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Abstract 
Purpose: Bacterial adhesion represents the initial step in biofilm formation, 
dental caries and decay. This study aimed to evaluate and compare surface 
roughness and bacterial adhesion to bulk fill resin composites polished with 
different systems. Methods: Filtek Z350 XT (Incremental-fill resin compo-
site), Filtek Bulk-fill Posterior (Bulk-fill resin composite), and Tetric N Ce-
ram (Bulk-fill resin composite) were used as resin composites. The polishing 
systems used in this study were Sof-Lex multi-step, PoGo one step, and Mylar 
strip. Scanning electron microscope (SEM) was used to examine the surface 
roughness and adhesion of Streptococcus mutans ATCC 25175 standard 
strain to bulk-fill resin composites. Results: The type of restorative materials 
did not affect the surface roughness or bacterial adhesion (p > 0.05) but   
the polishing systems were significant (p < 0.05) influencing factors. Fur-
thermore, Pearson correlation revealed a statistically significant (p < 0.001) 
association (R = 0.943) between surface roughness and bacterial adhesion to 
the tested surfaces. Conclusion: Regardless of the restorative material, Mylar 
polishing system revealed the smoothest surface and the lowest adhesion of S. 
mutans as compared to Pogo one step and Sof-Lex multi-step polishing sys-
tems. 
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Polishing Systems 

 

1. Introduction 

Oral biofilm is formed of miscellaneous microbes found on the tooth surface, 
and enclosed in a matrix of polymers of bacterial and salivary origin. The main 
causes for restoration replacement are dental surface biodegradation, secondary 
caries, and periodontal inflammation associated with oral biofilm formation. 
The initial and critical step of plaque formation includes adhesion of bacteria 
known as early colonizers such as oral streptococci [1] [2]. These bacteria bind 
to various proteins including alpha-amylase, proline-rich proteins, and glyco-
protein [3]. Oral biofilm formation was influenced by many factors such as sur-
face roughness and surface free energy [4] [5]. The adhesion and initial coloniz-
ing of bacteria along cracks and pits in enamel were shown by microscopic ex-
amination of early plaque formation, indicating the influence of surface struc-
ture on bacterial adhesion [2]. The increasing demands for tooth-colored resto-
rations and seek for amalgam replacements have strong association with en-
larged requests for direct tooth-colored restorative materials. Within the past 
few years this esthetic look of tooth-colored restorations is of large significance 
to each the dentist and patient [6]. 

One of the predictable disadvantages of dental composites is its polymeriza-
tion shrinkage. In the event that occurs while the resin composite materials are 
inside the cavity bonded to its walls, stresses may develop inside resin composite. 
Consequently, debolding, postoperative sensitivity, marginal staining, recurrent 
caries, and 8 cuspal deflections may develop and induce smaller scale breaks as 
well as cusp cracks [7]. Incremental composites application technique is antic-
ipated to decrease the C-factor, enabling a specific amount of flow to reduce the 
shrinkage stress partially [8]; on the other hand, it has number of impediments, 
for example, entrapment of voids between the increments, bond failure between 
the increments and the long time required to cure each increment separately [9] 
[10]. 

Novel restorative materials have been introduced to solve many of the prob-
lems associated with the incremental method of employing resin that are used as 
bulk fill composites. Bulk-fill resin-based composites carry the advantages of 
improving polymerization depth, and diminishing polymerization shrinkage 
stresses and cuspal deflection rates, as well as shortening the time of incremental 
layering techniques [11]. Appropriate finishing and polishing of dental restora-
tions is required for oral health protection. A rough composite resin surface may 
decrease the shine and esthetic appearance. Moreover, it raises the number of 
sites on the restoration surface prone to bacterial biofilm accumulation, which 
results in increasing risk of both caries and periodontal inflammation [12] [13]. 
Generally, the finished/polished or surface sealant-coated composite resins have 
low susceptibility to adhere to oral microorganisms [14]. 
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Surface roughness has effects on recoloring and bacterial attachment to the 
restoration. Accordingly, many strategies for finishing and polishing of tooth- 
colored restoratives have been developed. Recently, specialists have implemented 
different trials to accomplish a high surface quality by applying one-step polish-
ing systems [15]. It has been demonstrated that, the outcomes of one-step strat-
egy are better or possibly practically identical to multi-step procedures and may 
be item related [16] [17]. Concurrently in view of the most recent technology, it 
is hard to acquire all around well-polished restorations even when utilizing ap-
propriate restorative materials and the best polishing system may act as a pre-
disposing factor for biofilm formation [18]. 

