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Abstract 
In this work, we discuss the development of simulation code for a model of the cross-reactive 
adaptive immune response seen in flavivirus infections. The model specifically addresses flavivi-
rus pathogen virulence in G0  vs. G1  cell states. The MHC-I upregulation of resting cells ( G0  
state) allows the T-cells generated for flavivirus peptide antigens to attack healthy cells also. The 
cells in G1  state are not upregulated as much and so virus hides in them and hence is propagated 
upon rupture. Hence, this type of model is referred to as a decoy model because the immune sys-
tem is decoyed into preferentially recognizing the upregulated cells while the virus actively prop-
agates in another small, but important, cell population. We show that the generic assumption of 
upregulation via a model which includes the G G0 1  differential upregulation leads to immuno-
pathological consequences. We outline the details behind the simulation code decisions and pro-
vide some theoretical justification for our model of collateral damage and upregulation. 
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1. West Nile Virus Infection Models 
The family Flaviviridae are single-stranded, plus sense RNA viruses and, with the exception of hepatitis C virus, 
are all arboviruses, transmitted by mosquitoes and ticks. These viruses cause diseases that include dengue, 
yellow fever, as well as tick-borne, Japanese and West Nile virus encephalitis. Together these viruses have a  
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major global impact on human health. They are distributed worldwide with the exception of the polar regions, 
although a specific flavivirus may be geographically restricted. Notwithstanding, these viruses can expand their 
geographical distribution, with West Nile virus, for example, emerging in recent years North America, present- 
ing a significant threat to public and animal health. The most serious manifestation of West Nile virus (WNV) 
infection is fatal encephalitis in humans and horses, as well as in certain domestic and wild birds. The virus is 
generally maintained in a zoonotic transmission cycle involving mosquitoes and birds. Most individuals will 
usually experience an in apparent or mild febrile illness, others, a dengue-like illness, while a minority, in 
particular including the elderly and immunocompromised, may develop encephalitis which can be fatal. The 
diagnosis is usually made serologically, although the virus may be detected in the blood by molecular techniques, 
or in tissue culture. In general, humans are regarded as dead-end hosts since they do not generally produce a 
high enough viremia to enable transmission by mosquitoes. Currently, no vaccine is available and there is no 
specific antiviral therapy to modify disease outcomes. 

Infection of the host by pathogenic viruses begins an interaction that involves evolutionarily co-developed 
and counter-developed pathways that confer advantage for both organism and host survival. Infection of cells 
results in the intracellular processing of virus proteins into peptide fragments that bind to nascent class I and II 
major histocompatibility complex molecules (MHC-I and II) that are displayed on the infected cell surface. This 
is additional to the normal processing of self-proteins into peptides that occurs in all cells as part of the main- 
tenance of tolerance to self. The combined MHC-virus peptide configuration forms the ligand that enables the 
recognition of infected cells by virus-specific cytotoxic T lymphocytes (CTL) by the cognate T cell receptor 
(TcR) expressed on the T cell surface. These CTL cause death of the infected cells by lysis, thereby substantially 
reducing production of progeny virus. This ultimately leads to eradication of virus from the host, enabling host 
survival (reviewed in [1]). Flaviviruses such as the neurotropic viruses, West Nile (WNV), Murray Valley 
encephalitis, Kunjin and Japanese encephalitis viruses, induce an increase in expression of MHC-I and II, as 
well as other immune recognition molecules, including intracellular adhesion molecule-1 (ICAM-1, CD54), 
vascular adhesion molecule-1 (VCAM-1, CD106) and E-selectin (CD62E) variously and on a wide variety of 
cells [2]. WNV-induced increases in cell surface expression of these molecules therefore results in increased 
efficiency of recognition and killing of infected cells by WNV-specific CTL [3] [4]. Increases in MHC-I 
concentration on infected cells enable greater numbers of simultaneous TcR-MHC-I-peptide ligand interactions, 
which enhance the avidity of interaction of virus-specific CTL with the infected target cell. The increased 
avidity enables the interaction of infected cells with CTL clones that are previously below the recognition 
threshold by virtue of their low affinity for MHC-virus peptide ligand. Furthermore, a polyclonal anti-viral CTL 
population may also include low-affinity clones that are self-reactive, i.e., clones that recognize MHC-I-self 
peptide configurations [4] or even MHC without peptide specificity [5]. Due to the increased avidity of their 
interaction, these low-affinity, self-reactive clones can now lyse both infected and uninfected target cells that 
express high cell surface MHC-I concentrations [6] [7]. Furthermore, other non-specific accessory molecules, 
such as ICAM-1 expressed on the target cell, interacting with its integrin receptor, lymphocyte function- 
associated antigen-1 (LFA-1; CD11a/CD18), on the T cell, can also increase the avidity of T cell target cell 
interactions, thus additionally lowering the affinity threshold for T cell recognition and target cell lysis [8]. In 
addition, interferon- γ  (IFN- γ ) also strongly increases the expression of MHC and ICAM-1 on potential target 
cells in the vicinity, thereby increasing their susceptibility to CTL lysis [9]. 

Because the avidity of interaction between T cells and their targets can be increased via MHC associated (i.e., 
MHC-I viral peptide and CD8 MHC-I) and non-MHC-associated (i.e., ICAM-1 LFA-1) interactions, any 
increases in MHC and/or ICAM-1 expression further enhances CTL recognition of target cells. This in turn 
increases the chances of low-affinity, self-reactive CTL recognizing these target cells. The position of the cell 
cycle is also important in flavivirus infection. Cells in G0 (resting) when infected with WNV increase their 
MHC-I expression 6-10-fold, while infected cycling cells (G1, S, G2 + M) increase MHC-I expression by only 
2-3-fold [9]. This results in some 10-fold more lysis of infected G0 target cells than cycling cells by the same 
CTL [3]. Thus, there is enhanced avidity of interaction between CTL and WNV-infected cells in G0, which 
express relatively high levels of MHC-I, while infected cycling cells that express much lower levels of MHC-I 
are less easily recognized. Importantly, WNV replicates to a significantly higher titer in cycling cells than in G0 
cells. Thus, virus may be eradicated with relatively poor efficiency in a population of infected cycling cells. In 
vivo, since most cells are in G0, we hypothesize that it is the small population of infected cycling cells that  
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support virus replication while maintaining a low immunological profile, thus increasing the probability of virus 
transmission [4]. As indicated above, the release of IFN- γ  associated with T cell target cell interactions 
increases MHC and ICAM-1 expression on uninfected cells in the vicinity of virus-infected cells. Thus, high 
MHC-I expressing (uninfected) targets would be susceptible to lysis by low affinity self-reactive CTL clones. If 
virus-specific CTL populations included low-affinity self-reactive (i.e., crossreactive) CTL clones, which were 
able to lyse these uninfected cells, this would result in destruction of uninfected tissue. In the case of an 
encephalitic virus infection, this collateral damage to uninfected cells would increase the damage to the brain 
thereby increasing morbidity and mortality. In this way IFN- γ  could be responsible for fatal immunopathology 
in WNV encephalitis in mice [10]. 

This work builds a model of the host-pathogen interactions for flaviviruses in which we focus on WNV. We 
build a model as closely tied to the biological literature as possible with a mathematical framework and we show 
that the model exhibits immunopathology that we argue leads to host death in a small but troubling 3% - 8% of 
the Flavivirus-infected host population. 

All modeling of this nature requires many compromises and many levels of abstraction. We model the 
infection within a single abstract host. We choose initial cell population sizes and immune system components 
so that our abstract version of a host exhibits reasonable responses closely aligned to what we find in the 
literature. It is not possible to discuss all of the many design decisions that go into such code development, so 
we only give some of the details here. The reader can go to [11] for the details for the simulation which is 
written in C++ and Qt. 

Simple T Cell Interaction Algorithms 
We begin with a modification of a model of T cell recognition first presented by [12] with changes to handle 
MHC-I upregulation. Receptors on a given T cell recognize a specific foreign protein snippet, a peptide bound to 
MHC-I we will call ligand c. This ligand binds to its cognate T cell receptor with high affinity. However, all T 
cell receptors are also exposed to a variety of possible self-peptide-MHC-I ligands which may bind although 
with measurably weaker affinity. For clarity, let’s treat these peptides as a single self peptide d complexed with 
MHC-I, which has a lower affinity for the virus specific T cell receptor. Hence, in an antiviral immune response, 
at the T cell recognition level there is always a danger of misrecognition in which the virus specific T cell 
receptor recognizes and responds to a ligand d instead of c. This leads to the possibility of immune-mediated 
destruction of uninfected cells in the host, i.e. immunopathology. Following [12], we note the recognition 
process in T cell receptors includes several steps. Let R  denote the T cell receptor. Then the foreign peptide 
MHC-I ligand c and R collide at rate onk  to form a complex [ ]cR  in which the ligand is bound to the receptor. 
This receptor-ligand complex also disassociates at rate offk  thereby unbinding the ligand c from the receptor R. 
This leads to the simple dynamics  
[ ] [ ][ ] [ ]on off

d
d
cR

k c R k cR
t

= −  where [ ]  is the usual notation for concentration of a substance. At steady state,  

we then have [ ] 0cR ′ =  leading to [ ] [ ][ ]1

c

cR c R
k

=  where off

on
c

k
k

k
= . 

