Approximation Schemes for the 3-Partitioning Problems

Jianbo Li ${ }^{1}$, Honglin Ding ${ }^{2}$
${ }^{1}$ School of Management and Economics, Kunming University of Science and Technology, Kunming, P. R. China
${ }^{2}$ Department of Mathematics, Yunnan University, Kunming, P. R. China
Email: dinghonglinyn@126.com

Received 2012

Abstract

The 3-partitioning problem is to decide whether a given multiset of nonnegative integers can be partitioned into triples that all have the same sum. It is considerably used to prove the strong NP-hardness of many scheduling problems. In this paper, we consider four optimization versions of the 3-partitioning problem, and then present four polynomial time approximation schemes for these problems.

Keywords: 3-partitioning Problem; Approximation Scheme

1. Introduction

The 3-partitioning problem is a classic NP-complete problem in Operations Research and theoretical computer science [10]. The problem is to decide whether a given multi set of nonnegative integers can be partitioned into triples that all have the same sum. More precisely, for a given multi set S of 3 m positive integers, can S be partitioned into m subsets $S_{1}, S_{2}, \cdots, S_{m}$ such that each subset contains exactly three elements and the sums of elements in the subsets (also called loads or lengths) are equal?

For the optimal versions of the 3-partitioning problem, the following four problems have been considered.

Problem 1[13], [14] MIN-MAX 3-PARTITIONING:
Given a multi set $S=\left\{p_{1}, p_{2}, \cdots, p_{3 m}\right\}$ of 3 m nonnegative integers, partitioned S into m subsets S_{1}, S_{2}, \cdots, S_{m} such that each subset contains exactly three elements and the maximum load of the m subsets is minimized.

Problem 2 [6] MIN-MAX KERNEL 3- PARTITIONING:

Given a multi set $S=\left\{r_{1}, r_{2}, \cdots, r_{m} ; p_{1}, p_{2}, \cdots, p_{2 m}\right\}$ of 3 m nonnegative integers, where each r_{j} is a kernel andeach p_{j} is an ordinary element, partitioned S into m subsets $S_{1}, S_{2}, \cdots, S_{m}$ such that (1) each subset contains exactly one kernel, (2) each subset contains exactly three elements, and (3) the maximum load of the m subsets is minimized.

Problem 3 [5] MAX-MIN 3-PARTITIONING:

Given a multi set $S=\left\{p_{1}, p_{2}, \cdots, p_{3 m}\right\}$ of 3 m nonnegative integers, partitioned S into m subsets $S_{1}, S_{2}, \cdots, S_{m}$ such that each subset contains exactly three elements and the minimum load of the m subsets is maximized.

Problem 4 [5] MAX-MIN KERNEL3-PARTITIONIN

G:

Given a multi set $S=\left\{r_{1}, r_{2}, \cdots, r_{m} ; p_{1}, p_{2}, \cdots, p_{2 m}\right\}$ of 3 m nonnegative integers, where each r_{j} is a kernel andeach p_{j} is an ordinary element, partitioned S into m subsets $S_{1}, S_{2}, \cdots, S_{m}$ such that (1) each subset contains exactly one kernel, (2) each subset contains exactly three elements, and (3) the minimum load of the m subsets is maximized.

The 3-partitioning problems have many applications in multiprocessor scheduling, aircraft maintenance scheduling, flexible manufacturing systems and VLSI chip design (see [3, 13]). Kellerer and Woeginger [14] proposed a Modified Longest Processing Time (MLPT, for short) with performance ratio $4 / 3-1 / 3 m$ for MIN-MAX 3-PARTITIONING. Later, Kellerer and Kotov [13] designed a 7/6 -approximation algorithm which is the best known result for MIN-MAX 3-PARTITIONING. Chen et al. [6] considered-MIN-MAX KERNEL 3-PAR- TITIONING and proved that MLPT has a tight approximation ratio $3 / 2-1 / 2 m$.Chen et al. [5] considered MAX-MIN 3-PARTITIONINGand MAX-MIN KERNEL 3-PARTITIONING, and showed that MLPT algorithm has worst performance ratios $(3 m-1)(4 m-2)$ and $(2 m-1)(3 m-2)$, respectively. To the best of our knowledge, these are the best results.