Salivary pellicles quickly coat every uncovered surface in the mouth. Pellicle 
arrangement is trailed by the grip of facultative anaerobic pioneer bacteria [19], 
for example, Streptococcus gordonii, Streptococcus oralis, and Streptococcus 
sanguine [20]. Early colonizing microbes play a crucial role in the consequent 
adhesion of cariogenic bacteria, such as Streptococcus mutans. Substratum sur-
face roughness (Ra) and surface free energy are supposed to be as the primary 
variables influencing dental plaque formation [21]. Bacterial plaque formation 
and secondary caries are caused by buildup of bacteria on the marginal areas of 
enamel and restorative material [4]. The main reason of replacement is caries 
formation around dental restorations which require efforts to decrease or avert 
plaque formation on restorative materials [22]. Multiple in vitro and in vivo 
models have examined both the adhesion of a variety of microorganisms to den-
tal restorations and the mechanisms involved in [23] [24]. 

The outcome of diverse finishing/polishing systems on surface roughness and 
bacterial adhesion of composite resins has been reported in the literature [25] 
[26]. Nevertheless, little data about the bacterial adhesion to bulk-fill resin com-
posites are available in the literature. In this context, the current study aimed to 
compare and evaluate surface roughness and adhesion of Streptococcus mutans 
to bulk-fill resin composites with different polishing systems. 

2. Materials and Methods 
2.1. Materials 

Filtek Z350 XT (Incremental-fill resin composite), Filtek Bulk-fill Posterior 
(Bulk-fill resin composite), and Tetric N Ceram (Bulk-fill resin composite) were 
used as resin composites in this study (Table 1). 

The finishing/polishing systems (F⁄P) used in this study were Sof-Lex Pop-on 
Discs Multi-step, PoGo One step, and Mylar strip. The composition and manu-
facturers of different polishing systems are summarized in Table 2. Streptococ-
cus mutans ATCC 25175 (S. mutans ATCC 25175) standard strain is used in all 
bacterial adhesion experiments. 

2.2. Methods  
2.2.1. Specimen Preparation 
A total of 90 standardized specimens, 30 specimens of each restorative material, 
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Table 1. Resin composites used in this study. 

Resin composite Manufacturer Composition Filler load 

Filtek Z350 XT 
(Incremental-fill 
resin composite) 

3M ESPE, St. Paul, 
MN, USA 

Matrix 
Bis-GMA, UDMA, TEGDMA, 
PEGDMA, Bis-EMA 
Filler 
20 nm silica filler, 4 to 11 nm 
zirconia filler, zirconia/silica 
cluster filler (0.6 to 10 μm) 

63.3 vol% 
78.5 wt% 

Filtek Bulk-fill 
Posterior (Bulk-fill 

resin composite) 

3M ESPE, St. Paul, 
MN, USA 

Matrix 
Aromatic UDMA, UDMA, 
ERGP-DMA,  
Diurethane-DMA and  
1,2-dodecane-DMA 
Filler 
Non-agglomerated/non  
aggregated 20 nm filler, non 
agglomerated/non aggregated  
4_11 zirconia filler, aggregated 
zirconia/silica cluster filler and 
a ytterbium trifloride filler 

58.4 vol% 
76.5 wt% 

Tetic N Ceram 
(Bulk-fill resin 

composite) 

Ivoclar Vivadent, AG, 
Schaan, Liechtenstein 

Matrix 
Dimethacrylates 
Filler 
Barrium glass, ytterbium 
trifluoride, mixed oxides,  
polymer fillers 

54 vol% 
75 - 77 

wt% 

 
Table 2. Polishing systems used in this study. 

