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Abstract 
Recently, some coarse-graining methods based on network synchronization 
have been proposed to reduce the network size while preserving the synchro-
nizability of the original network. In this paper, we investigate the effects of 
the coarse graining process on synchronizability over complex networks under 
different average path lengths and different degrees of distribution. A large 
amount of experiments demonstrate a close correlation between the average 
path length, the heterogeneity of the degree distribution and the ability of 
spectral coarse-grained scheme in preserving the network synchronizability. 
We find that synchronizability can be well preserved in spectral coarse-grained 
networks when the considered networks have a longer average path length or 
a larger degree of variance. 
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1. Introduction 

Synchronization, as an emerging phenomenon of a population of dynamically 
interacting systems, is ubiquitous in nature and plays an important role within 
various contexts in biology, chemistry, ecology, sociology, and technology [1]. In 
the past two decades, synchronization of complex networks has been extensively 
investigated and discussed, both numerically and theoretically [2]-[8]. Unfortu-
nately, many real-world networks are too huge to be dealt with current tools or 
algorithms. For example, human brain contains 1011 neurons and more than 1015 
connections, which brings a big challenge to research on such networks. Espe-
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cially for the dynamics of large-scale coupling nodes, large number of coupled 
differential equations result in the trouble of the computation and simulation. 
Many techniques and methods at the level of mesoscale networks are useless in 
large networks. Therefore, when using model reduction for simulation and 
analysis, it is crucial to be able to reduce the network size while keeping most of 
the relevant properties of the initial networks [1]. Essentially, the coarse-graining 
process is very similar to the problem of cluster finding or community detection 
in networks [9] [10] [11] [12] [13]. 

Therefore, some coarse-grained methods are proposed to try to transform 
large-scale networks into mesoscale networks [14] [15] [16]. For example, D. 
Gfeller et al. [14] [15] proposed a spectral coarse-graining method (SCG) aiming 
at maintaining network synchronizability. Zhou and Jia proposed an improved 
spectral coarse-grained algorithm (ISCG) [16] based on the SCG method, which 
reduced the computational complexity and improved the synchronization capa-
bility. Chen et al. [1] investigated the effects of the coarse graining process on 
synchronizability over complex clustered networks. They found that a more 
prominent cluster structure implies a higher capability of the coarse graining 
strategy in preserving the synchronizability of the initial networks. 

Many articles only studied the maintenance of the topological properties of 
the initial networks by the coarse-grained method, but few people discussed the 
influence of the topological properties of the initial network on the effect of the 
coarse graining method. In this paper, we find that the longer the average path 
length or the more heterogeneous the degree distribution of the initial network, 
the spectral coarse-grained algorithm becomes more effective in keeping the 
synchronization ability. 

The rest of the paper is organized as follows. In Section 2, Mathematical basis 
is introduced. Influence of topological properties of complex networks on the 
effect of coarse-grained networks are proposed in Section 3. In Section 4, we ve-
rify our results through the real world networks. Finally, some conclusions are 
drawn in Section 5. 

2. Mathematical Basis 
2.1. Characterization of Network Synchronization Capability 

Consider a general complex dynamic network with N nodes. The dynamic equa-
tion as follow:  

( ) ( )
1

, 1, 2, ,
N

i i ij j
j

x f x c l H x i N
=

= − =∑
                 (1) 

where n
ix R∈  is the n-dimensional state variable of the ith node, 0c >  is the 

coupling strength, : n nH R R→  is the inner coupling function, and the Lapla-
cian matrix ( )ij N N

L l
×

=  describes the coupling topology of the network, in 
which 1ijl = −  if j connects to i (otherwise 0). The matrix L satisfies the dissipa-
tion coupling conditions: 

1 0N
ijj l

=
=∑ . If the network is undirected and con-
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nected, then L is a symmetric and positive semi-definite matrix with nonnega-
tive eigenvalues satisfying 1 20 Nλ λ λ= < ≤ ≤ . If there is ( ) ns t R∈  and 
t →∞ , then ( ) ( ) , 1, 2, ,ix t s t i N→ = 

