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Abstract 
 
Binary Decision Diagrams (BDDs) can be graphically manipulated to reduce the number of nodes and hence 
the area. In this context, ordering of BDDs play a major role. Most of the algorithms for input variable or-
dering of OBDD focus primarily on area minimization. However, suitable input variable ordering helps in 
minimizing the power consumption also. In this particular work, we have proposed two algorithms namely, a 
genetic algorithm based technique and a branch and bound algorithm to find an optimal input variable order. 
Of course, the node reordering is taken care of by the standard BDD package buddy-2.4. Moreover, we have 
evaluated the performances of the proposed algorithms by running an exhaustive search program. Experi-
mental results show a substantial saving in area and power. We have also compared our techniques with 
other state-of-art techniques of variable ordering for OBDDs and found to give superior results. 
 
Keywords: Algorithmic Optimization, BDDs, Genetic Algorithm, Branch & Bound, Variable Ordering, 

Area-Power Trade-offs 

1. Introduction 
 
Binary decision diagram (BDD) is an important data 
structure which finds wide applications specially, in the 
area of Boolean logic manipulation, logic synthesis, for-
mal verification and testing. A Boolean function that 
describes a digital circuit can be represented as a BDD 
which is a directed acyclic graph with respect to an order 
and satisfying a set of properties. The number of its non- 
terminal nodes gives their size. For multiplexer based 
design styles such as Pass Transistor Logic (PTL), a 
smaller number of nodes directly transfers to a smaller 
chip area. A BDD can be implemented either in canoni-
cal form, reduced order (ROBDD) or in any other spe-
cific order (OBDD). If all identical nodes are shared and 
all redundant nodes are eliminated, the OBDD is said to 
be reduced (an ROBDD). The size of a BDD is strongly 
dependent on the order of input variables. 

In the current problem of variable ordering, a number 
of algorithms exist in this context. These variable order-
ing algorithms can be broadly classified as static vari-

able ordering, dynamic variable ordering and evolution-
ary algorithms. Most of the variable ordering algorithms 
from circuit topology are based on a depth first traversal 
through a circuit from the primary outputs to the primary 
inputs [1,2]. Such an ordering works well if the circuit is 
tree-structured. Yet another approach to variable order-
ing is gradual improvement based on variable exchange 
[3,4]. Though this approach is effective, the results de-
pend on the initial variable orders and hence on circuit 
topology. R. Rudell [5] describes a dynamic variable 
ordering technique for an OBDD and propose two algo-
rithms. The technique allows maintaining all advantages 
provided by the ordered BDD data structure, such as, 
canonicity and efficient recursive algorithms. A new 
variable ordering algorithms for multiple output circuits 
has been presented in [6] use variable interleaving, while 
conventional algorithms use variable appending. Chris-
toph Meinel and Fabio Somenzi [7] propose another al-
gorithm called linear shifting, which in many cases it 
leads to substantially more compact diagrams when 
compared to simple variable reordering. Another heuris-
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tic technique for deciding which BDD variables to reor-
der is simulated annealing (SA) [8]. But this technique is 
very slow, especially if the cost function is expensive to 
compute. A first attempt to use evolutionary algorithms 
for the variable ordering problem for BDDs is presented 
in [9] where the main genetic operations are partially- 
mapped crossover and mutation which yield better re-
sults (smaller BDDs) than other dynamic reordering 
techniques, but they are comparably slow. Many such 
evolutionary algorithms are presented in [10-12]. In [13], 
a low power optimization technique for BDD mapped 
circuits using temporal correlation has been presented. 
Output phase assignment technique for area and power 
minimization has been proposed in [14], which optimizes 
the BDD by finding suitable output polarity of a multi- 
output circuit using genetic algorithm. A new and pow-
erful class of optimization techniques based on scatter 
search [15] has been proposed, which is very aggressive 
and attempts to find high quality solutions at a fast rate. 
Scatter search optimization techniques offers a reason-
able compromise between quality (BDD size) and time. 
In [16] we see a technique to minimize the BDD com-
plexity and the time of evaluation of the function based 
on minimum path length which is decided by initial 
variable order. A detailed survey of static variable or-
dering heuristics (such as topological, influential, priority 
ordering and variable weighing etc.) has been presented 
in [17] in order to minimize the overall size of resulting 
decision diagram. Prasad, Assi, Harb and Prasad [18] 
propose an improved variable ordering method to obtain 
the minimum number of nodes in ROBDD which uses 
the graph topology to find the best variable ordering. 