When the ligand binds to the T cell receptor, it triggers a signal transduction pathway inside the T cell which 
leads to activation of the T cell. Also, after ligand binding, the receptor undergoes a series of modifications such 
as phosphorylation at several sites. Let’s assume the T cell receptor transduction pathway has five phosphoryla- 
tion sites. The complex is now renamed cR QQQQQ−  where Q  denotes a site not presently phosphorylated. 
Phosphorylation can then create complexes of the form cR PQQQQ−  (one site is phosphorylated), 
cR PQQQQ−  (two sites) and so forth to cR PPPPP−  (all sites phosphorylated). Each of these modifications 
are reversible to the original complex cR . Transduction of the T cell signal is not triggered until all the 
modifications have been made. Hence, this introduces a delay between the ligand binding and the T cell signal 
generation. This suggests only the ligands that stay bound to the T cell receptor long enough to it to become 
fully phosphorylated can activate the T cell. 

From our discussions above, we see the probability that cR  remains bound for a time t  after binding is  
related to the off rate. Hence, letting cp  denote this probability, we have ( ) offe k t

cp t −= . Signaling only occurs  
after a delay of τ  seconds after the complex forms. Therefore, the probability per ligand that the T cell is 
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activated is the same as the probability the ligand stays bound longer than τ  seconds. Thus, the rate of T cell 
activation in the presence of a concentration [ ]c  of the viral peptide MHC-I T cell receptor complex [ ]cR  is  

off
virus e kA τ−= . And the self peptide d  gives rise to a rate of T cell activation off

self e kA τ′−= . where we assume  
τ  is the same for both. The viral ligand c  dissociates from the receptor at a slower rate than the self ligand  
d  due to its stronger bond with the receptor. Thus, off offk k ′< . We see the viral ligand spends more time bound  

to the receptor than the self one. The error rate for recognition is thus ( )off offself

virus

e k kA
F

A
τ′− −= = . The literature  

suggests a typical 1
off 1 seck −=  and 1

off 10 seck −′ =  with 1.5 secτ = . Hence, ( )10 1 1.5 6e 10F − − −≈ ≈ . Therefore,  
long delays can enhance the fidelity of the recognition process. As Alon states, this enhancement comes at a cost: 
a long signal transduction delay implies that more of the viral ligands can dissociate from the T cell receptor 
before T cell signaling is triggered, leading to a loss of sensitivity. So loss of sensitivity is acceptable because of 
the improved specificity, i.e. the discrimination between viral and self ligand recognition. 

Now, add the WNV to this model of recognition. What changes with upregulation of the number of MHC-I 
peptide ligands on the surface of the infected cells? As parameters of affinity of the ligand-receptor interaction, 
we assume that offk , offk ′  and τ  are intrinsic and not altered by the the MHC-I upregulation caused by the 
WNV infection. As production of anti-viral interferon by infected cells will also increase MHC-I expression on 
uninfected cells in the local vicinity, we will assume that if the MHC-I peptide ligands are upregulated by a 
factor M , then the new error rate is scaled by the same factor; i.e., if the upregulation factor is u M= , we  

have ( )off offself
upreg

viral

e k kA
F M

A
τ′− −= = . Hence, if upregulation is approximately 6 - 10 fold, we see  

6 5
upreg 6 10 10F − −≈ × ≈  which allows for a significant recognition of self ligands and consequent signal 

transduction leading to an increase in collateral uninfected cell damage. In other words, M  is a measure of the 
avidity of the T cell-target cell interaction, which is a function of MHC-I peptide ligands expressed on the cell 
surface. We therefore have theoretical reasons to suspect that WNV infections can lead to healthy cell loss. 

2. One Host Flavivirus Models 
The model is based on a theoretical decoy model of [13], which simulates the cellular adaptive immune response 
to flavivirus in vivo. In ([13] and [14]), it was argued that natural killer cells did not aid in the recovery of a host 
from a flavivirus infection. Hence, to investigate this interaction most simply, we choose to model only an 
adaptive immune response. We now describe the model in detail and justifying the assumptions necessary for its 
implementation. 

The main variables we use are listed in Table 1(a). The cells labeled FIC0 are infected resting cells 0G  and 
those labeled FIC1 are infected and actively dividing, 1G . The virus level 0y  is a measure of viral load in real 
data in plaque-forming units (pfu) per cell but its exact definition is not important to the simulation. We 
initialize the healthy cell populations in our simulations to ( )3216 10≈  million healthy cells. We could 
initialize for larger or smaller populations but this is concrete enough to make our points. It is not possible to 
keep track of detailed information on such a large number of healthy cells individually. Instead, we model our 
simulation universe as a cube which is 216 on a side. As is common in many simulations, we use a number of 
auxiliary class objects. In the simulation, addresses of each cell range from 0 to approximately 10 million. These 
integer addresses correspond to addresses in a 3D  box of size 216 216 216× × . This box is then divided into 
cubes with an edge size of 27 which gives 512 cubes. Each cell is located in one of these cubes b , where 
0 511b≤ ≤ . Hence, we have several different cell addressing choices. 

1) A cell has an address a  which is an integer from 0 to 3216 1− . This address can also be expressed as a 
triple ( ), ,x y z  which corresponds to its location in 3D  space.  

2) A cell lives in a cube whose address is ( ), ,x y zc c c  with xc , yc  and zc  in the range 0 to 7. These  

addresses are determined by the rewriting ( ), ,x y z  as ( )27x xx c r= × + , ( )27y yy c r= × +  and  

( )27z zz c r= × +  where xr , yr  and zr  are the integer remainders. 

3) Inside the cube, the remainders ( ), ,x y zr r r  give the the local cell address ( ), ,x y zr r r . 
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Table 1. Variables and probabilities. (a) Variables, (b) Probabilities.                                   

(a) 

Variable Description 

y0 Virus level 

y1 Uninfected cells 

y2 FIC0: infected resting cells 

y3 FIC1: infected dividing cells 

y4 T cell population 

y5 New infections population 

y6 New FIC0 cells 

y7 New FIC1 cells 

y8 New virus from FIC0 lysis 

y9 New virus from FIC1 lysis 

y10 New recognized FIC0, FIC1 

y12 FIC0 upregulated at time step 

y13 FIC1 upregulated at time step 

y14 Uninfected cells killed at time step 

(b) 

Probabilities Description Value 

p0 prob. virus infects uninfected cells 1.0e 3−  

p1 frac. resting infected cells frac. 0.99 

 FIC0 cell  

p2 fraction dividing infected cells frac 0.01 

 a FIC1 cell, 11 p−   

p3 prob. immune system kills 0.001 

 free antigen  

 
The basic rates and probabilities we use are listed in Table 1(b) and Table 2(a). The nominal values do 

change with different simulation needs, but they are listed to give a base from which we will diverge as 
necessary. New viruses are added to the virus population due to lysis of FIC0 and FIC1 cells. In our model, 9p  
changes at each iteration and the other probabilities are set randomly around the base values given in Table 1(b). 
There are also some additional parameters as shown in the bottom panel of the table. The use of these 
parameters, rates and probabilities are discussed in the following sections. 

2.1. Infected Cell Modeling 
For dividing infected cells, our model also uses IFN- γ  and ICAM-1 upregulation. Upon recognition of their 
cognate ligand, MHC-I-peptide, by the T cell receptor (TcR), cytotoxic T cells secrete IFN- γ  which upregu- 
lates the cell surface concentration of MHC-I peptide ligand on the infected cell surface. Thus, MHC-I-peptide 
upregulation is induced by both the WNV infection and IFN- γ . As an accessory adhesion molecule in T cell- 
target cell interactions, upregulation of ICAM-1 further increases the avidity of the interaction between the TcR 
and the cognate MHC-I-peptide-ligand. ICAM-1 is also upregulated by IFN- γ . When an infected cell is re- 
cognized and killed by a T cell, the IFN- γ  secreted by the T cell upregulates the cell surface concentration of 
both MHC-I and ICAM-1 on all infected and uninfected cells in a neighborhood of the recognized killed cell. 
We keep track of this changing upregulation level for the infected cell with the variable Uγ . 