, the state of all nodes of the Equation (1) 
is fully (asymptotically) synchronized to ( )s t  and ( )s t  is called a synchron-
ous state, and which iξ  is the variation of the ith node, The variational equation 
is obtained by:  

( ) ( ) TDf s cDH s Lξ ξ ξ= −                      (2) 

where ( )Df s  and ( )DH s  are the Jacobian matrices of ( )f s  and ( )H s  
with respect to ( )s t , Diagonalizing Equation (2) yields the following form:  

( ) ( ) , 2, ,k kDf s c DH s k Nη η λ η= − =  
               (3) 

where kη  is the eigenmode associated with the eigenvalue kλ  of L. Generalize 
Equation (3) to get the main stability equation:  

( ) ( )y Df s DH s yα= −                        (4) 

The largest Lyapunov exponent of this equation is a function of real variables 
α, It is called the main stable function of network (1) [17]. For node’s dynamics, 
there exist 2 1cλ α< , such that the synchronized state is linearly stable. As a 
consequence, the network can be synchronized if 1 2 2, Nc cα λ λ α< < , which 
means that larger 2 Nλ λ  or larger 2λ  leads to better synchronizability. In this 
paper, both 2 Nλ λ  and 2λ  are used to characterize network synchronizabili-
ty. 

2.2. The Spectral Coarse-Graining Method 

In 2008, D. Gfeller et al. proposed a spectral coarse graining method based on 
merging nodes with similar characteristic components in reference [15]. The 
aim is to obtain a simplified network that maintains the synchronization capa-
bility of the initial network. The network synchronization capability is represented 
by 2 Nλ λ  and 2λ . Take the indicator of maintaining synchronization as an 
example, the algorithm is as follows: 

First, determine which nodes merge. Let p2 denotes the eigenvector for the 
smallest nonzero eigenvalue 2λ . Merging nodes that correspond to the same or 
similar components in p2. Here 2

maxp  and 2
minp  are the largest and the smallest 

components of p2. Divide the elements in p2 evenly between 2
maxp  and 2

minp  
into I intervals. The smaller I is, the smaller the size of the coarse-grained net-
work will be, and the more the size of the network is reduced. 

Second, update edges and extract the coarse-grained network. Let the N nodes 
of the initial network be labeled with 1, 2, ,i N=  , and the coarse-grained net-
work has N  nodes corresponding to N  groups, labeled with 1, 2, ,C N= 

 . 
The edges of the coarse-grained network (corresponding to the new Laplacian 
matrix L ) can be updated by the following matrix product  

,L KLQ=                              (5) 
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where, N NK R ×∈
  and N NQ R ×∈   are defined by  

, ,; .
i iCi C C iC C CK C Q= Ψ = Ψ                     (6) 

Here, C  is the cardinality of group C; iC  is the index of the I’th node 
group, and Ψ is the Kronecker symbol. 

2.3. The Random Interchanging Algorithm 

To investigate the structural effects on network synchronizability, we use ran-
dom interchanging algorithm [18] to adjust the average path length while keep-
ing degree distribution unchanged. The process is as follows: 

1) Randomly pick two existing edges 1 1 2e x x=  and 2 3 4e x x= , such that 

1 2 3 4x x x x≠ ≠ ≠  and there is no edge between 1x  and 4x  as well as 2x  and 

3x . 
2) Cross reconnect these four nodes., that is, connect 1x  and 4x  as well as 

2x  and 3x , and remove the edges 1e  and 2e . 
3) Ensure that the network is connected and calculate whether this inter-

change increases/decreases the network average path length. If it does, accept the 
new configuration, else restore the original network structure. 

4) Repeat step 1) unless the desired average path length is achieved. 
Because the algorithm is only reconnected, it does not change the degree of 

any node. So the degree distribution and degree sequence are fixed. Figure 1 
provides a sketch map of random interchanging algorithm, which may help us 
understand the program flow.  