Polishing  
systems 

Composition Manufacturer 

Sof-Lex Pop-On 
Discs 

Multi-step 

Medium aluminum oxide disc (40 µm) 
Fine aluminum oxide disc (24 µm) 

Ultra-fine aluminum oxide disc (8 µm) 

3M Dental products, St Paul, 
MN, USA 

PoGo 
One step 

Diamond coated micro-polisher 
Dentsuply/Caulk, Milford DE, 

USA 

Mylar 
Matrix only 

polyethylene terephthalate matrix SS White, Philadelphia, PA, USA 

 
were fabricated using a cylindrical plastic mold (10 mm diameter × 2 mm 
depth). The specimens were prepared by standardized method by applying the 
mold above a glass slap covered with Mylar strip (SS White, Philadelphia, PA, 
USA), followed by injecting the restorative material into the mold, covering it 
again with Mylar strip, and placing a glass slide on top. The material was then 
pressed between both glass slides to extrude excess material and to reduce voids 
at the surface. Specimens were cured for 40 seconds with a LED light curing unit 
through the glass slide and Mylar strip on the top of the specimens once being 
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pressed. The light intensity was measured at 800 mW/cm2. Additional 20 
seconds curing on both sides of the specimens was done after removing the 
stripes and glasses. The resulting specimen’s extraneous flanges were removed. 
All specimens were stored in distilled water at 37˚C for 24 h in the incubator un-
til usage [27]. 

2.2.2. Surface Roughness 
To evaluate surface roughness, the tested materials are categorized into the fol-
lowing groups; Group 1: These specimens were kept without F/P after removal 
of Mylar strip to act as control group (30 specimens; ten of each restorative ma-
terial). After that, the outermost surface of the remaining 60 specimens were 
surfaced with the super-fine grit finishing diamond bur (25 μm, No. 837 
KREF.314.014, Brasseler) attached to high speed hand piece (W&H, RC-90RM, 
Austria) for 30 seconds at 200,000 rpm. Group 2: Thirty specimens (ten of each 
restorative material the specimens) were polished with flat broad surface of the 
Pogo diamond micro polisher disc for 40 seconds, one-step system according to 
manufacturer’s instructions. Group 3: Thirty specimens (ten of each restorative 
material, the specimens) were polished with three step Sof-Lex aluminum oxide 
disc system according to manufacturer’s instructions. After each polishing step, 
all the specimens were thoroughly rinsed with water for 10 seconds to remove 
debris and air-dried for 5 seconds. After completing polishing procedures, spe-
cimens were rinsed, cleaned in an ultrasonic cleaner for 3 min, and air dried 
[28]. 

2.2.3. Surface Roughness Measurement  
All the 90 specimens were assessed for surface roughness by using FEI Quanta 
200 FEG ESEM (FEI Co., Hillsboro, OR, USA) combined with image analysis 
to provide both qualitative and quantitative assessments of surface roughness 
[28]. 

2.2.4. Bacterial Adhesion Assay 
Samples used for testing surface roughness were used for assessing bacterial ad-
hesion with the same grouping. Sterilization of each specimen after packing in 
dry plastic bag in an autoclave at 121˚C before tested with bacteria. Standard 
strain of S. mutans ATCC 25175 was used for the in vitro adhesion assay. The 
standard strain was cultured on blood agar and incubated at 37˚C for 24 h. The 
colony count was adjusted to 1 × 106 CFU/mL from 0.5 McFarland (1.5 × 108 
CFU/mL) equivalence turbidity standard (Thermo Scientific™ Remel, Waltham, 
MA, USA). In sterile 12-Well Corning microplates (Corning, NY, USA), 2 ml of 
Muller Hinton (MH) broth culture (1 × 106 CFU/mL) of S. mutans ATCC 25175 
were aseptically transferred to each well. The disk materials were then aseptically 
transferred to the 12-Well Corning microplates (one/well) using sterile forceps 
and the plates were incubated at 37˚C for 4 h. After incubation, the disk mate-
rials were carefully washed thrice with sterile isotonic saline solution (0.9% w/v 

https://doi.org/10.4236/aim.2019.91007


W. E. Soliman et al. 
 

 

DOI: 10.4236/aim.2019.91007 92 Advances in Microbiology 
 

NaCl) to remove non-adhering cells. Each disk material was then transferred to 
a sterile tube containing 1 ml of saline solution and vortexed for 5 min to ensure 
detachment of bacteria adherent to the discs surfaces. After vortexing, the cell 
suspensions were tenfold serially diluted in sterile saline and aliquots (10 µl) 
were surface cultured on blood agar plates, followed by incubation at 37˚C for 
24 h for determination of viable cell count as colony forming units per milliliter 
(CFU/mL) [29]. 

