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ABSTRACT 
We build a model of storage of well-defined positional information in probabilistic sequence patterns. Once a pattern is 
defined, it is possible to judge the effect of any mutation in it. We show that the frequency of beneficial mutations can 
be high in general and the same mutation can be either advantageous or deleterious depending on the pattern’s context. 
The model allows to treat positional information as a physical quantity, formulate its conservation law and to model its 
continuous evolution in a whole genome, with meaningful applications of basic physical principles such as optimal effi-
ciency and channel capacity. A plausible example of optimal solution analytically describes phase transitions-like beha-
vior. The model shows that, in principle, it is possible to store error-free information on sequences with arbitrary low 
conservation. The described theoretical framework allows one to approach from novel general perspectives such 
long-standing paradoxes as excessive junk DNA in large genomes or the corresponding G- and C-values paradoxes. We 
also expect it to have an effect on a number of fundamental concepts in population genetics including the neutral theory, 
cost-of-selection dilemma, error catastrophe and others. 
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1. Introduction 
Optimality principles such as Maupertuis’ or the least 
action and their different formulations and applications 
are the foundations of physics, but they are applied mod- 
erately in life sciences. Another field where the effi- 
ciency optimization is a quite practical problem is Infor- 
mation Theory (IT) [1], which received its first serious 
attention due to the tough efficiency demands in space 
flight communications [2]. Moreover even the relatively 
recent (1993) invention of “turbo codes” provided the 
breakthrough, doubling (!) the transmission efficiency. 
However, it is clear that the drive to optimality is central 
to biological systems as well—with other things being 
equal, more energy efficient species effectively have 
more resources available.  

Information theory originally described the process of 
sending discrete data over noisy channel, which seemed 
to be quite similar to transmitting DNA sequences through 
generations with mutational errors. A few applications of 
IT in biology were attempted in order to exploit this si-
milarity [3,4]. Nevertheless the engagement of IT in ge-

netics is disappointingly limited, given the revolutionary 
role of IT in communications and the strong analogy be-
tween DNA sequence and discrete messages. As pointed 
by Eigen [5] the main challenge for such applications is 
how to quantify the biological value of a sequence. The 
value that counts is the transmission of a sequence (or a 
pattern, in our model) to next generations. 

For “information” to have physical meaning it must be 
“relational”—in IT the information is defined as a degree 
of correlation between sender and receiver, and in the 
proposed model the correlation of 3D molecular shapes 
between interacting molecules signifies the amount of 
information, corresponding to the degree of specificity of 
interactions.  

All molecular interactions can be viewed as more or 
less specific search (“homing”) for an interacting partner 
with subsequent “docking” and energy dissipation. And 
the most specific molecular interactions can likely be 
found in biological objects; for instance a “binding fac- 
tor”—a protein (complex) which seeks and binds to a 
specific spot on DNA to regulate the corresponding gene 
expression. For the important IT-related reasons ex- 
plained in the Methods section, many binging factors  *Corresponding author. 
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recognize not a single specific sequence but a large set of 
sequences, which has certain properties, forming the pat- 
tern for recognition. Here we present a theoretical model 
of evolution of such sets and corresponding patterns and 
provide some validating examples for real binding sites— 
we used abundant and well-annotated splicing sites of 
few mammalian genomes to support our conclusions. 

Previous applications of IT in genetics were focused 
mainly on the problems of binding sites and factors op- 
erations in a genome. Von Hippel and Berg addressed the 
combinatorial and thermodynamic properties of binding, 
such as their specific recognition mechanisms [6] and 
applied statistical-mechanical concepts for affinity and 
binding dynamics [7]. Stormo focused on the problems 
of computational prediction and analysis of binding sites 
[8]. We, on the other hand, shift on the different level of 
abstraction and presume that the patterns for recognition 
are already established, and then we address a problem of 
what it takes to maintain such patterns through genera-
tions—how random mutations in patterns are redistributed 
between negative and advantageous, and the possibility 
to model total information dynamics of a genome. Mo- 
lecular evolution properties of binding sites were ad- 
dressed in [9], however, there the classical adaptive evo- 
lution (i.e. through variants amplification and fixation) 
model was investigated. Another approach connecting 
genetic information with environmental information was 
undertaken by Frank [10] and was also based on classical 
adaptive evolution formalism. To our knowledge the 
problem of patterns maintenance, where a population is 
acting as a “digital repeater” of stored information, with- 
out progressive evolution was not explored. The preser- 
vation of genetic information through pattern stability 
achieved by keeping allele frequencies constant was not 
suggested before and it represents the novel concept in 
population genetics. While the formalisms for adaptive 
selection are quite developed and numerous, the formal- 
ism for “purifying” (maintenance) selection is practically 
absent—it is considered rather uninteresting—merely 
removing “negative” mutations. Besides other things, here 
we show that without the need for mutations amplifica- 
tion (fixation) the purifying selection in patterns may 
enjoy a significant fraction of beneficial mutations (sig- 
nificantly easing the need to remove negative mutations) 
and pattern composition can be adjusted to optimize mu- 
tation load under different circumstances. 