3. Influence of Topological Properties of Complex Networks  
on the Effect of Coarse-Grained Network 

3.1. Influence of the Average Path Length 

We consider a small-world network with average degree 4deg = , 1000 nodes. 
By random interchanging, we obtain four small-world networks with the same 
degree distribution and different average path lengths, respectively 5.5219, 
5.5518, 5.9301 and 6.6772. Similarly, we consider the scale-free network with 
 

 
Figure 1. A schematic diagram of random interchanging algorithm (cited in reference 
[18]). 
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power exponent 2.05, 1000 nodes. Through random interchanging, we obtain 
four scale-free networks with the same degree distribution and different average 
path lengths, and the average path lengths are 4.1000, 4.2530, 4.3048, 4.4591. 

Based on the spectral coarse-graining method, The initial network of N = 1000 
nodes is merged into N  groups, and 2λ  and Nλ  denote the smallest 
non-zero eigenvalue and the largest non-zero eigenvalue of the new Laplacian 
matrix, respectively. The relationship between N , Nλ  and 2 Nλ λ   for dif-
ferent values of average path lengths are shown in Figure 2(a) Figure 2(c) and 
Figure 3(a) Figure 3(c), respectively. We find that the more the average path 
length increases, the better the synchronization ability of the network is main-
tained. This means that the smaller the average path length of the network, the 
larger the size of the coarse-grained network is needed to keep the values of 

2λ  and 2 Nλ λ   unchanged with the corresponding values of the initial  
 

 

 

Figure 2. (a) (c) Evolution of 2λ  and 2 Nλ λ   with respect to N  for WS small-world networks with a constant degree of dis-
tribution and different average path lengths; (b) (d) Evolution of the corresponding absolute error. 
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Figure 3. (a) (c) Evolution of 2λ  and 2 Nλ λ   with respect to N  for scale free networks with a constant degree of distribution 
and different average path lengths; (b) (d) Evolution of the corresponding absolute error. 

 
network. On the other hand, Figure 2(b) Figure 2(d) and Figure 3(b) Figure 
3(d) show the evolution trend of the absolute error of the eigenvalue Nλ  and 
the eigenratio 2 Nλ λ   between the initial network and the coarse-grained net-
work as a function of N  for different average path lengths. It can be seen that 
when the average path length decreases, the absolute error of Nλ  and 2 Nλ λ   
between the initial network and coarse-grained networks increases. This result 
shows that compared with a network with long average path length, a network 
with short average path length needs more N  to achieve the same absolute er-
ror. 

In summary, regardless of the small-world networks or scale-free networks, as 
the average path length increases, the eigenvalue 2λ  and the eigenratio 2 Nλ λ   
of coarse-grained networks become closer to the original values of the initial 
networks, which is to say that, with the increase of the average path length, the 
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spectral coarse-grained method becomes more effective in keeping the network 
synchronization. 

In Figure 4(a), the initial network is small-world network with 1000 nodes 
and average degree 4deg = . Different curves indicate the variance of the de-
gree distribution of the generated small-world networks, which are 1.0840, 
0.7620 and 0.4180, respectively. In Figure 4(b), the initial network is scale-free 
network with 1000 nodes and average degree 3.994deg = . The variance of 
degree distributions expressed by each curve is 26.368, 19.558 and 15.348, re-
spectively. It is obvious that the above two figures show positive correlation be-
tween average path length and clustering coefficient. Chen et al. [12] studied that 
the more obvious the clustering is, the better the coarse-graining effect is, which 
means that the longer the average path length, the better the ability of spectral 
coarse-graining method in preserving the network synchronizability. 

3.2. Influence of the Degree Distribution 

In order to measure the heterogeneity of the degree distribution of the net-
work, we use the degree variance σ to represent the heterogeneity of the degree 
distribution. The greater the degree variance, the more inhomogeneous the 
network. 