We could handle the neighborhood upregulation of MHC-I simply. Each upregulated cell belongs to a coarse 
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Table 2. More probabilities and parameters and a sample upregulation strategy. (a) More probabilities and parameters; (b) A 
sample upregulation strategy.                                                                                        

(a) 

Parameters Description Value 

4p  frac. coarse cube upreg. 0.001  

5p  growth factor uninfected cells 1.0e 9−  

6p  resource limit uninfected cells ( )3216  

7p  number coarse cell upreg. 20  

8p  T Cell clonal expansion mult. 0.03  

9p  FIC1 viral growth mult. 9p  10.0  
 faster than in FIC0  

10p  free antigen base per cell lysis 1000.0  

11p  free antigen standard dev. 100.0  
 per cell lysis  

13p  standard dev. for 0p  is 00.1 p×  00.1p  

14p  collateral damage base 500  

15p  collateral damage standard dev. 0.05  

16p  self peptide pool size 2 p  14p =  

17p  peptides self frac. 0.5  

18p  upreg. factor FIC0 cells 9  

19p  max. number peptides displayed 40  

(b) 

 Resting  
Peptide Type Integer range 

0 WNV from { }0, ,8191
 

      
5 WNV from { }0, ,8191

 

6 Self from { }8192, ,16383
 

      
23 Self from { }8192, ,16383

 

 Dividing  
Peptide Type Integer range 

0 WNV from { }0, ,8191
 

1 Self from { }8192, ,16383
 

2 Self from { }8192, ,16383
 

3 Self from { }8192, ,16383
 

 
cell ( ), ,x y zc c c . We could then upregulate all infected cells that belong to this coarse cell. The difference 
between the number of infected cells found in a coarse cell and the total number in the coarse cell, 19683 , then 
gives us an estimate of how many uninfected cells have also been upregulated. This upregulation of cell surface 
MHC-I and ICAM-I concentration increases the probability that an infected cell will be recognized and killed. 
Unrecognized infected cells continue to move towards a lytic event which releases progeny viruses into the 
coarse cell. We model the expression of MHC-I-peptide ligands on the surface of an infected cell as follows. 
Living cells display MHC-I molecules that bind short peptides within a groove. Together these form a ligand 
recognized by the TcR. These peptides are derived from both self and non-self proteins. 

As a modeling strategy, we make the assumption that there are 132 8192=  peptides that are viral non-self 
peptides. The model can use any 2N  of course, but it is easier to see the thread of our argument with a specific 
power. This number has been chosen because it is a power of 2 and hence has some advantages in simulations 
and it was large enough to be pertinent. The self-peptide pool in reality is very large. We will let the self-peptide 
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pool be of the same size as the non-self pool, i.e., 8192. To model peptides, we will number them from 0 to 
142 16383=  (in general 12N + , and divide them in half: viral peptides are labeled from 0 to 8191 and self, from 

8192 to 16383. We know that a cell has many MHC-I-peptide ligands on its surface, but we do not want to 
model all of them. We assume that in a given unit cell surface area, there are 4  MHC-I-peptide ligands re- 
cognizable by the TcR, if not upregulated, and a multiple of these if there is upregulation of the MHC-I 
molecule on the cell surface. Thus, if the upregulation factor is 6 , then the upregulated cell would have 24  
ligands. In a WNV-infected cell without upregulation, we will assume that the 4  ligands per unit area pre- 
sented on the cell surface consist of 3  self peptides and 1  WNV peptide. Then, if an infected cell is upregu- 
lated by a factor of N , the cell would present 3N  self peptides and N  WNV peptides. For example if the 
upregulation factor is 6 , we would see 18  self peptides and 6  WNV peptides per unit area on the infected 
cell. The non-upregulated ( 1G ) cells are handled in a similar fashion except that instead of 24  displayed 
ligands each time step, we only use 4 . One of them is considered viral and the other three are self. Hence, for 
an upregulation factor of 6 , the vector V  in D  has the form shown in Table 2(b) for resting infected cells 
and dividing 1G  infected cells. We would have similar data for upregulation factors other than 6 , of course. 

We create new FIC0 cells as needed by calling the method SetFIC0() which is discussed in [11]. When we 
create a new FIC0 cell, we assign it to a randomly chosen coarse cube. We create this coarse cube address by 
randomly choosing integers u , v  and w  in the range 0  to 215  (see the cell address discussion earlier). 
We maintain a list of FIC0 and FIC1 cells throughout our simulations and each such cell has the data vector D  
associated with it, which has the components shown in Table 3(a). 

Here a  and b  are as previously described. The variable Lt  is a counter which is increased for each time 
unit the infected cell is alive. Once Lt  exceeds the allowable life time of a typical infected cell, the cell is 
removed from the simulation. The vector V  contains 4N  integers where N  is the amount of upregulation 
the infected cell has had. For example, if the upregulation level is 6 , then the vector would be size 24 . The 
integers refer to the proteins in our simulation which are expressed on the surface of the cell and are therefore 
available for recognition, as described earlier. Finally, the variables e  and Uγ  are the infected cell’s avidity 
and upregulation state, respectively. We will discuss how these variables are updated next. Our coding decisions 
and implementation strategies and choices for these matters are discussed fully in [11]. 
 

Table 3. Components of D  and the coefficient of variation, ( )C Θ . (a) Components of D ; 
(b) The coefficient of variation.                                                               

(a) 

V  { }0 4, , NV V
 

e  0.0  

Lt  0  

Uγ  1.0  

a  0 10,077,695a≤ ≤  

b  0 511b≤ ≤  

(b) 

Upregulation θ  ( )r Θ  ( )C Θ  
0 4.5 0.3925 
1 3.5 0.4450 
2 2.5 0.5266 
3 1.5 0.6798 
4 1.0 0.8326 
5 0.7 0.9951 
6 0.5 1.1774 
7 0.3 1.5200 
8 0.1 2.6328 
9 0.05 3.7233 
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2.2. Infected Data Updates 
Our model uses both IFN- γ  and ICAM-1 upregulation. IFN- γ  is secreted by cytotoxic T cells upon recogni- 
tion of their cognate ligand; this upregulates both MHC-I peptide ligand and ICAM-1 on the cell surface. 
MHC-I and ICAM-1 upregulation are also induced by WNV infection. We discuss the reasoning behind our 
model of the upregulation issue later in Section 4. This section explains our strategy for IFN- γ  upregulation as 
well as the killing of uninfected cells that are susceptible to lysis by low affinity anti-viral T cells as argued by 
the decoy hypothesis [13]. We will refer to such uninfected cell deaths as collateral damage. 

At each time point in the simulation, new infected cell’s are created and added to the FIC0 or FIC1 list. For 
these newly created infected cells, we initialize their age and recognition value to 0 ; and set their initial IFN- γ  
value to 1.0 . Hence, as the simulation runs, there is a pool of previously created infected cells and infected cells 
newly created at this time. As soon as an infected cell is created, we calculate its avidity for the T cells which 
will interact with it at this time. Once the avidity is calculated, we multiply it by the current IFN- γ  value of the 
cell (recall it is 1.0  at this time). Once a cell is infected, we assume there is a time lag before there is ICAM-I 
upregulation due to the infection. This time delay is set by the variable ICAMThreshold in the simulation code. 
Currently, this is set to be 48  time steps and since a time step corresponds to 15  minutes, we see ICAM-I is 
not upregulated until after 12  hours. This is the only time in the simulation that ICAM-I upregulation is used. 

Hence, at each time in the simulation, we have lists of infected cells whose avidities are known. Infected cells 
start with their intrinsic avidity which is determined by their displayed MHC-I complexes and the particular mix 
of T cells that are present to interact with them. Each of these cells also has a life time which is updated each 
simulation step. However, after these computations are done, we then determine how many of these infected 
cells are to be recognized and lysed or who have lived long enough to rupture. Hence, there are two events: one 
is the infected cell recognition which initiates IFN- γ  upregulation which enhances any infected cells avidity 
which can receive the IFN- γ  signal released by the recognized cell and two: the infected cell death event which 
does not release IFN- γ  but does release progeny virus. We keep track of the coarse addresses of the cells 
targeted for recognition and removal and we increase the avidity of these cells by the IFN- γ  multiplier. We do 
this up to a maximum multiplier amount which is set by the simulation. Then, at each subsequent simulation 
step, we check to see if this enhanced avidity exceeds the value needed for recognition. Thus, at each time step, 
the infected cells removed are any cells whose avidity (newly created or enhanced) allows recognition. Hence, 
the value of an infected cell’s recognition value increases over the life of the simulation as upregulation of 
ligand and ICAM-1 spreads through the neighborhood cells. 

We need to look at the details of how we compute the avidity of an infected cell. However, first we will 
discuss T Cell modeling. 

3. T Cell Initialization Code 
In this simulation, we create a population of T Cells which can kill WNV-infected cells and if the decoy model 
is correct, uninfected cells as well. The function we use to do this in is Create T Cells (). The target cell 
population is divided into big cubes for convenience. At each time step in the simulation, new target cells are 
infected. New FIC0 (infected, not dividing) and FIC1 (infected, dividing) cells are created. 