Most recently, a double hybridized genetic algorithm 
has been proposed in [19] for the optimization of vari-
able order in ROBDD. The proposed technique combines 
a branch & bound technique with the basic genetic algo-
rithm and then uses the linear shifting algorithm as the 
second hybridization to find ROBDD with reduced com-
plexity. 

We can see that variable ordering has been potentially 
used for reducing the size of OBDDs. In this paper, we 
propose some efficient variable ordering algorithms, 
namely, a genetic algorithm based technique and a 
branch and bound technique. Each of which not only 
reduces the size of the BDD but at the same time also 
minimizes power consumption. Section 2 defines the 
problem with some examples and then Section 3 de-
scribes the methodology of adopting the two algorithms 
with respect to the current problem, followed by results 
of experimentation. Convergence to global optimum is 
given in Section 4. Analysis and comparison of results 
with other techniques are presented in Section 5. Finally, 

Section 6 draws the conclusion. 
 
2. Defining the Problem of Variable 

Ordering in BDDs 
 
Digital integrated circuits often represented as Boolean 
functions can be best-manipulated graphically in the 
form of Binary Decision Diagrams (BDD). A BDD can 
be expressed mathematically as follows. 

 : , 0,f B B B              (1) 

where f is a switching function and π—a total order on a 
fixed set of Boolean variables x1, x2, ···, xn. An OBDD 
with respect to order π is a single rooted direct acyclic 
graph that satisfies the properties as described in [20]. It 
is already mentioned that the size of a BDD is strongly 
dependent on the ordering of variables and is also ex-
plained in Figure 1. 

Improving the variable ordering of BDDs is NP- 
Complete and finding the best order is NP-hard. How-
ever, the most tedious job in case of OBDDs is to find an 
optimal variable order. An optimal variable order has a 
greater impact on power minimization also, as because, 
node switching and leakage is dependent on the number 
of BDD nodes and its order. Majority of the heuristic 
techniques discussed here has stressed only upon the size 
or complexity of the resulting BDD. However, power is 
considered to be one of the critical design issues espe-
cially when there is drastic device scaling and increasing 
use of portable, battery-operated digital devices in recent 
times. In this paper, due weightage is given to both the 
area (complexity) and power consumption of the result-
ing BDD after optimization. 

The next section proposes two techniques to tackle the 
problem of finding optimal variable order in order to 
minimize BDD complexity (area) and power. 

 

 
(a)                           (b) 

Figure 1. The influence of the variable ordering for f(a,b,c,d) 
= ab + cd with the order a, b, c, d (a) and order a, c, b, d (b). 
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3. Proposed Approaches 
 
We have attempted two different algorithmic approaches 
for efficient ordering of variables in OBDD, namely, the 
genetic algorithm which is an excellent multi-objective 
optimization technique and a branch and bound optimi-
zation approach, which is an exact method. At first, we 
will put our variable ordering problem in the framework 
of GA and constitute a GA-based program to obtain the 
best possible order decided by the minimal node count 
and power consumption of the resulting BDD. This will 
be followed by the experimentation with a number of 
benchmark circuits. The flowchart of Figure 2 shows a 
pictorial representation of the proposed GA based tech-
nique. 

Next, we will go for the same variable ordering prob-
lem by adopting a branch and bound (BB) based greedy 
algorithmic approach which is also an excellent optimi-
zation technique for multi-objective problems and has a 
finite but usually very large number of feasible solutions. 
A BB algorithm searches the complete space of solutions 
(exact method) for a given problem for optimum solution. 
However, in the current variable ordering problem for 
optimizing area and power, in combinational logic cir-
cuits realized as BDDs, explicit enumeration is normally 
impossible due to the exponentially increasing number of 
potential solutions (factorial n number of solutions), so a 
modified BB algorithm is taken up, the details of which 
we will see in Section 3.2. 