We have to note that the problem of choice from a set, 
i.e. seeking for a site in a genome can be classified as a 
combinatorial problem rather than a full-featured IT ap- 
plication per se. The examples of core notions of IT, 
which paved its way to broad success, are the “channel 
capacity theorem”, “typical set” and ”asymptotic equi- 
partition property” (in its basic version called Shannon- 

McMillan-Breiman theorem). To our knowledge neither 
of these concepts was applied in population genetics for 
the positional information, hence the present work is the 
attempt of more complete integration of IT conceptual 
framework into genetics models. 

2. Methods 
The genetic information can be viewed as positional in a 
general sense: it defines the process of homing and 
specific binding between molecules, including the bind- 
ing of a molecule to itself, which is common for proteins 
and RNAs (i.e. secondary/tertiary structures). Hence such 
processes turn one-dimensional (sequential) DNA infor- 
mation into 3D shapes, and the energy inflow adds bind- 
ing/unbinding kinetics, unfolding the temporal dimension. 
So we have all the basic “physical” properties for a living 
system: organized dynamic 3D structure with hereditary 
information stored on a molecular sequence.   

The example of a binding site on DNA we widely used 
in this work, merely serves as a convenient visual illus- 
tration of the general phenomena. However, for instance 
the process of protein synthesis starting from transcript- 
tion of DNA template can be viewed as a cascade of di- 
verse homing, binding and unbinding events, hence the 
notion of positional information is quite universal.  

Imagine an Engineer who wants to maintain positional 
information in a population of mutable replicating se- 
quences. He can design recognizers (e.g. proteins— 
“binding factors”), which recognize specific sub-se- 
quences (“binding sites”). For example to uniquely de- 
fine the position on a (quasi-random) sequence of length 
L, he must use at least log2L bits of information, which 
takes half of this number of nucleotide positions to define, 
because each nucleotide position provides 2 bits. The 
possible number of unique binding sites is obviously 

2log 24 L L= . However, in this case any mutation in a site 
will break the recognition erasing the information. Hence 
the only possibility to maintain information is to avoid all 
mutations—if a mutation rate is sufficiently low and re- 
production rate is high, then some of the progeny se- 
quences will have no mutations and information can be 
maintained by discarding all mutated sequences–an ex- 
treme example of “purifying” selection. This (rather triv- 
ial) mode of maintenance can be accomplished only in 
small microbial genomes. However, what if mutations in 
binding sites in progeny cannot be avoided? In that case 
the Engineer must deploy “redundant coding” in terms of 
IT and to store information in redundant patterns—after a 
round of mutagenesis, at least some individuals will re- 
tain recognizable sequences and then selection retains 
only those individuals in a population, which keep the 
ensemble of patterns unchanged as a whole, in that case 
the information can be maintained indefinitely. Now a 
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binding factor must recognize a set of (“synonymous”) 
sequences rather than a single sequence.   

Here we define “a site” as a specific site in a genome; 
“a (typical) set”—a set of functionally acceptable se- 
quences for a site, which keeps its functional perform- 
ance (a phenotype) within acceptable limits; “a pattern”— 
a set together with its equilibrium frequencies–some se- 
quences in a set might be more frequent than others.  