Similarly, we first obtain small-world networks with different four-degree va-
riances by reconnecting probabilities p = 0.1, 0.2, 0.3, and 0.4. We use the ran-
dom interchanging algorithm to equalize the average path lengths of these four 
networks. Then we get four networks with the same average path length and dif-
ferent degree distribution. The degree variance is 0.3657, 0.7640, 1.0840, and 
1.3200, respectively. Equally, we consider the four scale-free networks with 1000 
nodes, uniform average path length and different degree distributions. The de-
gree variances are 14.2060, 15.2419, 18.6693, and 24.4806, respectively. 
 

 
Figure 4. The relationship between average distance and clustering coefficient in the process of random interchanging. 
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Figure 5(a) Figure 5(c) and Figure 6(a) Figure 6(c) show the evolution of 

2λ  and 2 Nλ λ   respect to N  for networks with uniform average path length 
and different degree variances. We observe that with smaller σ, the more un-
iformly distributed the network degree, the larger the size of the coarse-grained 
network needs to be, to remain the values of 2λ  and 2 Nλ λ   unchanged. In 
addition, Figure 5(b) Figure 5(d) and Figure 6(b) Figure 6(d) indicate the 
evolution trends of the absolute error of 2λ  and 2 Nλ λ   of the initial network 
and the coarse-grained networks, respectively. It can be seen that as the degree 
variance decreases, the error of the eigenvalues and eigenvalues ratio corres-
ponding to the coarse-grained network and the initial network become larger. 
This also shows that the reduction of the variance of degree is not conducive to 
coarse graining network. 

 

 

 

Figure 5. (a) (c) Evolution of 2λ  and 2 Nλ λ   with respect to N  for WS small-world networks with the same average path 
length and different degree of distribution; (b) (d) Evolution of the corresponding absolute error. 

https://doi.org/10.4236/cn.2018.103008


L. Zeng et al. 
 

 

DOI: 10.4236/cn.2018.103008 101 Communications and Network 
 

 

 

Figure 6. (a) (c) Evolution of 2λ  and 2 Nλ λ   with respect to N  for scale free networks with the same average path length and 
different degree of distribution; (b) (d) Evolution of the corresponding absolute error. 

 
The simulation results show, with the increase of degree variance, the distri-

bution of network degree becomes more heterogeneous in both small-world 
networks and scale-free networks. The 2λ  and 2 Nλ λ   of coarse-grained net-
work are more close to the corresponding values of the initial networks, that is 
to say, the effect of coarse-grained network will be better with the increase of 
degree variance. 

4. Example 

To demonstrate our conclusions, we consider two real world networks-scientific 
cooperation network ( 379N = ) [19] and protein-protein interaction network in 
budding yeast ( 2224N = ). We obtain four scientific cooperation networks with 
average path lengths of 4.4783, 5.5061, 5.5832, and 6.0419 through the random  
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Figure 7. (a) (c) (e) Evolution of 2λ  and 2 Nλ λ   with respect to N  for scientific cooperation network with 379N =  and 
protein-protein interaction network with 2224N = ; (b) (d) (f) Evolution of the corresponding absolute error. 
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interchanging algorithm. Moreover, we get three protein-protein interaction 
networks with average path lengths of 4.0122, 4.2111, and 4.3763 through the 
random interchanging algorithm. The results are shown in Figure 7. We find 
that the experimental results are consistent with above conclusion. As the aver-
age path length increases, the effect of coarse-graining method is better. 

5. Conclusion 

This paper studies the influence of the average path length and the heterogeneity 
of the degree distribution on the ability of spectral coarse-graining method in 
keeping the network synchronizability. According to the large number of simu-
lation experiments, the average path length and the heterogeneity of degree dis-
tribution are closely related to keep the 2λ  and 2 Nλ λ   of the initial networks 
when applying spectral coarse-graining method to reduce the network size. The 
longer the average path length, the more inhomogeneous the degree distribution, 
which can better maintain the network synchronization ability in the coarse-grained 
process. 
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