At the time they are created, we calculate the avidity of the T cell-target cell interaction according to the 
following model. In the simulation, there are 5  West Nile Virus (WNV) peptides that can be placed in 5  
MHC-I grooves. The T Cells that can kill an infected cell are then modeled using a distribution of TcR affinities. 
Each of the T Cells has its highest affinity for one of the 5  MHC-I-WNV peptide ligands. The affinity 
calculation for each TcR-ligand interaction is essentially a normal distribution. There are 21  points in the bell 
curve with the one at the center corresponding to the maximum affinity for given MHC-I-WNV peptide ligand. 
That leaves 10  to the right of the center and 10  to the left each with progressively decreasing affinity. This 
number 10  is a simulation parameter. These 20  other affinity values then must correspond to how the TcR 
interacts with a cell via the MHC-I-peptide ligand. To each of these 20  points, we associate self peptides (the 
ones numbered above 8192 ). At the start of each simulation, we pick these 20 5 100× =  peptides randomly. 
This gives 5  TCRs which have the potential to interact with 20  MHC-I-self peptide ligands (lower affinity 
than the center one) and the one WNV peptide. At each time step, we choose to compute the FIC0 or FIC1 
affinity/avidity using a fraction of the full T Cell capability. Thus, instead of calculating the affinity using all 

( )5 20 1 105× + =  affinity calculations for each self peptide in the pool, at each time step, we choose a fraction 
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(now 45%), of these, approximately 47 . Thus, we randomly pick 47  numbers from 0  to 104 . For example, 
if one of these numbers is 65 , we think of 63  as 3 21 2× +  and so the number 65  corresponds to the WNV- 
peptide 3  and the self-peptide 2 . The number 77  would then be 3 21 14× +  corresponding to WNV pep- 
tide 3  and self peptide 14 . So this collection of 47  numbers gives us a mix of T Cells (TcR) correspond- 
ing to the 5  WNV-peptides we selected as well as the other numbers which correspond to the self-peptides. 

We assume the avidity of a T Cell to bind to a WNV-infected cell via MHC-I-peptide ligand depends on the 
amount of MHC-I and other surface molecule upregulation. If we label this upregulation factor as θ , we assign  

the affinity of peptide i  using a normal distribution to be ( ) 2
e r i

ia θ−= . The parameter ( )r Θ  determines the  
coefficient of variation of this bell curve. The coefficient of variation, ( )c Θ , is the width across the bell curve  
corresponding to an ordinate value of 0.5; this is given by the formula ( ) ( ) ( )ln 2c rΘ = Θ . We want the  

curve representing the affinity of T Cells which recognize MHC-I-peptide ligand to be very narrow with no 
upregulation of ligand on the target cells ( 0Θ = ) and to widen as Θ  increases up to our maximum value of 

9Θ = . We achieve this by choosing the ( )r Θ  values as shown in Table 3(b). The third column in the table 
shows how the coefficient of variation of the curves varies with the value of Θ . This behavior is illustrated in 
Figure 1 where the circles on each of these plots represent the values from 0i =  (the affinity of the TcR for 
MHC-I-WNV-peptide) to = 10i ± , showing the decrease in affinity as it moves away from the center where 
there is the maximum of 1. In the actual code, we adjust these values so that they scatter randomly around the 
center value and we also use ii ε+  where iε  is a random perturbation of i . Note that for small values of θ , 
the generated affinities are quite small for 1i ≥ . We can easily adjust this affinity model to make the affinity 
curves much narrower. We can therefore adjust the affinities we use in our avidity calculations so that they 
depend on the upregulation factor. The simulation would typically generate ( )r Θ  such as these for an MHC-I 
upregulation factor of 9 : WNV-Peptide T Cell 0  would have ( )9 0.0478649r = ; WNV-Peptide T Cell 1 , 
( )9 0.0515279r =  and so forth. Note all of these are slight perturbations from the base value of 0.05  shown 

in Table 3(b) which is the base ( )9r  for a MHC-I upregulation of 9Θ = . Then, we compute the actual 
affinities we will assign to each self-peptide. 

Infected Cell Avidity Calculations 
Now let’s look at a typical infected cell of class FIC0. If the WNV MHC mediated upregulation is 9  fold, in 
our model, this FIC0 cell has MHC-I grooves that hold populations of peptides that are comprised propor- 
tionately from 27  self peptides and 9  WNV peptides. These peptides are chosen randomly from the WNV 
and self pool, as before. Now at each time point, we use 47  of the T Cells created according to the scheme 
discussed above. It seems reasonable to model in this way as we get a random selection of a large population of 
 

 
Figure 1. The T Cell affinities vary with the amount of MHC-I 
upregulation.                                                   
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T Cells with a range of affinities interacting at each time point. For example, at a given time point, the 47  T 
Cells we pick could be as follows: the first WNV peptide is 25  and associated with it are the self peptides 
{ }9005,10707,14805,8634 . We have now selected 4  of the 47  T Cells. The second WNV peptide is 379  
and we select 9  of its self peptides. We have thus selected 14  of the 47  possibilities. Then the third WNV 
peptide is 3568  and for it we select 13  of its self peptides giving a total of 27  so far. We finish by selecting 
WNV peptides 4911  and 8  of its self peptides giving 35  total and WNV peptide 7802  and 12  of its self 
peptides to finish out the 47 . In a sense, we have selected 47  peptides to match with the peptides on the 
surface of the FIC0 cell. We can either think of this as 47  separate T Cells or as 5  T Cells (one for each 
WNV peptide) with a range of affinities. The T Cells are assembled from these randomly selected numbers. 
When these numbers are randomly chosen, we do not allow for the same number to be chosen twice. The 
chances of having the same WNV peptide in a T Cell are small and so we have set up the simulation model to 
make sure we can not get matches in the random selection process. 

We can therefore think of these T Cells as having a response to peptides other than the WNV peptide; we can 
assemble a T Cell with highest affinity for WNV peptide whose recognition can also include as many as 20  
self peptides. Thus, the model we use can create as many T Cells as there are ways to take 47  peptides out of a 
set of 105 . For example, if the 47  numbers randomly created included 65 , 69 , 77  and 81 , this would 
correspond to a T Cell whose WNV peptide is the third one and whose associated self peptides are the ones 
stored as self peptide 2 , 6 , 14  and 18 . That T Cell would then be used in the affinity computations at that 
time step. 

To calculate the avidity of these 47  T Cell interactions with this FIC0 cell, we find out which of the 27  
self and 9  WNV peptides expressed on the surface of this FIC0 cell are recognized. We then sum over all of 
the affinities that result from the matches. If this sum is 1.0  or more, this FIC0 cell will be targeted for lysis at 
the next time step. This recognition will then trigger the IFN- γ  upregulation and the ICAM-1 upregulation on 
the remaining target cells. This is done simply. The original avidity is multiplied by appropriate multipliers (say 
1.5  for IFN- γ  and 1.2  for ICAM-1 upregulation, respectively) to obtain the new avidity. We do this calcula- 
tion for all the infected FIC0 cells, maintaining them in a list. We add them when they are created and delete 
them upon T Cell recognition and lysis or upon removal because they have exceeded their lifetime limit. 

Our process begins by noting out how many active T Cells and infected cells there already are. Then we find 
the number of new FIC0 cells that have been created, which indicates where to start the affinity calculations. 
The previous FIC0 cells in the list have already had their affinity computed. We are now at the place in the list 
where we need to calculate the affinity for our newly infected cell. To calculate the affinity, we look at the 
peptides associated with the infected cell and, for the infected cell, we also store their lifetime and IFN- γ  
upregulation factor. We have already chosen 47  random T Cells. Each of these corresponds to an integer k   
which can be written as ( )21k i j= × + . Each active T Cell, kT , therefore has an associated peptide ijW  and  
affinity ijA  where i  is the WNV peptide number and j  is the number of the self-peptide. To indicate the 
dependence on the number k , we will also add a superscript k . Hence, the active T Cell, kT , has an asso- 
ciated peptide k

ijW  and affinity k
ijA . Then, for each peptide, pV , on the surface of the infected cell, we check 

if it matches a peptide that can be recognized by the TcR and add its associated affinity. Let ( ),V WΘ  denote  
the check ( ), 1V WΘ =  if V is the same peptide as W and ( ), =0V WΘ , otherwise. If we let Φ  denote the  

infected cells avidity, we then have ( )4 46
,0 0 , k k

p i j ijp i V W A
= =

Φ = Θ∑ ∑ . The 47  active T Cells at this time step are  

a mix of the 5  WNV peptides, so the value of Φ  could be larger than 1  indicating a recognition event. 
Then, we multiply Φ  by the IFN- γ  multiplier factor, Tγ  making sure we don’t exceed the maximum IFN- γ   

upregulation, maxTγ , allowed: ( )maxmin ,T Tγ γΦ → Φ . We also allow for ICAM-1 upregulation if the cell has  

been infected long enough. If the current life of the infected cell exceeds the ICAM threshold time, IT , we reset  
Φ  again by multiplying by the ICAM-1 upregulation factor, IF . Of course, if this value exceeds the maxi- 

mum ICAM-1 upregulation amount, max
IF , we set Φ  to be max

IT : ( )maxmin ,I IF FΦ→ Φ . 