Here we are not concerned with specific ways of bind- 
ing factors functioning or how selection picks individual 
sequences, for our goals it is sufficient to know the final 
result—the molecular “homeostasis” of patterns and cor-
responding sets. Apparently gene-specific binding sites 
of the same binding factor may have different acceptable 
sets, and/or equilibrium distributions within a set, de-
pending on individual gene regulation requirements, 
hence their patterns should be regarded as different, 
though they are used by the same binding factor. These 
position-specific pattern differences are commonly neg-
lected in the literature which applies computational me-
thods involving genetic information (GI) formalism, be-
cause currently site-specific patterns are unattainable 
directly in normal populations due to insufficient diver- 
gence from the last shared ancestor of a site.  

For the storage purposes alone the mutation rate can be 
pushed to a minimum. However, the evolvability de- 
mands non-zero rates, so the balance between informa- 
tion maintenance and evolvability is required. Here, for 
brevity, we focus mainly on the maintenance phenome- 
non, because a considerable change of the total genomic 
information can occur only on geologically large time 
scales (e.g. the human and chimpanzee genomes are ~ 
99% identical), and once the maintenance mode is clari- 
fied, it is relatively clear how to model the progressive 
evolution of genetic information.  

For simplicity we assume asexual population in equi- 
librium, constant population size, and a genome with the 
balanced content of four nucleotides. We also assume a 
pattern with independent positions, though more sophis- 
ticated “encoding” schemes can be evaluated, at this 
stage we prefer to keep things simple, because without 
the loss of generality the main predictions and conclu- 
sions of this model are sufficiently interesting for the 
suggested simple encoding scheme. Here we consider 
only single base substitutions, not exploring the roles of 
indels, genomic rearrangements, epigenetics, recombine- 
tion, ploidy, variability or evolution of “recognizers”, etc. 
We consider the concise IT “engineering” problem as 
defined above. However, these things can be added as 
interesting extensions to the model without interfering 
with our conclusions drawn from the basic model.   

We will use the term single position site or simply po- 
sition (P), bearing in mind not a specific nucleotide, but a 
4-vector (fA, fG, fC, fT), where each of fN, N ∈ {A,G,C,T} 

is a population frequency of corresponding nucleotide in 
a given position, as shown in Figure 1. Here by “popula- 
tion” we mean a set of sufficiently diverged sites, be- 
cause in fact the sequences were taken from a single ge- 
nome. However, in our engineering model of asexual 
equilibrium population the divergence will saturate and 
the population can be taken literally. Moreover, in the 
latter case we are able to correctly define site GIs, with- 
out the simplifying assumption “one binding factor—one 
pattern” which is necessarily taken in real populations. In 
order to examine patterns in actual genomes (which is 
not our goal here—we investigate the generalized model) 
one has to assume that position-specific patterns are suf- 
ficiently similar, i.e. the corresponding binding properties 
are sufficiently uniform, so that the pattern visualization 
in Figure 1 is essentially the average of (individually 
unobservable) exon-specific patterns, however, some exon- 
specific patterns’ differences are to be expected in reality. 
Figure 1 serves illustrative purposes for the pattern defi- 
nition.  

In equilibrium, when composition of a site does not 
affect phenotype, selection ignores it and the site con- 
tains no information by definition. Due to random muta-
genesis this site in a population will be occupied by four 
nucleotides with equal frequencies of 1/4. However, if a 
site is functional, selection will affect equilibrium fre-
quencies. The variability of a site can be naturally 
quantified by the entropy:   

( )
{ }

2
, , ,

logN N
N A G C T

H P f f
∈

= − ∑            (1) 

Non-functional site with frequencies of 1/4 has the 
maximum variability of 2 bits, and for a fully preserved 
site with single acceptable nucleotide the variability is 
zero. To obtain the measure of genetic information we 
have to take the reciprocal value: GI(P) = 2 – H(P). Cor- 
respondingly for a fully conserved site it takes the maxi- 
 

 
Figure 1. Definition of genetic information and sequence 
logo. 
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mum of 2 bits, for non-functional it is zero, while inter- 
mediate values quantify the degree of conservation, 
hence the biological value of this measure.   

GI does not depend on permutations of elements in the 
nucleotide frequencies vector. Each GI value can be ob- 
tained with infinitely many variants of nucleotide fre- 
quency vectors, except for the degenerate cases of GI = 0 
bit and GI = 2 bits.  

This definition of GI was proposed more than 25 years 
ago by Schneider et al. [11] and has since become a 
standard tool for visualizing pattern composition called 
“sequence logo” [12] (Figure 1). Figure 1 shows the 
logo for a “spliceosome—a protein complex which rec- 
ognizes the patterns of exons “donor” and “acceptor” 
sites on pre-mRNA molecule and performs splicing of 
introns.  