A generalization of the 3-partitioning problem is the k -partitioning problem in which km elements have to be partitioned into m subsets each of which contains k elements. For the min-max objective, Babel, et al. [2] showed the relationship between the scheduling problems and the k-partitioning problem, and devised a 4/3 -approximation algorithm. Upper (lower) bounds
and heuristic algorithms for the min-max k-partitioning problem can be found in [7-9]. He et al. [11] investigated the max-min k-partitioning problem and presented an algorithm with performance ratio $\max \{2 / \mathrm{k}, 1 / \mathrm{m}\}$. Recently, Bruglieri et al. [4] gave an annotated bibliography of the cardinality constrained optimization problems which contains the k-partitioning problems.
Apparently, all four 3-partitioning problems considered in the current paper are NP-hard in the strong sense. Thus we are interested in designing some approximation algorithms. Recall that a polynomial-time approximation scheme (PTAS) for a minimization problem is a family of polynomial algorithms over all $\varepsilon>0$ such that for every instance of the problem, the corresponding algorithm produces a solution whose value is at most $(1+\varepsilon) O P T$. Similarly, A PTAS for a maximization problem is a family of polynomial algorithm sover all $\varepsilon>0$ such that for every instance of the problem, the corresponding algorithm produces a solution whose value is at least $(1-\varepsilon) \quad O P T$. Since four 3-partitioning problems are NP-hard in the strong sense, designing some PTASs for these problems is best possible.

Note that 3-partitioning problems are closely related to the parallel scheduling problem of minimizing the makes pan in which n jobs have to be assigned to m machines such that the maximum machine load is minimized. Hochbaum and Shmoys [12] first presented a PTAS for the makes pan problem by using dual approximation algorithms. Alon et al. [1] designed some linear time approximation schemes for the parallel machine scheduling problems by using a novel idea of clustering the small jobs into blocks of jobs of small but non-negligible size. The basic strategy of designing PTAS in [1,12] is to construct a new instance with a constant number of different sizes from the original instance, to solve the new instance optimally, and then re-construct a near optimal schedule for the original instance. Note that the approximation schemes in [1, 12] cannot be applied directly to the 3 -par- titioning problems, because of the cardinality constraint.

To the best of our knowledge, there are no PTASs for the four 3-partitioning problems. In this paper, we first present four polynomial-time approximation schemes for the3-partitioning problems, respectively. As we shall see later, our result are adaptations of the framework of approximation scheme in [1], but with a new rounding method.

2. The Min-Max Objectives

2.1. Min-max 3-partitioningvv

For a given instance I_{1} of MIN-MAX 3-PARTITIONING, we first compute a partition with value L_{1} using MLPT algorithm in [14]. Kellerer and

Woeginger [14] have proved that $O P T_{1} \leq L_{1} \leq 4 / 3 O P T_{1}$, where
$O P T_{1}$ denotes the value of the optimal solution for instance I_{1}.

Let $\lambda_{1}=\frac{4}{\varepsilon}$. For any $T \subseteq S$, let $p(T)=\sum_{p_{j} \in T} p_{j}$ be the length of set T. For each element $p_{j} \in S$, we round it
up to $p_{j}^{\prime}=\frac{p_{j}}{L_{1} / \lambda_{1}} \frac{L_{1}}{\lambda_{1}}$, and then we get a new instance I_{1}^{\prime} with mult set S^{\prime}. The following lemma about the relationship between instance I_{1} and instance I_{1}^{\prime} is important to our approximation scheme.

Lemma 1. The optimal value of instance I_{1}^{\prime} is no more than $O P T_{1}+\frac{3}{\lambda_{1}} L_{1}$.