 

 Input 
benchmark ckt 

terminate 

Get BDD 

Reorder 

Get NC and SA 

buddy2.4 GA-generated 
solutions 

Rank sol(s) 

Is consistent 
solution ? 

 

Figure 2. Flow-chart of the proposed GA-based technique. 

3.1. Genetic Algorithm Based Approach 
 
Genetic Algorithms (GA) are stochastic optimization 
based on principle of natural selection and natural genet-
ics. They start with an initial population (solution space) 
consisting of a set of randomly generated solutions. 
Based on some reproductive plan especially, the cross- 
over and mutation, they are allowed to evolve over a 
number of generations. After each generation, the chro-
mosomes are evaluated based on some fitness criteria. 
Depending upon the selection policy and fitness value, 
the set of chromosomes for next generation are selected. 
Finally, the algorithm terminates when there is no im-
provement in solution over a fixed number of genera-
tions. The best solution at that generation is accepted as 
the solution produced by GA. 

The formulation of Genetic Algorithm for any prob-
lem involves the careful and efficient encoding of the 
solutions to form chromosomes, cross-over and mutation 
operators and a cost function measuring the fitness of the 
chromosomes in a population. We discuss each of these 
in subsequent sections. 
 
3.1.1. Solution Representation 
Here, given a multilevel, multi-output circuit with n 
number of input (variables), the problem is to find an 
optimal order and as such the chromosome is a set of n 
variables (i1, i2, i3, i4, i5, ···, in) of any order with no repe-
tition of variables. For example, a combinational logic 
circuit consisting of 7 variables (inputs) then according 
to above, 

2 3 1 4 5 7 6 

is a chromosome, where, each decimal number represents 
an input (variable) taken in some order. 
 
3.1.2. Genetic Operators 
Two types of genetic operators namely the crossover and 
the mutation, are applied to selected parents for generat-
ing offspring. Crossover is performed between two se-
lected individuals, called parents, by exchanging parts of 
their features (i.e. encodings) to form two new individual, 
called offspring. The crossover point is selected ran-
domly, and the substrings of two parent chromosomes 
are exchanged to form the offspring. Care must be taken 
to see that neither a variable is repeated in a chromosome 
nor a duplicate chromosome is generated as offspring. To 
generate better offspring, whole population is sorted ac-
cording to fitness value and the best-fit chromosomes 
take part in crossover. 

The mutation operator brings variety into population 
by selecting a chromosome randomly from the popula-
tion and modifies the chromosome at a point depending 
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upon the value of a generated random number. To mod-
ify a chromosome, a randomly selected bit is comple-
mented if the chromosome is a binary string. Here, as the 
chromosome is a string of n variables so it can be done 
by subtracting the randomly selected variable, ni from n 
and swapping it with the variable ni. This becomes the 
new chromosome. Once again the generated chromo-
some cannot be a duplicate. 
 
3.1.3. Fitness Measure 
The fitness function is used to determine how better a 
particular solution is. In this problem, initially we take it 
as a linear combination of area (node count) and switch-
ing activity (neglecting leakage) which can be deter-
mined by using the following formula. 

Fitness Value (F1) 
= A × Number of nodes + B × Switching Activity  (2) 

Next, we consider the leakage which is no longer a 
negligible quantity. In fact, it is a dominant contributor to 
the total power consumption in today’s device scaling 
scenario. So the modified fitness function (F2) becomes, 

Fitness (F2) 
= A × Number of nodes + (1 − A) 
× (B × Switching Activity + (1 − B) × leakage)   (3) 

where number of nodes for each BDD representation 
based on a particular order is given by the standard BDD 
package (such as, buddy-2.4) and switching activity is 
obtained by traversing through the BDD in a bottom up 
fashion. Since this fitness value is dominated by area 
(node count) a modified fitness function is taken where 
switching activity (for dynamic power) and number of 
nodes at any generation is divided by the corresponding 
maximum values of first generation. Lesser the value of 
fitness function better is the offspring. 