3. Results 
3.1. Typical Sets and Positional Information 
Schneider conjectured [13] and supported by simulations 
[14] that GI is additive and interpretable as localization 
(positional) information GIbinding = ∑GI(Pi), i.e., the sum 
of GIs of individual positions in a binding site is equal to 
the information necessary to locate it in corresponding 
sequence context. Hence the hypothesis is that besides 
the degree of conservation GIbinding has additional inter- 
pretation. Apparently the conjecture is interesting and 
biologically important but non-trivial because despite 
both values being “in bits”, the definitions of GI and lo- 
calization information are different and not directly re- 
lated. However, for sensible GI-modeling applications it 
is crucial to provide the rigorous proof of this conjec- 
ture. 

If we describe an abstract binding site in terms of IT as 
a “source” which “generates” particular sequences (its 
realizations in a population), these two information val- 
ues can be related with an aid of asymptotic equipartition 
property (AEP) [15]. AEP applied to our scheme effect- 
tively states that a set of realizations of a binding site of 
length L and information GIbinding mostly fall into a “typ-
ical set” [16]. This means that while for non-degenerate 
GIs any sequence (out of possible 4L) can be an outcome, 
the ones actually observed, with probability close to 1 
belong to the typical set having binding2 –2 L GI  members 
distributed with approximately equal probabilities. The 
exponent value reflects the variability of a binding site, 
or a “source entropy”.   

To select a single site from a sequence of length N the 
required information is log2N bits, interpretable as a 
number of binary yes/no questions required for the task. 
Less specific search requires less information: Selection 
of any item belonging to a set Nset requires log2N - 
log2Nset bits. Returning to the localization information we 

recall that a binding factor defines the corresponding 
typical set, recognizing sequences belonging to it and 
ignoring all others. Then it is easy to see that the corre- 
sponding localization information is equal to GIbinding. 
This result naturally links the continuous transversal va-
riability (i.e. across population, orthogonal to multiple 
sequences alignment) with the discrete “longitudinal” 
localization on a sequence. The content of a typical set 
might provide a biological error protection mechanism: if 
a mutation does not remove a sequence from corre- 
sponding typical set, it is effectively “synonymous”.   

To our knowledge the additivity of GI was not proved 
but was used as an ad-hoc conjecture, since it is impossi- 
ble to prove it without proving AEP. However the addi- 
tivity of GI is a critical property for whole-genome in- 
formation modeling. Also a sequence “typicality” (as an 
object for selection force) concept may prove useful as it 
represents a binding site collective property, naturally 
accounting for single positions cumulative effects, as 
opposed to modeling of interaction of large number of 
separate selection coefficients for each allele in each po- 
sition. Typicality considerations indicate that the same 
mutation can either make a site more typical or less typi-
cal, depending on the other site’s positions, hence the 
mutation selective value can be of different signs de- 
pending on the background.   

3.2. Principle of Conservation of Genetic  
Information 

By definition “population genetics is the study of allele 
frequency distribution and change” [17]. In classical 
models frequencies of alleles with unequal fitness are not 
stable. Such site will evolve either through fixating and 
carrying the most advantageous allele in whole popula- 
tion, or will be lost due to the pressure of negative selec- 
tion, or “neutral” evolution with random fluctuations of 
frequencies before it will be either fixated or lost by 
chance. All these scenarios are transient. Despite the 
“homeostasis” notion being ubiquitous in living systems, 
in population genetics there are no terms or concepts for 
the description of evolution of weakly conserved sites 
(e.g. the “tail” of the pattern in Figure 1), where what 
matters is the stable bias of frequencies, rather than a 
fixation, neutrality or loss (which are the limiting cases 
for our model). Here, for brevity, we do not consider 
fitness of particular alleles altogether; all we are formally 
concerned with is GI value. Classically the selective val-
ue for a mutation is assigned somewhat ad hoc, and then 
its destiny in a population is traced with some mathe-
matical model. In contradistinction once we define a pat-
tern (or a whole-genome pattern set), the value of any 
mutation is also defined (through its contribution to se-
quence typicality). Hence the GI profile can be consid- 
ered as the lowest level phenotype because higher level 
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phenotypes are mechanistically derived from it. Then we 
have the opportunity to model whole-genome phenotype 
conservation without explicitly defining high-level phe- 
notype.   