Note that no element in instance I_{1} is more than L_{1} by the definition of L_{1}, and in instance I_{1}^{\prime}, all elements are integer multiples of $\frac{L_{1}}{\lambda_{1}}$. Thus, the number of different elements is atmost $\lambda_{1}+1$ in instance I_{1}^{\prime}. Let $n_{i}^{(1)}$ $\left(i=0,1, \ldots, \lambda_{1}\right)$ denote the number of elements with size $i \frac{L_{1}}{\lambda_{1}}$. Clearly, $\sum_{i=0}^{\lambda_{1}} n_{i}^{(1)}=3 m$.By the fact $\mathrm{OPT}_{1} \leq L_{1}$ and Lemma 1, we can conclude that the optimal value of instance I_{1}^{\prime} is at most $\left(1+\frac{3}{\lambda_{1}}\right) L_{1}$. Define a configuretion C_{j} as a subset of elements which contains exactly three elements in S^{\prime} and has length no more than

$$
\left(1+\frac{3}{\lambda_{1}}\right) L_{1} .
$$

It is easy to verify that the number of different configurations is at most $K_{1}=\left(\lambda_{1}+1\right)^{3}$, which is a constant. Let $a_{i j}$ denote the number of elements of size $i \frac{L_{1}}{\lambda_{1}}$ in configuration C_{j} and x_{j} be the variable indicating the number of occurrences of configuration C_{j} in a solution.

For each $t \in\left\{1,2, \ldots, \lambda_{1}+3\right\}$, we construct an integerlinear program $I L P_{t}$ with arbitrary objective, and that the constraints are:

$$
\begin{align*}
\sum_{j=1}^{K_{1}} a_{i j} x_{j}= & n_{i}^{(1)} ; i=0,1,2, \ldots, \lambda_{1} \tag{1}\\
& \sum_{j=1}^{K_{1}} x_{j}=m \tag{2}
\end{align*}
$$

$$
\begin{array}{r}
x_{j}=0 ; \text { if } p\left(C_{j}\right)>t \frac{L_{1}}{\lambda_{1}} \\
x_{j} \geq 0 ; j=1,2, \ldots, K_{1} \tag{4}
\end{array}
$$

Here, the constraints (1) and (2) guarantee that eachelement is exactly in one subset. The constraints (3) mean that we only use the configuration with length no more $t \frac{L_{1}}{\lambda_{1}}$. Obviously,

$$
\mathrm{OPT}_{1}^{\prime}=\min \min \left\{\left.t \frac{L_{1}}{\lambda_{1}} \right\rvert\, I L P_{t} \text { hasa feasible solution }\right\}
$$

where $\mathrm{OPT}_{1}^{\prime}$ denotes the optimal value of instance I_{1}^{\prime}. In $I L P_{t}$, the number of variables is at most $K_{1}=\left(\lambda_{1}+1\right)^{3}$, and the number of constraints is at most $\lambda_{1}+2+\left(\lambda_{1}+1\right)^{3}$. Both are constants, as λ_{1} is a constant. By utilizing Lenstra's algorithm in [15] whose running time is exponential in the dimension of the program but polynomial in the logarithms of the coefficients, we can decide whether the integer linear programming $I L P_{t}$ has a feasible solution in time $O(m)$, where the hidden constant depends exponentially on λ_{1}. By solving at most K_{1} integer linear programs, we get an optimal solution for instance I_{1}^{\prime}. Since computing L_{1} can be done in time $O(m \operatorname{logm})$ [14], and constructing the integer linear programs can be done in time $O(m)$, we arrive at the following lemma.

Lemma 2.An optimal solution for instance I_{1}^{\prime} of MIN-MAX3-PARTITIONING can be computed in time $O(m \log m)$.

For an optimal solution $\left(S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{m}^{\prime}\right)$ for instance I_{1}^{\prime}, replace each element $p_{j}^{\prime} \in S_{i}{ }^{\prime}$ by element p_{j} in instance I_{1}, and then we get a partition $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ for instance I_{1}. This will not increase the objective. By Lemma 1, we have

$$
\begin{aligned}
\max _{i} \max _{i} p\left(S_{i}\right) & \leq O P T_{1}+\frac{3}{\lambda_{1}} L_{1} \\
& \leq\left(1+\frac{4}{\lambda_{1}}\right) O P T_{1} \leq(1+\varepsilon) O P T_{1}
\end{aligned}
$$

as $L_{1} \leq \frac{4}{3} O P T_{1}$ and $\lambda_{1}=\frac{4}{\varepsilon} \geq \frac{4}{\varepsilon}$. Thus, $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ is a $(1+\varepsilon)$-approximation solution for instance I_{1}. Hence, we achieve the following theorem.