2.2.5. Scanning Electron Microscopy (SEM)  
The samples of disk materials were washed with phosphate buffered saline (PBS) 
and fixed in solution of 4% v/v paraformaldehyde with 1% glutaraldehyde in 
PBS for 1 h and rinsed with PBS three times for 2 min each. Finally, samples 
were washed with deionized water thrice for 2 min each and dehydrated through 
an ethanol series (50%, 70%, 80%, 95%, and 100%) for 15 min each, desiccated, 
sputter-coated, and visualized by a SEM (JSM-5310LV JEOL, Tokyo, Japan). 
Photographs of representative areas of the polished surfaces were captured at 
3000× magnifications [30]. 

2.3. Statistical Analysis 

The results were statistically analyzed by IBM SPSS Statistics version 15.0 (SPSS 
Inc., Chicago, IL, USA). Data were presented as means ± standard deviations 
(±SD) for each group. Analyses of data variables were performed using ANOVA 
followed by Tukey’s high significant difference (HSD) test at p-value < 0.05. 
Pearson correlation coefficient (PCC), at two-tailed, was used to evaluate the 
potential association between surface roughness and bacterial adhesion to the 
tested surfaces.  

3. Results  
3.1. Surface Roughness  

Two-way ANOVA showed that both the restorative materials and the finish-
ing/polishing systems have significant effects (p < 0.05) on the surface roughness 
(Table 3).  

The results (Table 4) revealed that the polishing systems significantly (p < 
0.05) influenced the surface roughness of different restorative materials. In this 
context, the Mylar strip showed the smoothest surface followed by PoGo, and 
the roughest surface was recorded for Sof-lex. On the contrary, different resin 
composites (FiltekZ350 XT, FiltekZ350 XT, and Tetric N Ceram) had no statis-
tically significant (p > 0.05) influence on the surface roughness and this can be 
attributed to the existence of polishing systems. 

The two dimensional microphotographs of resin composites surfaces (Fil-
tekZ350 XT, FiltekZ350 XT, and Tetric N Ceram) polished with different sys-
tems (Mylar strip, Pogo one step, and Sof-lex multi-step) are shown in Figure 
1. 
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Table 3. Two way ANOVA test results of surface roughness means (nm) among the 
tested restorative materials and different finishing/polishing systems. 

Source 
Type III 
Sum of 
Squares 

df 
Mean 

Square 
F Significance 

Corrected model 35187.1* 8 4398.3 156.7 0.000 

Intercept 3323803.0 1 3323803.0 118481.9 0.000 

restoration 619.4 2 309.7 11.0 0.000 

finishing 33770.3 2 16885.1 601.8 0.000 

restoration finishing 797.3 4 199.3 7.1 0.000 

Error 2272.3 81 28.0   

Total 3361262.5 90    

Corrected Total 37459.4 89    

*R2 = 0.939 (Adjusted R2 = 0.933). 

 
Table 4. Post hoc Tukey’s test results of surface roughness of the tested restorative mate-
rials with different finishing/polishing systems. 

Polishing system 
Surface roughness of restorative material (nm) 

Filtek Z350 XT Filtek Bulk Fill Tetric N Ceram 

Mylar strip 161.07 ± 6.82a 162.08 ± 6.82a 164.19 ± 6.82a 

Pogo one step 188.33 ± 6.03b 190.41 ± 6.03b 191.42 ± 6.03b 

Sof-lex  
multi-step 

215.87 ± 3.876c 217.89 ± 3.87c 217.88 ± 3.87c 

Each value represents mean (±SD) and values with different superscript letters a, b, c indicate statistically 
significant difference in surface roughness. 

3.2. Bacterial Adhesion  

The results of two-way ANOVA test revealed that types of polishing systems 
significantly (p <0.05) influence the bacterial adhesion (Table 5).  