Traditional models consider only two alleles due to 
common observations: the vast majority of observed va-
riants (e.g. SNPs in a population) have two states, be- 
cause too little time passed since the last common ances- 
tor. However, for our model we ask what if this time 
goes to infinity in a stable population without progressive 
evolution and other disturbing events. When we under- 
stand the equilibrium we can explore the evolution of 
variability “snapshots” created by recurring population 
bottlenecks.  

We suggest the law of GI conservation in population 
genetics–a position with any intermediate value of GI 
can be at equilibrium, maintaining constant GI and nu- 
cleotide frequencies (hence the pattern and positional 
information of the corresponding binding site). So-called 
“balancing selection” where the frequencies may be sta- 
ble due to heterozygotes advantage [18,19] is apparently 
different from our generalization (possibly interesting 
ploidy effects are not explored here for brevity).   

The information already accumulated in a genome re- 
quires maintenance to prevent mutational degradation 
and the majority of accumulating mutations (in func- 
tional sites) reflects the maintenance. Traditional models 
are often based on historical observational biases: for 
instance, it is easier to observe and study Mendelian 
traits as compared to low penetrance [20] effects. Other 
examples are the dramatic “selective sweeps” and “bot- 
tlenecks”, which we believe are spectacular but special 
evolutionary events, scrambling the mundane mainte- 
nance phenomena as populations variability collapses. 
However, these events per se contribute negligibly to the 
bulk of genetic information, which is in the maintenance 
mode. Due to these collapses the observed variability of 
a site in a population is typically much smaller than “po- 
tential” or “acceptable” variability which should be used 
to define the corresponding GI.   

Forestalling, we can say that mutational expansion into 
this potential variability is perceived as the “neutral evo-
lution” which in fact is the “maintenance evolution” 
where observed deleterious (for GI value) mutations are 
compensated by approximately equal amount of benefi- 
cial mutations. The role of beneficial mutations is usually 
overlooked in classical models, as common wisdom dic- 
tates that they are rare, so that all the maintenance is car- 
ried out by purifying selection, which is a special case in 
our model when GI is close to 2 bits. 

3.3. Conservations of Splice Sites 
The postulated constancy of frequencies and GI can be 
exemplified by the divergence of splice site patterns—the 

difference between mouse and human splice logos is 
quite small despite the large number of mutational and 
selective events happened since our divergence. 

Maximum divergence of GI (less than 0.08 bit) can be 
observed in the fifth donor site position. Notably the 
number of splice sites is hundreds of thousands; hence 
mouse-human divergence shows the phenomenon of 
constant GI for the total of millions of nucleotide posi- 
tions for a period of tens of millions of years.   

As the average length of exons is ~100 nucleotides, 
splice sites constitute significant amount of genomic se- 
quence in comparison with coding sequences; and it is 
natural to assume that this mode of evolution affects sig- 
nificant fraction of a genome besides splice sites. Other 
commonly known binding sites tend to be of sufficient 
length and high conservation (computational methods) 
and/or high binding affinity and specificity (experi- 
mental methods), creating observational biases with the 
preference for long sites with high GI per nucleotide. 
However, splice sites provide a unique opportunity for 
our analysis because of their large number and well-de- 
fined locations in a genome.   

3.4. Mutational Load 

By one of the classical definitions: “Genetic load is the 
reduction in selective value for a population compared to 
what the population would have if all individuals had the 
most favored genotype” [21]. Again this definition is for 
a site with GI = 2 bits, however, the load arising due to 
maintenance of a site with GI less than 2 bits should be 
defined differently.  

Traditionally equilibrium states are modeled through 
their stability to perturbations, i.e. deviation from the 
equilibrium caused by some external perturbation is re- 
turned back by some stabilizing force. In our case the 
perturbations are random mutations and the force of (pu- 
rifying) selection is compensating them. Thus it is 
straightforward to model the maintenance of a pattern: 
initially nucleotide frequencies are (fA, fG, fC, fT), then 
mutagenesis pushes them into (fa, fg, fc, ft), then these 
frequencies are corrected by reproduction and selection, 
preserving the initial value of GI and returning nucleo- 
tides frequencies back to the initial values:  

( ) ( )
mutation

selection, , , , , ,A G C T a g c tf f f f f f f f→
← . 