For a particular chromosome, the two-level circuit is 
represented with a BDD. Each BDD-node is essentially a 
multiplexer and suppose the function to be relaized is f = 
a − c + bc, then Prob (f = 1) = Prob (a = 1) × Prob (c = 
0) + Prob (b = 1) × Prob (c = 1) and Prob (f = 0) = 1 − 
Prob (f = 1). So the switching activity of a BDD node (f) 
is then, = 2 × Prob (f = 1) × Prob (f = 0). Thus SA’s of 
all individual nodes are added up to get the overall SA 
for the BDD. 

Leakage is again dependent mainly on sub-threshold 
and junction leakage at 0.18 um technology level con-
sidered here for realizing the BDD nodes with PTL. It 
however also depends on input patterns, gate fan-outs. 
 
3.1.4. Experimental Results 
The GA based program as defined above is implemented 
with C codes and experimented by running on a Pentium 
core-2 duo processor having 1Gb of RAM with a number 

of benchmark combinational logic circuits from LGSynth 
93 benchmark suite. The GA based program takes a 
population size of 500 for large circuits (having more 
than 20 inputs) and 200 for small sized circuits (less than 
20 inputs) with 80% crossover rate and 5% mutation rate. 
The result of experimentation for about 30 benchmark 
circuits with different area and power weights have been 
displayed in Figure 3. The average power reduction is 
more than 75% (highest) and average saving in area is 
about 39.35% as shown in bar diagram of Figure 3. 
When the emphasis is mostly on power the chart shows 
that although we achieve highest reduction in power, 
there is absolutely no control on area minimization (NC) 
and instead it becomes negative for many circuits which 
mean there is an increase in area. When we give more 
emphasis on area, it keeps on reducing, which is quite 
natural. Similarly, when we keep on increasing the em-
phasis on power, we achieve a gradual improvement in 
power reduction. However, we can take the best trade-off 
point to be at around A = 0.4 and 0.6, when both area 
and power reductions are considerably high and are 
found to be more than 32% and 71% respectively. Fig-
ure 4 shows the area, dynamic power and leakage trade- 
offs (for A = 0.4, B = 0.6 and A = 0.4, B = 0.8). Overall 
improvement in area, dynamic power and leakage is 
found to be 33.163%, 57.28% and 29.234% respectively. 

 

 

Figure 3. Bar diagram of average area and power reduc-
tions for different trade-offs. 

 

 

Figure 4. Plot showing area, dynamic power and leakage 
trade-offs. 
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It is also observed that the area saving can be as high as 
97.33% (with 100% area weight) and power reduction of 
97.46% (with 100% power weight) for a large circuit, 
such as, seq which is quite promising. In fact the benefit 
of area and power reduction is more for large circuits. 
 
3.2. Branch and Bound Algorithm 
 
In this section, we take up the problem of BDD optimi-
zation by formulating a branch and bound algorithm 
(BB). As the target is for an optimal trade-off between 
area and power, we propose here a greedy search tech-
nique using BB for the current variable ordering problem. 
A BB algorithm searches the whole solution space for 
the best solution. This is done by an iteration process 
which has three main components: selection of the solu-
tion set for bound calculation, and branching. The se-
quence of these may vary according to the strategy cho-
sen for selecting the next solution set to process. Here the 
selection of next solution set is based on the bound value 
of the solution sets obtained after branching from the 
previous level. For each of these iterations, it is checked 
whether the subspace consists of a lower bound, in that 
case, it is compared with the current best solution 
thereby retaining the better of the two while pruning the 
other sets. 
 
3.2.1. Branching Scheme 
This step is called branching as its recursive application 
defines a tree structure (the search tree) whose nodes are 
obtained from the previous level by a splitting procedure 
i.e. subdivision of the solution space of the nodes into 
two or more subspaces to be investigated in a subsequent 
iteration. Since the efficiency of the method depends 
strongly on the node-splitting procedure and on the lower 
bound estimators, we start the search from a set of sorted, 
non-duplicate potential solutions and applied variable’s 
sequence inversion of a solution and the technique can be 
categorized as variable appending. Accordingly, we have 
three different types of solutions space, namely left-
side_inverted, rightside_inverted and bothside_inverted. 
This splitting technique provides maximum non-over-
lapping subsets or no overlapping subsets as shown in 
Figure 5. 
 