The results demonstrated that adhesion S. mutans to Filtek Z350 XT varied 
significantly (p < 0.05) between different finishing/polishing systems. The high-
est bacterial adhesion was observed with Sof-lex multi-step and the lowest one 
was observed with Mylarstrip. On the other hand, different types of restorative 
materials (FiltekZ350 XT, FiltekZ350 XT, and Tetric N Ceram) showed 
non-significant (p > 0.05) effect on bacterial adhesion (Table 6).  

Adhesion of S. mutans ATCC 25175, as captured by SEM, to resin composites 
surfaces (FiltekZ350 XT, FiltekZ350 XT, and Tetric N Ceram) polished with dif-
ferent systems (Mylar strip, Pogo one step, and Sof-lex multi-step) are shown in 
Figure 2. Pearson correlation test revealed a statistically significant (p < 0.001) 
and strong association (PCC = 0.943) between surface roughness and bacterial 
adhesion to the tested surfaces. 
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Figure 1. Two dimensional photomicrograph of resin composites surfaces polished with different polishing systems: (A) Fil-
tekZ350 XT with Mylar strip, (B) Filtek Bulk-fill with Mylar strip, (C) Tetric N Ceram with Mylar strip, (D) FiltekZ350 XT with 
Pogo one step, (E) Filtek Bulk-fill with Pogo one step, (F) Tetric N Ceram with Pogo one step, (G) FiltekZ350 XT with Sof-lex 
multi-step, (H) Filtek Bulk-fill with Sof-lex multi-step, (I) Tetric N Ceram with Sof-lex multi-step. 

4. Discussion  

Bulk fill restorative materials have been developed to enable dentists to efficient-
ly reduce placement time and effort. Little information is available about the 
performance of this new bulk fill materials. Successful esthetic restoration 
should mimic the surface smoothness and gloss of human enamel. The effec-
tiveness of finishing and polishing procedures on esthetic restorative materials is 
a crucial factor in restorative treatment. Accordingly, smoother surfaces are 
generally obtained by curing the materials against Mylar matrix strips. Unfortu-
nately, this procedure is often clinically insufficient because post-curing finish-
ing procedures have to be performed to remove excess material, obtain the cor-
rect anatomical form, and polish the surfaces [18]. Surface roughness in this 
study was evaluated by ESEM which provides both qualitative & quantitative 
data of the surface [28]. In accordance with the published data [31], the results 
of this study revealed that the surface roughness of the tried restorative materials  
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Figure 2. Two dimensional SEM micrographs of Streptococcus mutans ATCC 25,175 adhesion to the surfaces of resin composites 
polished with different  polishing systems: (A) FiltekZ350 XT with Mylar strip, (B) FiltekZ350 XT with Pogo one step, (C) Fil-
tekZ350 XT with Sof-lex multi-step, (D) Filtek Bulk-fill with Mylar strip, (E) Filtek Bulk-fill with Pogo one step, (F) Filtek Bulk-fill 
with Sof-lex multi-step, (G) Tetric N Ceram with Mylar strip, (H) Tetric N Ceram with Pogo one step, (I) Tetric N Ceram with 
Sof-lex multi-step. 

 
have effect on the polishing systems with statistical significance. 

In the present study, the lowest roughness values were recorded with the My-
lar strip samples. The smoothest surface next to Mylar strip was obtained with 
one-step Pogo polishing system followed by multi-step Sof-lex polishing system. 
These findings are in agreement with that of Costa et al. [32], who reported that 
one-step system provides the highest gloss values. Conversely, the outcome of 
this study contradicts with that of Nasoohi et al. [33], who reported that finish-
ing and polishing techniques need sequential usage of instrumentation with 
progressively smaller grained abrasives to finallyatta in the anticipated glossy 
surface. In this study, Sof-Lex multi-step finishing system revealed rougher sur-
faces than PoGo one-step finishing system with all tested composites.  

The results of the present study revealed that the surface roughness of all 
tested restorative materials were significantly influenced by the type of finish-
ing/polishing system and Mylar strip produced the smoothest surface and that  
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Table 5. Two way ANOVA test results of bacterial adhesion means among tested restora-
tive materials and different finishing/polishing systems. 