The changes in frequencies are assumed to be small. 
Mutations can be of two types: transitions change a 

purine to another purine or pyrimidine to another pyrimi-
dine: ti = {A ↔ G, C ↔ T} and transversions are all oth-
ers: tv = {A, G ↔ C, T}. Here we assume that all 4 tran-
sitions are equiprobable as well as all 8 transversions are. 
The system for descendant nucleotide frequencies can be 
written as:  
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( ) ( ) ( )
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1
1
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1
1
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1
1

2

a A G C T

g G A C T

c C T A G

t T C A G

k
f p f p kf f f

k
f p f p kf f f

k
f p f p kf f f

k
f p f p kf f f

 − 
= − + + +  

 
 −  = − + + +   


−  = − + + + 
 

 − 
 = − + + + 
  

    (2) 

where p is mutation probability and k—probability of 
transition, upon condition that mutation occurred (k ≈ 2/3 
for mammals [22] corresponding to the ratio of transver- 
sions to transitions tv/ti = 1/2). Hence the deviation of 
frequencies due to mutagenesis is:   

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
2

1
2

1
2

1
2

A a A A G C T

G g G G A C T

C c C C T A G

T t T T C A G

k
f f f p f kf f f

k
f f f p f kf f f

k
f f f p f kf f f

k
f f f p f kf f f

 − 
∆ = − = − − +  

 
 − ∆ = − = − − +   


− ∆ = − = − − + 
 

 − 
 ∆ = − = − − + 
  

  (3) 

Due to the pressure of mutagenesis, the GI of descen- 
dant frequencies vector is always less or equal to initial 
GI (equality happens only if initial GI = 0 or p = 0).   

As an example of one the many alternatives of opti- 
mization parameters we define a variant of mutational 
load (ML) as Manhattan norm of frequencies deviation 
vector:  

A G C TML f f f f= ∆ + ∆ + ∆ + ∆          (4) 

Minimizing this measure would minimize the number 
of mutations rejected by selection, minimizing the “ge- 
netic deaths” rate, making it biologically plausible. As 
can be seen from the expression for the optimal solution 
(see Equation (6)) in that case { }, ,A NN G C Tf f

∈
−∆ = ∆∑ , 

and ∆fN ≥ 0, ∀ N ∈ {G, C, T}, assuming A to be the 
highest frequency variant. Then the selection can correct 
the frequencies simply by removing alleles (C, G and T) 
which increased in frequency. So the number of indi- 
viduals which must go extinct is proportional to the 
defined ML which is equal to −2∆fA for the optimal fre- 
quencies.  

As we for simplicity consider equilibrium, we keep 
population size constant. Contrary to typical classical 
models, the population size does not matter for GI main- 
tenance and evolution. Population size matters for phe- 
nomena such as selective sweeps—fixation of a suddenly 

appeared site with GI = 2 bits, which is a non-equilib- 
rium event and out of the scope of this model.  

With biased mutagenesis (k ≠ 1/3), different composi- 
tions (e.g. nucleotides permutations) of a 4-vector with 
the same GI can produce different ML (Figure 2). When 
two major nucleotides (Figure 2 left) are connected by 
transition, the impact of mutagenesis is largely compen- 
sated as the most probable mutations are transitions. 
Figure 2 right shows the opposite effect—non-compen- 
sated composition, where the major nucleotides “leak” 
strongly into the minor ones, hence causing larger ML.   

The minimum ML for a given GI is the solution of the 
following optimization problem:  

{ }

{ }

, , ,

, , ,

2
, , ,

( ) min

1

2 log const

A G C Tf f f f

N
N A G C T

N N
N A G C T

ML GI

f

f f GI
∈

∈


→


=




+ = =


∑

∑
      (5) 

ML—mutational load which has to be minimized for a 
given GI value by adjusting the frequencies in 4-vector. 
The solution does not depend on the probability of muta- 
tion p, it was found numerically using evolutionary algo- 
rithm [23]. However, we also found its analytical repre- 
sentation, which in general case can be written in a pa- 
rametric form (see Equation (6)).   
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  (6) 

where f1 is the highest frequency, f2—the frequency con- 
nected to the f1 by transition, f3—maximum of transver- 
sions to f1, f4—transition to f3. k—probability of transi- 
tion, upon condition that the mutation occurred.   