4. Handling Collateral Damage 
To find the avidity of the uninfected cells in each cube (the approximately 20,000  or so), we randomly assign 
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the self peptides for an uninfected cell and using the full 105  T Cell affinity possibilities, we compute the 
avidity. To do this, we assume the T Cells are spread uniformly through the cubes and since there are so many 
uninfected cells compared to infected in general, it would made sense to think all these T Cells could interact 
with the uninfected cells. When we model an infection, at each time step in a given simulation, we need to 
estimate collateral damage. We do this by developing an estimate of how much collateral damage occurs during 
an infection assuming a certain level of upregulation. This estimate is done before we perform any infection 
simulations. We build these estimates for the upregulation levels from 1  to 9  at least 3  times. The estimates 
are then averaged over the number of collateral damage computations we have done to provide the collateral 
damage amounts we use in any of our infection simulations. A typical collateral damage calculation is done as 
follows. In each cube, we 
• choose the self peptides for each of these 20,000  cells randomly from the self peptide pool. 
• for these 20,0000  cells, compute their avidities for the 5  T Cells with all their 20  self peptides. We 

will assume that each uninfected cell expresses a certain number of self peptides on its surface. This number 
is arbitrary, but clearly, if the entire universe of self peptides were on the cell, then all uninfected cells would 
be recognized and potentially lysed. We will assume each uninfected cell expresses 3  or 4  randomly 
chosen self peptides on their surface which is a small fraction from the self-peptide universe of 8192  
choices. Our rational for this is as follows. In any cell, peptide snippets are taken from all self-proteins, 
processed by molecular machinery, placed in MHC-1 cradles and the resulting complex is transported to the 
cell’s surface. There are a huge number of self-proteins and a limited number of MHC-1 molecules. Hence, 
at any given moment, a cell displays some fraction of the possible universe of self-peptides as well as a 
portion of the possible foreign peptides. In addition, MHC-1 molecules are constantly being recycled into 
component parts for reuse and new MHC-1 molecules with new self-peptides installed in their antigen 
presenting grooves are being generated. Thus, we can assume only a fraction of the possible self-peptides are 
displayed at any time and the members of this fraction are probably constantly changing. The immune 
system generated T Cells that can recognize self-proteins then interact with this fraction of displayed 
self-peptides generating an affinity. In a typical human, the self-peptide universe is probably on the order of 

1210  and 0.05%  of this is 85 10×  displayed self-peptides, which is a reasonable approximation to what 
we would find in a typical cell. Since our universe size is 8912 , this amounts to displaying the fraction 

0.05%  of the self-peptide universe; approximately 4  of the self-peptides. In our affinity calculations 
here, therefore we assume each uninfected cell expresses 3  or 4  randomly chosen self peptides on their 
surface. 

We also know only a fraction of potential T Cells interact with any given uninfected cell at a particular time. 
Hence, choosing a small number of self peptides to be expressed on each of our uninfected cells and then 
allowing our T Cell interaction to determine avidity is essentially a more quantitative version of a simple 
probabilistic law. Such a law might have the form of assuming a certain percentage of uninfected cells are 
recognized at each time step. However, it is then harder to handle IFN- γ  mediated upregulation. Also here, we 
don’t use the 45% fraction chosen randomly at each time step. Instead we do the affinity calculation using the 
full range of T Cells. This gives us avidities for each cell in the cube; i.e. 20,000  avidities. 

Note it is not clear how we should model these avidities. If we simply sum the affinities, it is quite possible 
that we would have avidities that exceed 4  or more for a given cell. If the killing threshold is set to 1 , this 
could generate an excessive number of uninfected cell deaths. We will divide our summed affinities by 5  to 
make it harder to reach the killing threshold. In essence, this is a statistical approach to the calculated avidity. In 
our calculations, we choose this last approach for our calculated avidities. Our models assume 5  WNV pep- 
tides and hence, we divide all the computed avidities by 5 to generate the avidity of each cell in the cube. 
• assume when a FIC0 or FIC1 cell is killed, there is IFN- γ  mediated upregulation of these 20,000  cells to 

some degree. We have the maximum IFN- γ  upregulation set 20 , so if the IFN- γ  multiplier is set to 1.5 , 
then after 7  upregulations, 71.5  is approximately 17 . Hence, after 7  upregulations, the upregulation 
approaches its maximum value and upregulation of these cells stops. Since we are using the full universe of 
of available T Cells, if an uninfected cell reaches maximum IFN- γ  mediated upregulation without being 
lysed, this cell is no longer able to be destroyed by the immune system’s response. The cell will then live out 
its normal life and be removed following normal cellular metabolic rules. Hence, maximally upregulated 
cells die y natural causes since the computed avidity for these cells implies they have not been recognized by 
any of the T Cells. 
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• next, go through the 20,000  avidities just calculated and count how many have a high enough avidity to be 
killed as they are. Call this number 0M  because there is no upregulation yet. Then, go through the re- 
maining avidities just calculated and count how many have a high enough avidity to be killed with their 
avidities multiplied by 1.5 . Subtract the previous number 0M  and call this number 1M . This gives the 
number of additional cells killed after 1  upregulation. We then continue this process: go through the re- 
maining avidities and count how many have a high enough avidity to be killed with their avidities multiplied 
by 1.5 1.5∗ . Subtract the previous 2  numbers 0M  and 1M  and call this number 2M . This gives the 
number of additional cells killed after 2  upregulations. We keep doing this until you have performed 7  
upregulations which approximates maximal upregulation. When complete, for each cube we now have the 
numbers 0M , 1M  through 7M . 

• now in any infection simulation, we model uninfected cell collateral damage in the following way. At each 
time step in an infection simulation, we know FIC0 and FIC1 cells are killed and their recognition by T 
Cells generates IFN- γ  mediated upregulation signals to the cube they belong to. It takes several time steps, 
but eventually, enough upregulation signals occur within a given cube so that 0 7M M+ +  cells are being 
killed each time step. This gives us a way to count collateral damage somewhat quantitatively. Note we are 
assuming, consistent with the acute phase of infection, the upregulation signal is a one way action: there is no 
mechanism by which this can be down regulated in this model.  

The Coarse Update Model 
We will assume that our simulation model maintains its level of uninfected cells indefinitely in the absence of 
infection using a standard logistics growth model. Recall 1y  denotes the uninfected cell level in our model.  
Hence, we assume the uninfected cells follow a logistics growth law: ( ) ( ) ( )( )1 1 1y t y t L y tα′ = −  where the  

initial condition ( )1 0y  is less than the resource allocation L . For us, we want to maintain the level  
3 6216 10 10L = ≈ × . This means the uninfected cells grow at the rate Lα , ( )1 1growthy Lyα′ = , with decay  

proportional to the square of their population ( ) 2
1 1decayy yα′ = − . If the growth rate of the cell population is on  

the order of 1%, we would expect ( )3216 0.01Lα α= = . Hence, a good choice for α  is 10 99.92 10 10α − −= × ≈ .  
We set these values in the simulation as 5pα =  and 6L p= . Note, in discrete form the logistics growth law  
gives ( ) ( ) ( ) ( )( )1 1 1 11y t y t y t L y tα+ = + − . Even if the infection has reduced the uninfected cell population to a  

fraction of the initial level, say 63 10× , the update we see at the next time is  

( ) ( )( )6 9 6 7 6 6
1 1 3 10 10 3 10 10 3 10 = 3 10 21,000.y t −+ ≈ × + × − × × +  

Hence, about 21,000  cells are created at this time step even though the population is very far below the 
steady state level of 710 . The typical biological response to such a depressed cell level would be relatively 
small and we want the simulation parameters to be chosen to preserve that level of response. 

We estimate collateral damage as follows: 
• 5y  denotes the number of new infections. In the simulation, we keep track of the number of new FIC0 

removals ( 0
rin ) and the number of new FIC1 removals ( 1

rin ) in the thi  cube. We then compute the fraction  
( )0 1

5i ri ria n n y= +  where 5y  is the current total number of infected cells. The value of ia  is set to 1  if  

this calculation exceeds 1 . This fraction allows us to estimate what the fraction of cells in a cube are likely 
to be infected at this time step.  

• at each time step, we keep track of the number of upregulation signals sent to each coarse cube and store this 
value in the variable iS  where i  is the coarse cube number. Letting N  denote the number of cells in a 
coarse cube and we see the fraction iS N  estimates how much upregulation (and hence collateral damage) 
is being done in a given coarse cube.  

