimizing Vari-
able Ordering of BDDs with Double Hybridized Embry-
onic Genetic Algorithm,” Proceedings of 12th IEEE In-
ternational Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, Timisoara, 23-26 Sep-
tember 2010, pp. 167-173.

[20] R. Ebendt, F. Gorschwin and R. Drechsler, “Advanced
BDD Minimization”, Springer, New York, 2005.

Copyright © 2011 SciRes. CS

http://www.cs.ucr.edu/%7Eskulhari/StaticHeuristics.pdf