Theorem 3. There exists a PTAS with running time O (mlogm) for MIN-MAX 3-PARTITIONING.

2.2. Min-max Kernel 3-Partitioning

For a given instance I_{2} of MIN-MAX KERNEL 3-PAR-TITIONING, we first compute the value L_{2} of the feasible solution produced by the algorithm in [6]. We have $O P T_{2} \leq L_{2} \leq \frac{3}{2} O P T_{2}$, where $O P T_{2}$ denotes the
value of the optimal solution for instance I_{2}.
Let $\lambda_{2}=\frac{9}{2 \varepsilon}$. For each element in I_{2}, we round it up to the next integer multiple of $L_{2} / \lambda_{2} \mathrm{~kg}$, i.e.,

$$
r_{j}^{\prime}=\frac{r_{j}}{L_{2} / \lambda_{2}} \frac{L_{2}}{\lambda_{2}}(j=1,2, \ldots, m)
$$

and

$$
p_{j}^{\prime}=\frac{p_{j}}{L_{2} / \lambda_{2}} \frac{L_{2}}{\lambda_{2}}(j=1,2, \ldots, 2 m)
$$

Then we get a new instance I_{2}^{\prime} with multi set S^{\prime}.
Similar to Lemma 1, we can obtain the following lemma.

Lemma 4. The optimal value of instance I_{2}^{\prime} is no more than $O P T_{2}+\frac{3}{\lambda_{2}} L_{2}$.

For convenience, let $R^{\prime}=\left\{r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{m}^{\prime}\right\}$. Note that the numbers of different elements in R^{\prime} and $S^{\prime}-R^{\prime}$ are at most $\lambda_{2}+1$ in instance I_{2}^{\prime}. Let $n_{i}^{(2)}\left(i=0,1, \ldots, \lambda_{2}\right)$ and $q_{i}^{(2)}\left(i=0,1, \ldots, \lambda_{2}\right)$ denote the number of elements in R^{\prime} and $S^{\prime}-R$ with size $i \frac{L_{2}}{\lambda_{2}}$, respectively. Clearly, $\sum_{i=0}^{\lambda_{1}} n_{i}^{(2)}=m$ and $\sum_{i=0}^{\lambda_{1}} q_{i}^{(2)}=2 m$. Define a configuration C_{j} as a subset of elements, which contains exactly one element in R^{\prime} and two elements in $S^{\prime}-R^{\prime}$ and has length no more than $\left(1+\frac{3}{\lambda_{2}}\right) L_{2}$. It is easy to see that the number of different configurations is at most $K_{2}=\left(\lambda_{2}+1\right)^{2}$, which is a constant. Let $a_{i j}$ denote the number of elements in R^{\prime} of size $i \frac{L_{2}}{\lambda_{2}}$ in configurat i o n C_{j} and $b_{i j}$ denote the number of elements in $S^{\prime}-R^{\prime}$ of size $i \frac{L_{2}}{\lambda_{2}}$ in configuration C_{j}. Let x_{j} be the variable indicating the number of occurrences of configuration C_{j} in a solution.

For each $t \in\left\{0,1,2, \ldots, \lambda_{1}+3\right\}$, we construct an integer linear program $I L P_{t}$ with arbitrary objective, and that the constraints are:

$$
\begin{gather*}
\sum_{j=1}^{K_{2}} a_{i j} x_{j}=n_{i}^{(2)} ; i=0,1,2, \ldots, \lambda_{1} \tag{5}\\
\sum_{j=1}^{K_{2}} b_{i j} x_{j}=q_{i}^{(2)} ; i=0,1,2, \ldots, \lambda_{1} \tag{6}\\
\sum_{j=1}^{K_{2}} x_{j}=m \tag{7}
\end{gather*}
$$

$$
\begin{align*}
& x_{j}=0 ; \text { if } p\left(C_{j}\right)>t \frac{L_{1}}{\lambda_{1}} \tag{8}\\
& x_{j} \geq 0 ; j=1,2, . ., K_{2} \tag{9}
\end{align*}
$$

As before, by implementing Lenstra's algorithm in [15] at most K_{2} times, we can find an optimal solution for instance I_{2}^{\prime}.

Lemma 5. An optimal solution to instance I_{2}^{\prime} of MINMAXKERNEL 3-PARTITIONING can be computed in time $O($ mlogm $)$.