• we have stored the average iM∑  values for each cube for each possible upregulation value. Denote these  
values by i

ΘΣ  where Θ  is the upregulation level and i  is the index of the coarse cube. We randomly  
perturb the i

ΘΣ  values around their base values to allow for variation. If we denote this perturbation by i   

we have the updated value ( )1 i i
Θ+ Σ . 
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• we now have the number  

( )
0 1

1 .ri ri i
i i i

n n S
c

N N
Θ+

= × × + Σ  

This estimates the collateral damage in the coarse cube i .  
• we allow for the possibility that there can be a multiplier effect. The number i

ΘΣ  is the collateral damage  
estimate for each cell in the cube. Each cell in a cube which is infected sends out upregulation signals which 
effect additional uninfected cells. This multiplier is the parameter 7p . For example, if 7 8p = , we allow for 
an eight fold multiplier effect. Hence, the full collateral damage estimate for cube i  is  

( )
0 1

7 1 .ri ri i
i i i

n n S
C p

N N
Θ+

= × × × + Σ  

• we then sum over all cubes to get the full collateral damage estimate, 14 iy C= ∑ .  

5. The Dynamics of the Model 
To analyze the dynamics of the model we are building, we will need some auxiliary variables and constants 
which are listed in Table 4(a) and Table 4(b). In Table 4(b), the variable name IFN_gamma_neighborhood is 
replaced by IFN_gam_nbhd and ActiveTcellPercentage becomes ActiveTcellPer to make the table less wide. 

There are also a number of nonlinear functions which compute various things about the variables and their 
interactions. These functions are listed below with their mathematical function names as well as the names they 
have been given in the code we use for the simulation. 

0Φ ≡  SetFIC0 ( y ): The variable y  denotes the new FIC0 cells. Let the number of these new cells be 0N . 
This function picks random peptides to populate the MHC complexes of 0N  new FIC0 cells created at this 
current time step. 

1Φ ≡  SetFIC1 ( z ): The variable z  denotes the new FIC1 cells. Let the number of these new cells be 1N . 
This function picks random peptides to populate the MHC complexes of 1N  new FIC1 cells created at this 
current time step. 

≡R  ChooseRandomSubset (M,N): This chooses M  unique elements from a list of N  things (i.e. there 
are no repeats). 

0Ψ ≡  CalculateFIC0Avidities ( z ): This computes the affinities for FIC0 cells given an FIC0 population 
z . 

1Ψ ≡  CalculateFIC1Avidities ( w ): This computes the affinities for FIC1 cells given an FIC1 population 
w . 

0 ≡U  UpdateL ( )_0 f : We update the lifetimes of the cells in the FIC0 list f . 
1 ≡U  UpdateL ( )_1 g : We update the lifetimes of the cells in the FIC1 list g . 

0Ω ≡  RemoveFIC0Cells (z): Here, we determine which FIC0 cells in the list z  have gone past their 
lifetime and so lyse as well as how many are recognized. 

1Ω ≡  RemoveFIC1Cells (w): Here, we determine which FIC1 cells in the list w  have gone past their 
lifetime and so lyse as well as how many are recognized. 

0Γ ≡  UpregulateIFN ( )_0 f : This function IFN- γ  upregulates all infected cells in a certain neighborhood 
of a recognized cell given the current list of cells, f , to upregulate. It returns an estimate of the number of 
healthy cells so upregulated. 

1Γ ≡  UpregulateIFN ( )_1 g : This function IFN- γ  upregulates all infected cells in a certain neighborhood 
of a recognized cell given the current list of cells, g , to upregulate. It returns an estimate of the number of 
healthy cells so upregulated. 

The Time Evolution of the Model 
We now discuss the simulation dynamics. In what follows, we will use subscripts 1t +  to denote the values of 
variables at the next time step and t  to indicate the value at the current time step. We show the update 
equations in the table below which are calculated in the order shown. The simulation first must initialize all the 
T cells we use. 
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Table 4. Auxiliary and additional variables. (a) Auxiliary, (b) Additional variables.                     

(a) 

Variable Meaning 

0F  FIC0 list 

1F  FIC1 list 

A  active T cell sites list 

0A  FIC0 T cell affinity 

1A  FIC1 T cell affinity 

0L  FIC0 lifetime 

1L  FIC1 lifetime 

0R  FIC0 lysis 

1R  FIC1 lysis 

0K  FIC0 T cell mediated lysis 

1K  FIC1 T cell mediated lysis 

0U  IFN- γ  upreg. FIC0 cell list 

U  IFN- γ  upreg. FIC1 cell list 

Fγ  IFN- γ  upreg. factor 
maxFγ  maximum IFN- γ  upreg. 

IT  FIC0 ICAM-1 upreg. time 

IF  ICAM upreg. factor 
max

IF  Maximum ICAM-1 upreg. 

(b) 

Name Meaning Symbol 

numprots Peptide-MHC ligands pN  

 on infected cell surface.  

keysize Number Upreg. Coarse RN  

 Cubes for infected cell.  

ActiveTcellPer fraction of T cell clones γ  

 able to recognize ligand  

WNV_size num. flavivirus peptides  

 in T cell config. WNVN  

ActiveTcell_size number WNVNγ . TAN  

virals num. viral peptides. VN  

 16
17 2 p

VN p= .  

recog_percent ratio TA

V

N
N . pr  

IFN_gam_nbhd frac. uninfected cells in  

 IFN- γ  upreg. 
IFNf  

 neighborhood recog.  

HC_recog_prob product IFN pf rγ . HCp  

HCFraction ( ) ( )10 6 7y y y+  if  

 denom. not zero, else 0.1   
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• Free virus, 0y , is removed by the immune system with a certain probability, 3p  and virus is added to the 
pool by the lysis of FIC0 and FIC1 cells. We assume that FIC1 cell lysis contributes 9p  times as much as 
the lysis of FIC0 cells. From experimental data, 9 10p ≈ , so if N  free antigen was contributed by the 
FIC0 lysis, then 10N  would be added by the lysis of FIC1. Thus, the amount of free virus is modeled by 
new free virus =  old free virus +  (virus released due to FIC0 cell lysis) +  (virus released due to 
FIC1 cell lysis) −  (virus removed by immune system prior to infection). This is modeled mathema- 
tically by ( ) ( ) ( ) ( ) ( )0 0 8 9 9 3 01y t y t y t p y t p y t+ = + + −  which is Equation (1). 

( ) ( ) ( ) ( ) ( )0 0 8 9 9 3 01 , New freeantigeny t y t y t p y t p y t+ = + + −                   (1) 

• Uninfected Cell infections, 5y , are handled next. We set new uninfected cell HC infections =  (Pro- 
bability of uninfected cell infection) ×  old amount of virus present, or ( ) ( )5 0 01y t p y t+ = , Equation 
(2). 

• Infected cells which are not dividing, are the FIC0 cells, 6y . We model their dynamics as new FIC0 cells at 
the next time step =  a percentage of new infections, ( ) ( )6 1 51 = 1y t p y t+ + , Equation (3). 

( ) ( )5 0 01 , New cellinfectionsy t p y t+ =                           (2) 

( ) ( )6 1 51 1 , Non dividing infected cells, FIC0y t p y t+ = +                    (3) 

• Infected cells which are dividing are the FIC1 type, 7y . Their dynamics are modeled as new FIC1 cells at 
next time step =  percentage of new infections or in mathematical terms ( ) ( )7 2 51 1y t p y t+ = +  which is 
Equation (4). 

• The number of FIC0 cells, 2y , is given by total FIC0 cells at next time step =  old FIC0 cells +  new  
FIC0 cells, ( ) ( ) ( )2 2 61 1y t y t y t+ = + + , which is Equation (5). 

( ) ( )7 2 51 1 , Dividing infected cells, FIC1y t p y t+ = +                      (4) 

( ) ( ) ( )2 2 61 1 , Total FIC0 cellsy t y t y t+ = + +                          (5) 

• The number of FIC1 cells, 3y , at the next time is then total FIC1 cells at next time step =  old FIC1  
cells +  new FIC1 cells or more quantitatively, ( ) ( ) ( )3 3 71 1y t y t y t+ = + + , Equation (6).  

( ) ( ) ( )3 3 71 1 , FIC1 cellsy t y t y t+ = + +                           (6) 

For newly created cells of type FIC0 and FIC1, we assign the MHC-I-peptide ligands that are expressed on 
their surface by a call to the functions SetFIC0, 0Φ , and SetFIC1, 1Φ . In the code, this is done via the 
function calls SetFIC0(y) and SetFIC1(y). The functions 0Φ  and 1Φ  are used to determine randomly the 
proteins expressed on the surface of an infected cell as discussed in Section 2.1. As long as there are new FIC1 
cells, 7 0y > , we build the peptides bound to the MHC-I molecules on the surface. These are infected 1G  cells 
and so they are less likely to be recognized and lysed by T cells, since the MHC-I is upregulated to a lesser 
extent on these cells. Hence, the call to 0Φ  builds ( )6 1y t +  data vectors V  of the appropriate size for FIC0  
cells. We express this mathematically as ( ) ( )( )0 0 61 1F t y t+ = Φ +  (Equation (7)). 