The solution-the optimal frequencies vector vs. GI is 
shown in Figure 3. Optimal alleles’ sets (assignments of 
nucleotides to frequencies) are permutable. In the pres- 
ence of mutational bias (k ≠ 1/3) top and bottom pairs of 
frequencies must be occupied by nucleotides connected 
through transition. In the case k = 1/3 (no mutational bias) 
all four frequencies are permutable with each other. The 
solution shows phenomenon resembling phase transitions-  
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Figure 2. Changes of nucleotide frequencies and reduction 
of GI for different frequency vectors due to mutations with 
transitions prevalence. Only two most frequent mutations 
in a position are marked with colored arrows. 
 

 
Figure 3. Nucleotide frequencies minimizing mutational 
load. Red line (f1)—the highest frequency nucleotide. Yellow 
line (f2)—the frequency of nucleotide, connected to the f1 by 
transition. Blue line (f3)—maximum frequency of the 
remaining nucleotides coupled through transition. Green line 
(f4)—transition to f3. Circles—frequencies of Homo sapiens 
donor and acceptor sites.  
 
derivative discontinuities near 0.5 and 1 bits, with corre- 
sponding changes in the number of “degrees of freedom” 
and permutation symmetries. That is theoretically inter- 
esting because phase transitions are generally assumed to 
be highly non-analytic.  

However, we cannot expect this experimental data to 
match this particular optimization precisely, because on 
the one hand other optimization parameters are possible 
(for instance a total site length to optimize the transcrip- 
tion speed), and the pattern (i.e. the logo) itself was de- 
rived with simplified assumptions outlined earlier (e.g. 
ignoring exons-specific individual patterns differences). 
Moreover it is natural to expect the existence of non- 
optimal compositions due to specific regulatory demands.  

3.5. Experimental Data 
Using BioMart tools [24] we retrieved human exon coor- 
dinates and chromosome sequences from Ensembl data- 
base [25] and extracted acceptor and donor splice sites. 
Only the sites which obey so called GT-AG rule were 

kept in order to filter out the influence of minor spli- 
ceosome which may have different sequence pattern. As 
a result more than 180 thousands of each donor and ac- 
ceptor splice site sequences were obtained. Correspond- 
ing nucleotide frequencies vectors and optimal frequen- 
cies bringing minimum to ML are presented in Figure 3. 
The trajectories of nucleotide frequencies in splice site 
positions are fairly consistent with the optimal—the top 
and bottom pairs of nucleotide frequencies are connected 
through transition, in 85% of positions with GI content 
higher than 0.05 bit.  

We compared the substitution rates for splice sites di- 
vergence between human and two other primates—chim- 
panzee and rhesus (Figure 4). The conservation of the 
acceptor “tail” is quite weak: positions with GI < 0.4 bits 
have substitution rates higher than 80% of the neutral 
rate. However, the tail stores about 50% of positional 
information: ~5 bits as compared to ~10 bits of total ac- 
ceptor information, 4 bits of which are provided by the 
“AG” site (Figure 1).   

4. Discussion 
Genes make up approximately 1.5% of human genome. 
Functional significance of remaining 98.5% non-coding 
DNA is still largely undetermined. A number of recent 
studies show that the signatures of purifying selection are 
wide-spread in non-coding DNA [27]. According to 
some estimates the fraction of functional non-coding 
DNA may 10 times exceed the amount of protein-coding 
sequences, reaching 15% of genome [28,29]. Such stud- 
ies use sensitive techniques for detection of inter-species 
sequence conservation, compared to the neutral rate. 
However, it is difficult to find a significant amount of 
surely non-functional sequences with diverse context for 
precise calibration without numerous assumptions. We 
propose that weak patterns conservation is wider spread 
 