3.2.2. Bounding Scheme 
The next step of the proposed BB technique is a proce-
dure that computes only the lower bounds of the solu-
tion_set by calculating the bounds for each of the solu-
tions, within the given solution_set. This step is called 
bounding. The lower bounds are calculated by setting the 
objective function of the proposed problem based on the 
fitness as defined in Equations (2) and (3). The key idea 

of the BB algorithm is: if the lower bound for some tree 
nodes (set of candidates) A is greater than the lower 
bound for some other node B in the same level, then A 
may be safely discarded from the search. This step is 
called pruning, and is usually implemented by maintain-
ing a global variable m (shared among all nodes of the 
tree) that records the minimum lower bound seen among 
all solutions examined so far. Any node whose lower 
bound is greater than m can be discarded. Otherwise, the 
bounding function for the subspace is calculated and 
compared with the current best solution. 
 
3.2.3. Termination Criteria 
The search terminates when we reach Level-(n-2), where 
n is the number of variables and the optimal solution is 
then the one recorded as “current best”. Ideally the pro-
cedure stops when all nodes of the search tree are either 
pruned or solved. At that point, all non-pruned sub-re-
gions will have their upper and lower bounds equal to the 
global minimum of the function. To check whether the 
solution obtained converges to the local minimum or not, 
we have repeated the above algorithmic steps by starting 
the search from a different solution set obtained by re-
versing the set of Level-1. 
 
3.2.4. Experimentation and Result 
The proposed BB algorithms is written in C and exhaus-
tive experimentation has been done with the same set up 
as was done for GA based algorithm, with the same set 
of benchmarks. An input combinational logic circuit is 
first converted to BDD, the order of which is decided by 
the proposed algorithm while trading off area and power. 
The trade off is done by taking different weights for area 
(node count) and power (switching activities). Simula-
tion is carried out for n-2 levels where n is the number of 
inputs in the circuit. The parameters taken for the ex-
perimentation purpose are as follows:  

 

 

1A = 2 1 3 4 5 6 

7 8 10 9 

2A = 3 4 2 1 5 6 

7 10 9 8

1A = 1 2 9 10 8 

7 6 5 4 3 

2A = 4 3 8 9 10 

7 6 5 1 2

1A = 2 1 9 10 

8 7 6 5 4 3 

2A = 3 4 8 9 

10 7 6 5 1 2 

L_inv B_inv R_inv 

Level-1 

L-2

A1 = 1 2 | 3 4 5 6 7 8 10 9 
A2 = 4 3 | 2 1 5 6 7 10 9 8 

· · · · · · · · ·  

Figure 5. Branching scheme. 
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Solution Set size-50 for large circuits (inputs > 20) and 
100 for small and medium circuits (inputs < 20) 

The weights varies from 0 to 1 (0, 0.2, 0.4, 0.6, 0.8 
and 1 are taken in present work). The result of experi-
mentation for about 30 benchmark circuits taking differ-
ent area and power weights has been shown in Figure 6. 
It shows the results in terms of percentage improvement 
in area and power against different weights. As it is clear 
from the bar diagram that the average power reduction is 
more than 78% (highest) and average saving in area is 
about 38.225%. It is also to be noted that even for the 
area weights A = 0.8 and A = 1.0, there is no negative 
values of switching activity, which means in almost all 
circuits there is a reduction in power consumption or 
zero reduction but no increase in power consumption. 
When power weight of B = 0.0, area is optimized maxi-
mally. Again, when the emphasis is mostly on power the 
chart shows that although we achieve highest reduction 
in power, but there is absolutely no control on area 
minimization (NC). When we give more emphasis on 
area, saving in power keeps on reducing, which is quite 
natural. Similarly, when we keep on increasing the em-
phasis on power, we achieve a gradual improvement in 
power reduction. However, we can take the best trade-off 
point to be at around A = 0.4 and 0.6, when both area 
and power reductions are considerably high and are 
found to be more than 30% and 70% respectively. 