( ) ( )( )0 0 61 1 , Update FIC0 listF t y t+ = Φ +                         (7) 

The call to 1Φ  builds ( )7 1y t +  vectors V  of size appropriate for FIC1 cells, ( ) ( )( )1 1 71 1F t y t+ = Φ + , 
which is listed as Equation (8). The new vectors above are then added to the current list of FIC0 and FIC1 cells 
as data. Then, we choose a random subset of the WNV-specific T cells to recognize and lyse the infected cells. 
Recall at each time step we assume there is a heterogeneous population of T cells which can recognize a fraction 
of the 105  possible peptide ligands. We designate these as active. In our simulation, we let 45% be active at 
each time step. We store the peptides that can be recognized in the ActiveTcellsIndex and use these peptides to  
compute affinities. The function R  chooses TAN  indices out of the possible list { }0,1, , 1WNVN −  to use as  
the peptides for which the T cells generated at this time step have an affinity, ( )1A t + . This can be expressed  
quantitatively as ( ) ( )1 ,TA WNVA t N N+ =R  which is Equation (9). 

( ) ( )( )1 1 71 1 , Update FIC1 listF t y t+ = Φ +                         (8) 
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( ) ( )1 , , Active T Cell componentsTA WNVA t N N+ =R                     (9) 

We then calculate affinities for the FIC0 and FIC1 lists. In the simulations, these lists can easily reach 
800,000  in size, so traversal of these data structures has a serious impact on computational time. So we need to 
determine the avidity of each new active FIC0 cell clone for each new FIC0 cell. We do this with the Calculate 
FIC0 Avidities function, labeled 0Ψ . Previous avidities are already stored in our FIC0 data structures. We add 
the new avidities to the list with the call Calculate FIC0 Avidities (y). Any of the newly infected cells whose 
avidity exceeds the threshold value that triggers T cell destruction is counted in the variable  
new_FIC0_kills. This is stated mathematically as ( ) ( )( )0 0 61 1t y t+ = Ψ +A  which is Equation (10). We then  

do the same sort of thing for new FIC1 cells where the Calculate FIC1 Avidities function is labeled 1Ψ . In 
the call to Calculate FIC1 Avidities, we also count the number of newly infected cells that are killed and store 
this value in the variable new_FIC1_kills. The resulting equation has the mathematical form  

( ) ( )( )1 1 71 1t y t+ = Ψ +A  Equation (11). In these equations the argument ( )6 1y t +  is the value of the new  

FIC0 cells and ( )7 1y t +  is new value of the FIC1 cells. 

( ) ( )( )0 0 61 1 , Update FIC0 aviditiest y t+ = Ψ +A                      (10) 

( ) ( )( )1 1 71 1 , Update FIC1 aviditiest y t+ = Ψ +A                      (11) 

The avidity calculations are implemented as previously discussed in Section 3.1. Infected cells whose avidity 
values enable recognition will then generate IFN- γ  which will mediate MHC-I upregulation. We first remove 
the FIC0 cells and then the FIC1 cells. To remove the FIC0 cells, we 
• get the current size of the FIC0 list of cells. 
• update the lifetime values of each cell in this list.  
• we remove FIC0 cells whose lifetime has been exceeded.  
• we remove FIC0 cells whose avidity values trigger T Cell destruction.  
• Since 2y  is the number of FIC0 cells, each removal and kill, decreases 2y .  
• cells dying in the absence of T cell recognition release their viral contents and increase the value of 0y . The 

amount of free antigen so generated is determined by a random perturbation around the base value 10p  
multiplied by the number of dying cells. The resulting amount of free antigen is stored in 8y .  

• On the other hand, the antigen in the cells destroyed by T Cells is lost and does not increase the 0y  value. 
However, each destroyed cell has an associated coarse cube address which we keep track of in a list. Some of 
the cells in this cube will undergo IFN- γ  mediated upregulation. We keep track of the number of T Cell 
mediated lytic events in this time step in 10y . 

Essentially, we repeat these steps when we remove FIC1 cells. Thus, the FIC0 and FIC1 removal algorithm 
first sets the elapsed time on all infected cells and an infected cell will die automatically if its life time is  
exceeded. This is just a matter of incrementing the life value Lt  in each cell in ( )0 1F t +  and ( )1 1F t + . This  

amounts to a traversal through each list. The simple functions that do this are called ( )( )0 0 1F t +U  which  

returns ( )0 1L t + , the updated list of FIC0 lifetime values. This is written mathematically as  
( ) ( )( )0 0 01 1L t F t+ = +U  and is shown as Equation (12). The similar equation, ( ) ( )( )1 1 11 1L t F t+ = +U  for  

the updated list of FIC1 lifetime values is listed as Equation (13) where ( )( )1 1 1F t +  is the function which  

does the lifetime updating for the FIC1 list. 

( ) ( )( )0 0 01 1 , Update FIC0 lifetimesL t F t+ = +U                         (12) 

( ) ( )( )1 1 11 1 , Update FIC0 lifetimesL t F t+ = +U                         (13) 

As part of this list traversal, recognized infected cells are lysed by a call to the functions ( )( )0 0 1F tΩ +  (this 
computes 8y , resets 2y  and sets the 10y  portion due to FIC0 cells) and ( )( )0 1 1F tΩ +  (this computes 9y , 
resets 3y  and adds the 10y  due to FIC1 cells). We let ( )0 1R t +  denote the number of FIC0 cells which have 
exceeded their lifetimes and hence, undergo lysis without T Cell recognition and add released antigen to 0y . 
We let ( )0 1K t +  be the number of FIC0 cells which are recognized by the immune system and killed 
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(Equation D14). 

( ) ( ) ( )( ) ( )( )0 0 0 0 01 , 1 , 1 1 , Remove FIC0 cellsR t K t U t F t+ + + = Ω +             (14) 

Similarly, the number of FIC1 cells exceeding their lifetimes or recognized by the immune system and killed 
are denoted by ( )1 1R t +  and ( )1 1K t + , respectively (Equation D16). 

( ) ( ) ( )( ) ( )( )1 1 1 1 11 , 1 , 1 1 , Remove FIC1 cellR t K t U t F t+ + + = Ω +               (15) 

We then need to upregulate IFN- γ  in a selection of addresses around each FIC0 cell lysed by a T cell. The 
address a  in the data D  for each FIC0 cell that has been lysed by a T cell belongs to a corresponding coarse 
cell in the immune model, ( ), ,x y zc c c . We handle the IFN- γ  in the method Set Neighborhoods as follows: 
• the cube addresses associated with destroyed FIC0 and FIC1 cells are stored in a vector which we convert 

into a list. 
• the list of cube addresses which contain a destroyed infected cell is sorted and duplicates are then removed. 

This gives us the size of the removed list without duplicates, RN .  
• the FIC0 and FIC1 lists of infected cells are examined and a mapping is set up between the address of the 

infected cells data and the cube address the infected cell reside in. 
• the number of FIC0 cells that are upregulated at this time step is stored in 12y ; similarly, the number of 

newly upregulated FIC1 cells is stored in 13y . 
• FIC0 infected cells are upregulated. The infected cells that live in upregulated cubes must have their avidity 

values and other parameters reset. As we loop through all the FIC0 cells, if they are in an upregulated cube, 
we update the avidity value by multiplying the current avidity value by the upregulation factor. If this 
exceeds the maximum allowable amount, the avidity factor is set to the maximum. 

• FIC1 infected cells are upregulated in the same fashion. 
• the amount of collateral damage is then estimated as 14y . Recall 5y  is the number of total new infections. 

The total number of new T cell triggered deaths is the sum α =  new_FIC0_kills +  new_FIC1_kills. We 
can then find the ratio ( ) 5= new_FIC0_kills new_FIC1_kills yα +  for this coarse cube. If this ratio is 
larger than 1 , we reset it to 1 . Here, the MHC-I upregulation level stored as 18= 1u p − . We have 
computed the iM∑ ’s for each coarse cube for different choices of u . For our damage estimate, choose the  
values iM∑  corresponding to the value of u  we have. In addition, we randomly perturb the k

iiM∑   

using the parameter 15p  as follows: ( )151k k
i i ii iM p M→ +∑ ∑  where i  is a random number in  

( )1,1− . Finally, the variable, Update Reg [k], stores the number of new IFN- γ  mediated upregulations for 
this time interval for the thk  coarse cube. If c  is the size of a coarse cube (here 19,683 ), then the ratio  

[ ]Update Reg ckβ =   gives the fraction of cells in each coarse cube which are newly upregulated. For  

each coarse cube, kC , we can then calculate ( )( )7 151 k
k i ip p Mζ α β= + ∑  where, 7p  is the number of  

cells we estimate are upregulated per IFN- γ  signal (here 1 20− ). This gives an estimate of the number of  
cells which are lost to collateral damage. Then kkζ ζ= ∑  gives the total collateral damage in this time step.  
For typical simulation values, for 0.1α =  (i.e. 10 % of the newly infected cells are killed) and 0.001β =  
(i.e. 0.1% of the cells in a coarse cube are upregulated, we have approximately 0.1 20 420 0.01kζ = × × ×  
or 8.4ζ =  so that 4300ζ ≈ . However, this is a dynamic computation which depends on what is 
happening currently. The collateral damage at this time step is thus stored in 14y ζ= .  