For an optimal solution $\left(S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{m}^{\prime}\right)$ for instance I_{2}^{\prime} replace each element $r_{j}^{\prime} \in S_{i}^{\prime}$ and $p_{j}^{\prime} \in S_{i}^{\prime}$ by element r_{j} and p_{j} in instance I_{2}, respectively. And then we get a partition $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ for instance I_{2}. This will not increase the objective. By Lemma 4, we have

$$
\begin{aligned}
& \max _{i} p\left(S_{i}\right) \leq O P T_{2}+\frac{3}{\lambda_{2}} L_{2} \leq\left(1+\frac{9}{2 \lambda_{2}}\right) O P T_{2} \\
& \leq(1+\varepsilon) O P T_{2} \max _{i} \max _{i} p\left(S_{i}\right) \leq O P T_{2}+\frac{3}{\lambda_{2}} L_{2}, \\
& \leq\left(1+\frac{9}{2 \lambda_{2}}\right) O P T_{2} \leq(1+\varepsilon) O P T_{1}
\end{aligned}
$$

as $L_{2} \leq \frac{3}{2} O P T_{2}$ and $\lambda_{2}=\frac{9}{2 \varepsilon} \geq \frac{9}{2 \varepsilon}$.
Thus, $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ is a $(1+\varepsilon)$-approximation solution for instance I_{2}.

Hence, we achieve the following theorem.
Theorem 6. There exists a PTAS with running time $O(m \log m)$ for MIN-MAX Kernel 3-PARTITIONING.

3. The Max-Min Objectives

For a given instance I_{3} MAX-MIN 3-PARTITIONING, we first compute a partition with value L_{3} using MLPT algorithm in [5]. Chen et al. [5] have proved that $\frac{3}{4} O P T_{3} \leq L_{3} \leq O P T_{3}$, where OPT_{3} denotes the value of the optimal solution for instance I_{3}

Lemma 7. If there exists an element

$$
p_{j} \geq \frac{4}{3} L_{3} \geq O P T_{3}
$$

then there exists an optimal partition in which element p_{j} and the two smallest elements are in the same subset.

Proof. Without loss of generality, we may assume
that $p_{1} \geq p_{2} \geq \cdots \geq p_{3 m-1} \geq p_{3 m}$. If $p_{1} \geq \frac{4}{3} L_{3}$, Let
$\left(S_{1}^{*}, S_{2}^{*}, \ldots, S_{m}^{*}\right)$ be an optimal partition for instance I_{3}, where $S_{1}^{*}=\left\{p_{1}, p_{i_{1}}, p_{i_{2}}\right\}$. Note that $p_{1} \geq O P T_{3}, p_{i_{1}} \geq p_{3 m-1}$, and $p_{i_{2}} \geq p_{3 m}$. Interchanging $p_{i_{1}}$ and $p_{3 m-1}, p_{i_{2}}$ and
$p_{3 m}$, respectively, cannot decrease the objective function. Thus, we get a new optimal partition in which p_{1} and the two smallest elements are in the same subset.

With the help of Lemma 7, while there exists an element no less than $4 / 3 L_{3}$, we delete it and the two smallest elements from S, and then handle a smaller instance. Thus, we may assume without loss of generality that in the end each element is less than $4 / 3 L_{3}$.

Lemma 8. In any feasible solution for instance I_{3}, the maximum load of the subsets is less than that $4 L_{3}$.

Let $\lambda_{3}=\frac{3}{\varepsilon}$. For each element $p_{j} \in S$, we round it down to $p_{j}^{\prime}=\frac{p_{j}}{L_{3} / \lambda_{3}} \frac{L_{3}}{\lambda_{3}}$, and then we get a new instance I_{3}^{\prime}.

Lemma 9. The optimal value of instance I_{3}^{\prime} is at least $O P T_{3}-\frac{3}{\lambda_{3}} L_{3}$.