It is also observed that the area saving can be as high 
as 95.9% ( with 100% area weight) and power reduction 
of 98.429% (with 100% power weight) for a large cir-
cuits, such as, seq and cps, which is quite promising. In 
fact, the benefit of area and power reduction is more for 
large circuits. 
 
4. Convergence of the Approaches 
 
In this section we will see the convergence of the pro-
posed GA based and BB based approaches towards 

 

 

Figure 6. Bar diagram of average area and power reduc-
tions (BB based approach) for different trade-offs. 

global optimum by framing an exhaustive search pro-
gram and running it for a few benchmarks circuits taking 
all possible input (variable) orders. To minimize CPU 
time, we have confined our simulations to circuits having 
variables (inputs) less than 7. When we compare the GA 
based optimization results with exhaustively searched 
ones, we find that both GA and BB results in same area 
reduction for the five benchmarks circuits considered i.e. 
converges to exhaustive search. However, for power, we 
find that the convergence is about 1.50% to 4.44% (for  
A = 0.4 and B = 0.6) to optimum value. Whereas, with 
BB algorithm, we find the convergence of power is about 
1.05% to 9.09% (for different area and power trade-offs) 
to optimum value. This explains that the GA based ap-
proach converges more to the optimum value than the 
BB based approach, thus indicating the effectiveness of 
the GA based approach. 
 
5. Comparison of Different Approaches 
 
If we observe the results of our GA-based approach and 
BB approach then we find that the overall results are 
much better compared to the most binate sort of ordering 
as shown Table 1. Output phase assignment technique 
[14] for area and power minimization on the other hand 
can produce a maximum of 15.72% and 19.18% saving 
in area and power respectively. While with dynamic 
variable ordering as proposed in [5] and the hybrid algo-
rithm in [9], the average area reduction is as high as 45% 
and 30%, respectively, compared to the initial value. 
However they do not take power minimization into ac-
count. We then compare the results of the proposed two 
algorithms, with the most recent heuristic search algo-
rithm based on scatter search [15], for some of the 
benchmark circuits as shown in Table 1. 

The average results for each of the algorithms in terms 
of percentage improvement in area are shown in the last 
row of Table 1. We can see that the modified BB algo-
rithm and the GA based algorithm will be a better option 
when the area reduction is given the highest priority, 
while the scatter search approach will be preferable from 
the point of view of minimal computational time com-
plexity (of the order of 0.053 hr) as shown in Figure 7. 
 
6. Conclusions 
 
Presented here two techniques for BDD optimization 
namely, GA based optimization and Branch and Bound 
based Greedy optimization. Exhaustive experimentation 
has been done with ISCAS93 benchmark circuits to see 
the effectiveness of the proposed two techniques for area 
and power optimization. Finally, the comparison with 
other established techniques such as, scatter search tech 
nique and dynamic variable ordering have been done and 
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Table 1. Percentage Improvement in Area for the Various Heuristic Approaches. 

Benchmark 
circuits/PLA 

Complexity 
% improvement in Area for 

BB based optimization 
% improvement in Area for 

GA based optimization 

% improvement in Area for 
scatter search heuristics 

algorithm [15] 

% improvement in Area for 
Most Binate Ordering 

algorithm 

apex1 45 92.64204645 93.20777 81.6123 94.07568783 

clip 9 64.09266409 64.09266 58.323 34.74903475 

cm162a 14 58.10810811 56.75676 55.6234 43.24324324 

con1 7 25 25 25.5123 0 

b12 15 42 36 35.2345 14 

cm163a 16 53.96825397 52.38095 52.7123 36.50793651 

Cu 14 47.36842105 44.73684 45.734 1.315789474 

sao2 10 44.93670886 43.67089 30.7345 37.97468354 

AVERAGE 53.51452532 51.98073375 48.1625 32.73329692 

 

 

Figure 7. Comparison of various heuristic approaches. 

 
found that the proposed two techniques are superior com- 
pared to others in fulfilling the objectives. 
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