Source 
Type III Sum 

of Squares 
df 

Mean 
Square 

F Significance 

Corrected model 106012.8* 8 13251.6 255.6 0.000 

Intercept 3537870.4 1 3537870.4 68249.8 0.000 

restoration 785.0 2 392.5 7.5 0.001 

finishing 103731.8 2 51865.9 1000.5 0.000 

restoration finishing 1496.0 4 374.0 7.2 0.000 

Error 4198.8 81 51.8   

Total 3648082.0 90    

Corrected total 110211.6 89    

*R2 = 0.939 (Adjusted R2 = 0.933). 

 
Table 6. Post hoc Tukey’s test results of Streptococcus mutans ATCC 25,175 adhesion to 
the tested restorative materials with different finishing/polishing systems. 

Polishing system 
Bacterial adhesion to restorative material (CFU ×103/mL) 

Filtek Z350 XT Filtek Bulk Fill Tetric N Ceram 

Mylar strip 156.40 ± 6.50a 158.40 ± 6.50a 159.40 ± 6.50a 

Pogo one step 199.40 ± 5.31b 201.40 ± 5.31b 202.40 ± 5.31b 

Sof-lex multi-step 226.50 ± 4.00c 228.50 ± 4.00c 229.50 ± 4.00c 

Each value represents mean (±SD) and values with different superscript letters a, b, c indicate statistically 
significant difference in bacterial adhesion. 

 
may be due to its highly lustrous feature, which cannot be created with other po-
lishing system, and this findings are consistent with some previous studies [34] 
[35]. Both Filtek Z350XT and Filtek Bulk-fill have nearly the same surface 
roughness which may be attributed to the similarity of the filler particle size 
(pure nano-filled) as compared to Tetric N Ceram which has higher na-
no-hybrid size as described previously [36] [37]. 

Cariopathogenic biofilms on tooth surfaces or artificial dental substrata are 
primarily formed by initial adhesion of specific oral bacteria to such surfaces. 
Within the complex process of biofilm development, S. mutans is primarily re-
sponsible for the initiation of tooth decay as well as for the progression of an es-
tablished lesion[38].The selection of S. mutans for adhesion assay in this study 
was based on the fact that S. mutans is considered as a major etiological agent of 
dental caries [39] [40]. In this study, the adhered cells were removed for subse-
quent quantification after 4 h. This time of exposure was chosen because initial 
steps of biofilm development in the oral cavity normally occur within 4 h [41] 
[42]. 

The results of the present study indicated that bacterial adhesion differs sig-
nificantly between various polishing systems, where Mylarstrip produced the 
lowest bacterial adhesion, followed by PoGo, and the highest value recorded 
with Sof-lex. This finding maybe attributed to the variable polishing capacity 

https://doi.org/10.4236/aim.2019.91007


W. E. Soliman et al. 
 

 

DOI: 10.4236/aim.2019.91007 97 Advances in Microbiology 
 

and the surface roughness of these systems which significantly influence the 
bacterial adhesion to the substrata as describe previously [43] [44] [45]. Bacterial 
adhesion is governed by non-specific interactions (physico-chemical interac-
tions) and specific (ligand-receptor like interactions). Non-Specific interactions 
involve van der Waals, acid-base, and electrostatic interactions. The integration 
of such interactions plays a fundamental role in the initial bacterial adhesion as 
well as in biofilm formation [46]. 

In the current study, Pearson correlation test indicated a strongly positive 
correlation (PCC = 0.943) between surface roughness and S. mutans adhesion to 
the tested surfaces. In accordance with our results, some investigators have men-
tioned potential correlations between surface roughness and bacterial adhesion 
[47] [48]. Similarly, it has been reported that S. aureus adhesion was strongly 
correlated to the surface roughness [49]. Furthermore, qualitative and quantita-
tive adhesion analyses on different surfaces demonstrated significant aggregation 
of bacterial cells on untreated surfaces than on electro polished smooth surfaces 
[50]. Conversely, Eick et al. [51] disagreed with this relationship and reported 
that nocorrelation was observed between surface roughness and the number of 
colony forming units (CFU) of S. mutans in their study.  

5. Conclusion 

The current study revealed a strong association between surface roughness and 
S. mutans adhesion to the tested surfaces. Irrespective of the restorative material, 
Mylar polishing system presented the smoothest surface and the least bacterial 
adhesion as compared to Sof-Lex multi-step and Pogo one step polishing sys-
tems. Consequently, Mylar polishing system would be more recommended for 
clinical application. 
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