Note that all the elements in I_{3}^{\prime} are integer multiples of $\frac{L_{3}}{\lambda_{3}}$. Thus, the number of different elements is at most $\frac{4}{3} \lambda_{3}$ in instance I_{3}^{\prime}. Let $n_{i}^{(3)}\left(i=0,1, \ldots, \frac{4}{3} \lambda_{3}-1\right)$ denote the number of elements with size $i \frac{L_{3}}{\lambda_{3}}$. Clearly, ${ }^{\frac{4}{3}} \lambda_{3}-1$
$\sum_{i=0}^{3} n_{i}^{(3)}=3 m$. By Lemma 8, the maximum load of any feasible solution for instance I_{3}^{\prime} is less than $4 L_{3}$. Define a configuration C_{j} as a subset of elements which contains exactly three elements in S^{\prime} and has length less than $4 L_{3}$. The number of different configurations is at most $K_{3}=\frac{4}{3} \lambda_{3}{ }^{3}$, which is a constant. Let $a_{i j}$ denote the number of elements of size $i \frac{L_{3}}{\lambda_{3}}$ in configuration C_{j} and x_{j} be the variable indicating the number of occurrences of configuration C_{j} in a solution.

For each $t \in\left\{0,1,2, \ldots, 4 \lambda_{3}\right\}$, we construct an integerlinear program $I L P_{t}$ with arbitrary objective, and that the constraints are:

$$
\begin{gather*}
\sum_{j=1}^{K_{3}} a_{i j} x_{j}=n_{i}^{(3)} ; i=0,1,2, \ldots, 4 \lambda_{3} \tag{10}\\
\sum_{j=1}^{K_{3}} x_{j}=m ; \tag{11}\\
x_{j}=0 ; \text { if } p\left(C_{j}\right)<t \frac{L_{1}}{\lambda_{1}} \tag{12}\\
x_{j} \geq 0 ; j=1,2, \ldots, K_{3} \tag{13}
\end{gather*}
$$

Here, the constraints (10) and (11) guarantee that each element is exactly in one subset. The constraints (12) mean that we only use the configuration with length no Less than $t \frac{L_{3}}{\lambda_{3}}$. Obviously,

$$
\mathrm{OPT}_{3}^{\prime}=\min \left\{\left.t \frac{L_{3}}{\lambda_{3}} \right\rvert\, I L P_{t} \text { has a feasible solution }\right\}
$$

where $\mathrm{OPT}_{3}^{\prime}$ denotes the optimal value of instance I_{3}^{\prime}. As in Section 2, by implementing Lenstra's algorithm in [15] at most K_{3} times, we get an optimal solution of instance I_{3}^{\prime}. Since computing L_{3} can be done in O (mlogm) [5] and constructing the integer linear programs can be done in $O(m)$, we arrive at the following lemma.

Lemma 10. An optimal solution for instance I_{3}^{\prime} of-MIN-MAX 3-PARTITIONING can be computed in time O (mlogm).
For an optimal solution $\left(S_{1}^{\prime}, S_{2}^{\prime}, \cdots, S_{m}^{\prime}\right)$ for instance I_{3}^{\prime}, replace each element $p_{j}^{\prime} \in S_{i}^{\prime}$ by element p_{j} in instance I_{3}, and then we get a partition $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ for instance I_{3}. This will not decrease the objective value. By Lemma 9, we have

$$
\begin{aligned}
& \min _{i} p\left(S_{i}\right) \geq O P T_{3}-\frac{3}{\lambda_{3}} L_{3} \geq\left(1-\frac{3}{\lambda_{3}}\right) O P T_{3}, \\
& \geq(1-\varepsilon) O P T_{3}
\end{aligned}
$$

as $L_{3} \leq O P T_{3}$ and $\lambda_{3}=\frac{3}{\varepsilon} \geq \frac{3}{\varepsilon}$. Thus, $\left(S_{1}, S_{2}, \cdots, S_{m}\right)$ is a $(1-\varepsilon)$-approximation solution for instance I_{3}.

Hence, we achieve the following theorem.
Theorem 11. There exists a PTAS with running time O (mlogm) for MAX-MIN 3-PARTITIONING.
Similarly, we can obtain the following theorem. We omit the proof here.

Theorem 12. There exists a PTAS with running time O(mlogm) for MAX-MIN Kernel 3-PARTITIONING.

4. Conclusions

We have presented some PTASs for four optimizationversions of 3-partitioning problem. It is an interesting open question whether some similar PTAS can be developed for general objectives of 3-partitioning problem as in [1].