 
Figure 4. Normalized mutation rate of acceptor (blue) and 
donor (red) splice sites. Mutation rate was obtained using 
pairwise alignment of human vs. rhesus (diamonds) and 
human vs. chimp (circles) from the UCSC Genome Browser 
database [26] and then normalized to make mutation rate of 
positions with GI close to zero equal to 1. 
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than the above estimates (i.e. 15% of human genome), 
but the bulk of this functionality simply escapes detec- 
tion by conventional methods. The provided model shows 
that it is possible to store any amount of error free (bind- 
ing) information with arbitrary high substitution rates, 
provided sufficiently long sequences. This is analogous 
to the revelation in signal transmission theories occurred 
due to the understanding provided by IT: before the IT, 
the usable signal/noise ratio was supposed to be high and 
some transmission errors inevitable (e.g. the analog broad- 
cast). However, the IT showed that with any noise level 
it was possible to perform efficient error-free communi- 
cation. In genetics, the intuition that functional sequence 
must have high conservation (high signal/noise) went as 
far as calling weakly conserved sequences such as in- 
trons and intergenic non-repetitive sequence “junk DNA” 
(constituting about 50% of a genome), while we (keeping 
faith in nature’s thriftiness) speculate that it is the evolu- 
tionary innovation for increasing efficiency.  

Another counter-intuitive feature of the proposed model 
is that significant fraction of random mutations is “posi- 
tive”—compensatory for GI storage (Figure 2). For low 
GI about 50% of mutations are “good” (regardless of the 
vector optimality). This situation is unique to the po- 
sitional information, as in classical Shannon’s setup all 
noise is “bad”.  

The shift of paradigm we introduced here is to model 
the evolution and/or conservation of probabilistic pat- 
terns instead of evolution of defined sequences. A pattern 
can be thought of as a superposition of sequences (which 
forms the corresponding typical set). Instead of fixation as 
an elementary act of evolution, a mere shift in allele fre- 
quencies implies evolution in this framework. This seems 
to make little sense for a single allele, however, for mil-
lions of alleles in a population, also considering that the 
frequency of beneficial mutations can be high, that intro- 
duces quite different mode of evolution than tradition- 
ally considered. For the first time this framework allows 
to model quantitatively the evolution of the total genomic 
information (due to additivity of GI), rather than model- 
ing the fixation dynamics of single alleles with arbitrary 
assigned selective values. High frequency of beneficial 
mutations raises the question of what are the forces 
which impose the limits on progressive evolution, e.g. 
why some species are stable for millions of years.   

A simple gedanken experiment with the provided 
model shows that for a given genome size, mutation and 
reproduction rates there is a limit on the amount of in- 
formation which can be maintained in a population, so 
there is a limit on the absolute number of functional mu- 
tations a genome can tolerate, possibly explaining the 
Drake’s rule [30]. Hence we speculate that the IT notion 
of channel capacity, might provide some explanations for 
the limits of GI evolution, the drive to increase “coding 

efficiency” by deploying complex mechanisms of error 
corrections (e.g. DNA repair, ploidy, coding redundancy, 
nonsense mediated decay, etc.) and the utilization of 
weakly conserved sequences as an information carrier. 
Another “suspicious” fact worth mentioning is that pre- 
sumably the most advanced species have the lowest 
known mutation rates even compared to close relatives 
among mammals. 

With other things being equal, a species with better GI 
storage optimization (“coding efficiency”) is more effi- 
cient, since less genetic load effectively implies better 
survival rates. The “survival of the fittest” is equivalent 
to the survival of the most efficient, naturally including 
information processing efficiency. From IT, it is known 
that better efficiency requires higher complexity: coders 
and decoders must have memory and sufficient algo- 
rithmic complexity. In general approaching closer to the 
channel capacity limit requires increase of memory and 
computational complexity. Hence the IT naturally links 
the drive to efficiency with the drive to complexity. 
While the drive to efficiency is self-evident in biological 
systems the drive to complexity was difficult to rational- 
ize. Traditionally, complexity is assumed to passively 
“emerge” as simple rules (interactions), applied recur- 
sively, can generate perceivably complex patterns (but 
still they are simple algorithmically), in contradistinction, 
the lesson from IT is that there can be an active drive to 
increase algorithmic complexity. From this perspective 
the “evolution” of IT itself is quite instructive [2]. As 
was mentioned, the IT had no general impact on scientific 
community before the limits were hit due to tough energy 
efficiency demands in space flight communications. 
These demands induced a boost of theoretical and prac- 
tical developments, producing complex hardware and 
algorithms allowing approaching channel capacity limits 
and eventually bringing us the convenience of cellular 
and other digital communications. It is tempting to spe-
culate that a similar evolution with the drive to com- 
plexity is happening on the “molecular machines” level.  
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