In summary, we scale the IFN- γ  factor for infected cells in upregulated coarse cubes. We can think of these 
cube addresses as stored in the variables ( )0 1U t +  and ( )1 1U t + . We upregulate by looping over all the 
addresses in ( )0 1U t +  and ( )1 1U t +  as described above. The removal of FIC0 cells is done in the function 

( )( )0 0 1F tΩ +  which returns the number of ruptured FIC0 cells in ( )0 1R t + , the number of T Cell mediated 
lytic events in ( )0 1K t +  and upregulation addresses in ( )0 1U t + . This is written mathematically as  

( ) ( ) ( )( ) ( )( )0 0 0 0 01 , 1 , 1 1R t K t U t F t+ + + = Ω +  which is Equation (14). Similar calculations are carried out for  

the FIC1 case using in the function ( )( )1 1 1F tΩ +  which returns the number of ruptured FIC1 cells in  

( )1 1R t + , the number of T cell mediated lytic events in ( )1 1K t +  and upregulation addresses in ( )1 1U t + ,  



J. K. Peterson et al. 
 

 
140 

Equation (15). The upregulation function ( )( )0 0 1U tΓ +  then calculates 12y  which is written mathematically  

as ( ) ( )( )12 0 01 1y t U t+ = Γ + , (Equation (16). In a similar fashion, the upregulation function ( )( )1 1 1U tΓ +   

calculates 13y , ( ) ( )( )13 1 11 1y t U t+ = Γ + , Equation (17). We also remove cells lysed both by T cells and virus  

infections alone from our master FIC0 list, 0F , to generate a new ( )0 1F t + . 

( ) ( )( )12 0 01 1 , New upregulated FIC0 cellsy t U t+ = Γ +                      (16) 

( ) ( )( )13 1 11 1 , New upregulated FIC1 cellsy t U t+ = Γ +                      (17) 

Cells that are removed due to virus infection only, simply release virus into the extracellular environment of 
the host. So for these removed cells, virus released from these cells must be added to the total virus present. This 
amount of new virus added due to the death of FIC0 cells is the variable 8y . We determine how much virus is 
released at this time step by multiplying by the number of removed cells by a random perturbation of the base 
amount 10p . Where infected target cells are lysed by T cell clones before the virus matures, infectious progeny 
virus is not released. At the start of this time step, the size of the FIC0 list is 0F . So, since 2y  is the total 
number of FIC0 cells, we subtract both the number of cells that die naturally due to virus infection and the cells 
lysed by T cells to get the current value. The equation needed to do this is  

( ) ( ) ( ) ( )( )2 0 0 01 1 1 1y t F t R t K t+ = + − + + +  which is Equation (19). A similar set of computations is used to  

remove virus and T cell-lysed FIC1 cells. However, there is a difference here. The virus grows in FIC1 cells 
faster by a factor of 9p . This is done in the 0y  update equation we discussed earlier using the value computed 
with the 9y  equation from the previous time step expressed mathematically  

( ) ( )( ) ( )9 10 11 11 1y t p p R tρ+ = + + , which is Equation (20). We then update the FIC1 population using  

( ) ( ) ( ) ( )( )3 1 1 11 1 1 1y t F t R t K t+ = + − + + +  Equation (21). Then since 10y  is an estimate of the number of  

infected cells recognized at this time step, we calculate its updated value using the equation  
( ) ( ) ( )( )10 0 11 1 1y t K t K t+ = + + +  as shown in Equation (22).  

( ) ( )( ) ( )8 10 11 01 1 , New virus FIC0 natural deathy t p p R tρ+ = + +                 (18) 

( ) ( ) ( ) ( )( )2 0 0 01 1 1 1 , Updated FIC0 pop.y t F t R t K t+ = + − + + +                 (19) 

( ) ( )( ) ( )9 10 11 11 1 , New virus FIC1 natural deathy t p p R tρ+ = + +                 (20) 

( ) ( ) ( ) ( )( )3 1 1 11 1 1 1 , Updated FIC1 pop.y t F t R t K t+ = + − + + +                 (21) 

( ) ( ) ( )( )10 0 11 1 1 , New recognized infected cellsy t K t K t+ = + + +                 (22) 

When infected cells are recognized, T cells undergo clonal expansion which improves the T cell killing 
percentage. Hence, it seems reasonable to allow the parameter 8p  to be reset each time step. To model clonal 
expansion, we keep track of the fraction of new T cells using the ratio tf  defined by  

( )
( ) ( ) ( )10

10 4
4

1
1 1, 1 1number of new T cells 1

current total population of T cells
0.0 otherwise.

t

y t
y t y t

f y t
 +

+ ≥ + ≥= = +



         (23) 

The parameter ( )8 1p t +  is then reset where we also set up a ceiling threshold which 8p  can not go past,  
max
8p . We update with ( ) ( ) ( )( )max

8 8 81 min 1 ,tp t f p t p+ = + . If the T Cells which have spread avidity have  

been cloned, then there is a concomitant B cell clonal expansion which increases the probability that free virus 
will be neutralized. This probability is stored in the variable 3p . To implement this idea, we will update 3p  as  
follows: calculate ( ) ( )81t tg f p t= + ∗  and then do the reset ( ) ( )( )max

3 3 31 min ,tp t g p t p+ =  where we make  

sure we do not exceed a specified maximum. Finally, we look at the Uninfected Cell population dynamics: 
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uninfected cells at next time step =  old uninfected cells +  uninfected cells homeostasis update −  new 
infected cells −  cells lost due to T cell lysis of uninfected cells, i.e. cells lost due to collateral damage. We  
assume the uninfected cells follow a logistics growth model in the absence of infection, ( )1 5 1 6 1y p y p y′ = − ,  
where the values of the growth factor 5p  and the resource limitation 6p  are chosen appropriately. We thus 
generate Equation (25) which is our estimate of healthy cells in the simulation model which uses our collateral 
damage estimate from Equation (24). 

( ) ( )14 1 1k
k

y t C t+ = +∑                                 (24) 

( ) ( ) ( ) ( )( ) ( ) ( )1 1 5 1 6 1 5 141 1y t y t p y t p y t y t y t+ = + − − − +                   (25) 

6. Damage Due to the Decoy Hypothesis 
We are now in a position to explain the collateral damage due to the decoy model. In addition, it is known that 
there have been puzzling results reported in survival experiments for WNV infections. Recall, the amount of 
virus involved in an infection is measured in plaque forming units (pfu). This determines the concentration of 
infectious virus by virtue of the number of areas of cell death in a cell monolayer in vitro. Our simulations use a 
parameter in our simulations for the pfu level and, of course, it is difficult to calibrate artificial pfu levels to 
measured data levels as the pfu measure itself is a large scale phenomenon and so it is complicated to model. A 
typical survival simulation generates the data shown in Table 5 for an upregulation level of 9 . We model host 
infections in 18  groups using initial viral concentrations ranging from 100  to 1.2e 06+  pfu. Note there is 
 
Table 5. Sample simulation data.                                                                                   

Surviving hosts PFU level HC ratio Surviving hosts PFU level HC ratio 

10 100 0.999990 4 25,000 0.439213 

10 250 0.999982 2 50,000 0.358584 

10 500 0.808539 2 75,000 0.367035 

8 750 0.589315 3 90,000 0.379991 

10 1000 0.739119 4 120,000 0.359158 

8 2500 0.497502 0 360,000 0.296874 

5 5000 0.454120 1 600,000 0.301097 

3 7500 0.425226 2 900,000 0.356034 

3 10,000 0.370141 0 1,200,000 0.297576 

 

 
Figure 2. The percentage of uninfected cells vs. viral infection 
level.                                                           
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upward movement in the healthy cell ratio even as the pfu level increases which is an indication that the 
collateral damage model we have discussed here due to the decoy model is a useful explanatory tool. We can 
also plot the average uninfected cell percentage vs the logarithm of virus concentration (pfu) in Figure 2. The 
spikes in the numbers of surviving hosts with increasing inoculating virus concentration indicate that our 
simulation validates what we would expect to happen if the decoy model holds true.  

7. Conclusion 
We show that the decoy hypothesis is a reasonable way to explain collateral damage. Our simulations also 
suggest that the decoy hypothesis might provide an explanation for survival curve data measured in WNV 
infections which show an increase in survivability even with increasing viral dose. We will explore that further 
in other work. 
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