5. Acknowledgements

The work is supported by the National Natural Science Foundation of China [No. 61063011] and the Tianyuan Fund for Mathematics of the National Natural Science Foundation of China [No. 11126315].

REFERENCES

[1] N. Alon, Y. Azar, G. J. Woeginger and T. Yadid, "Approximation Schemes for Scheduling on Parallel Machines," Journal of Scheduling, Vol. 1, 1998, pp. 55-66. doi:10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2 $\geq 3.0 . \mathrm{CO} ; 2-\mathrm{J}$
[2] L. Babel, H. Kellerer and V. Kotov, "The k-partitioning Problem," Mathematical Methods of Operations Research, Vol. 47, 1998, pp. 59-82.
doi:10.1007/BF01193837
[3] J. Brimberg, W. J. Hurley and R. E. Wright, "Scheduling Workers in a Constricted Area," Naval Research Logistics, Vol. 43, 1996, pp. 143-149.
doi:10.1002/(SICI)1520-6750(199602)43:1<143::AID-N AV9>3.0.CO;2-B
[4] M. Bruglieri, M. Ehrgott, H. W. Hamacher and F. Maffioli, "An Annotated Bibliography of Combinatorial Optimization Problems with Fixed Cardinality Constraints," Discrete Applied Mathematics, Vol. 154, 2006, pp. 1344-1357. doi:10.1016/j.dam.2005.05.036
[5] S. P. Chen, Y. He and G. H. Lin, "3-partitioning for Maximizing the Minimum Load," Journal of Combinatorial Optimization, Vol. 6, 2002, pp. 67-80.
doi:10.1023/A:1013370208101
[6] S. P. Chen, Y. He and E. Y. Yao, "Three-partitioning Containing Kernels: Complexity and Heuristic. Computing, Vol. 57, 1996, pp. 255-272. doi:10.1007/BF02247409
[7] M. Dell' Amico, M. Iori and S. Martello, "Heuristic Algorithms and Scatter Search for the Cardinality Constrained $E \| C_{m a n}$ Problem," Journal of Heuristics, Vol. 10, 2004, pp. 169-204.

$$
\text { doi:10.1023/B:HEUR. } 0000026266.07036 . \text { da }
$$

[8] M. Dell' Amico, M. Iori, S. Martello and M. Monaci, "Lower Bound and Heuristic Algorithms for the ${ }^{k_{\text {pparti- }}}$ tioning Problem," European Journal of Operational Research, Vol. 171, 2006, pp. 725-742. doi:10.1016/j.ejor.2004.09.002
[9] M. Dell' Amico and S. Martello, "Bounds for the Cardinality Constrained ${ }^{P} \| \mathcal{C}_{\text {mas }}$ Problem. Journal of Scheduling, Vol. 4, 2001, pp. 123-138. doi:10.1002/jos. 68
[10] M. R. Garey and D. S. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W. H. Freeman, San Francisco, 1979.
[11] Y. He, Z. Y. Tan, J. Zhu and E. Y. Yao, " k-Partitioning Problems for Maximizing the Minimum Load," Computers and Mathematics with Applications, Vol. 46, 2003, pp. 1671-1681. doi:10.1016/S0898-1221(03)90201-X
[12] D. S. Hochbaum and D. B. Shmoys, "Using Dual Approximation Algorithms for Scheduling Problems: Theoretical and Practical Results," Journal of Association for Computing Machinery, Vol. 34, 1987, pp. 144-162. doi:10.1145/7531.7535
[13] H. Kellerer and V. Kotov, "A ${ }^{7 / 6}$-approximation Algorithm for3-partitioning and Its Application to Multiprocessor Scheduling," INFOR, Vol. 37, 1999, pp. 48-56.
[14] H. Kellerer and G. Woeginger, "A Tight Bound for 3-partitioning," Discrete Applied Mathematics, Vol. 45, 1993, pp. 249-259. doi:10.1016/0166-218X(93)90013-E
[15] H. W. Lenstra, "Integer Programming with a Fixed Number of Variables," Mathematics of Operations

Research, Vol. 8, 1983, pp. 538-548.
doi:10.1287/moor.8.4.538

