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Abstract 
Building detection in very high resolution (VHR) images is crucial for map-
ping and analysing urban environments. Since buildings are elevated objects, 
elevation data need to be integrated with images for reliable detection. This 
process requires two critical steps: optical-elevation data co-registration and 
aboveground elevation calculation. These two steps are still challenging to 
some extent. Therefore, this paper introduces optical-elevation data co-regis- 
tration and normalization techniques for generating a dataset that facilitates 
elevation-based building detection. For achieving accurate co-registration, a 
dense set of stereo-based elevations is generated and co-registered to their 
relevant image based on their corresponding image locations. To normalize 
these co-registered elevations, the bare-earth elevations are detected based on 
classification information of some terrain-level features after achieving the 
image co-registration. The developed method was executed and validated. Af-
ter implementation, 80% overall-quality of detection result was achieved with 
94% correct detection. Together, the developed techniques successfully facili-
tate the incorporation of stereo-based elevations for detecting buildings in 
VHR remote sensing images. 
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1. Introduction 

Buildings are one of the most important classes in urban mapping. The current 
building distribution and development in a city are essential information for ur-
ban analysis and planning [1] [2]. The most cost-effective and broadly available 
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geo-spatial data for mapping building information are the very high resolution 
(VHR) remote sensed images. As a result, building detection in remote sensing 
VHR images has been an active area of research during the last two decades [3] 
[4] [5]. 

VHR optical images are the two dimensional (2D) perspective projection of 
the three dimensional (3D) world; therefore, building heights play an important 
role in the reliability of the building detection process. Since the optical imagery 
and elevation data have complementary properties, co-registering these two 
datasets is an effective integration approach to make one data source compen-
sates the limitations of the other one. However, several problems are introduced 
when such datasets are co-registered [6]. The misregistration between these 
different data sources is one of the most critical problems. Object-based ap-
proaches are usually used to facilitate the integration and reduce the negative 
effect of the misregistration by changing the processing unit from individual 
pixels to a group of pixels (i.e., image segments/objects) [7]. Even so, this mis-
registration problem is still serious for tall buildings appearing in off-nadir 
VHR images [8]. 

The most common sources for generating elevation information are the pho-
togrammetric approaches and LiDAR (Light Detection and Ranging) technolo-
gy. Both these sources provide the height information at the tops of surfaces 
such as buildings or trees. Hence, they result in digital surface models (DSMs). 
On the other hand, buildings are objects at heights above the ground; thus, 
height normalization is required to determine the aboveground heights. This 
process requires firstly extracting the terrain elevations to generate a digital ter-
rain model (DTM). This elevation model is then subtracted from its corre-
sponding DSM to calculate the normalized height above the ground that consti-
tutes normalized digital surface model (nDSM). Unfortunately, extracting the 
DTMs from their corresponding DSMs is still a problem to some extent [9] [10]. 

Many building detection methods have been published. These methods can be 
categorized into two classes: image-based and elevation-based methods. The 
most successful image-based building detection methods in VHR images are 
compared and analyzed comprehensively in [5]. These methods fail to reliably 
discriminate building roofs from parking lots when they are spectrally and spa-
tially similar. This limitation results from not incorporating the elevation infor-
mation which is the key component for reliable building objects delineation. 

In contrast to the image-based building detection, elevation-based methods 
provide more reliable discrimination. In the relevant publications reviewed, a 
considerable amount of research has been conducted recently on building detec-
tion using LiDAR-derived elevation data. However, this type of data is expensive 
and not available for most places. On the other hand, stereo images which allow 
elevation data generation are relatively inexpensive and widely available. Despite 
that, relatively lesser number of researchers have exploited them, in contrast to 
LiDAR-derived elevations, in both image classification and building detection 
[11] [12]. 
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All of the elevation-based building detection methods, as reviewed in the lite-
rature, encounter two challenges: the optical-elevation data co-registration and 
the aboveground/normalized elevation data calculation. 

Regarding the first problem, in order to integrate the elevation data with the 
optical VHR image data, a co-registration is required. An accurate co-registra- 
tion without incorporating the sensor mode information is almost impossible 
especially in the cases of off-nadir VHR images with high rise buildings. As 
found in the literature, this co-registration can be achieved by four different 
ways: image-to-image registration, orthorectification, true-orthorectification, 
and the line-of-sight DSM (LoS-DSM) solution. All of these methods are de-
fined, explained and reviewed extensively in [8]. Except for the LoS-DSM 
co-registration solution, it has been concluded that all of these methods have 
some limitations when off-nadir images acquired over dense urban environ-
ments are employed. The LoS-DSM solution described in [8] is considered as the 
most promising and recent image-elevation co-registration method. It is based 
on projecting the DSM elevations from the object space to the image space. Al-
though the solution has proven to be effective for building detection even in 
off-nadir VHR images, it calculates and projects full resolution (all image pixels) 
surface elevations. In this study, it is assumed that a subset of these elevations is 
sufficient to achieve successful building detection when the object-based detec-
tion approaches are implemented. 

The second problem is the DTM extraction from its corresponding DSM. 
Most of the reviewed algorithms in the literature regarding DTM extraction do 
not consider the availability of the relevant optical VHR imagery (e.g., [9] [10] 
[13] [14]). For this reason, the terrain extraction will not be reliable as it is in the 
case of incorporating image classification information. 

Therefore, in this research we attempt to modify the LoS-DSM solution for 
elevation co-registration and to utilize the classification information for eleva-
tion normalization. We argue that if a set of well-distributed points were accu-
rately matched in the stereo images and their corresponding elevations were 
photogrammetrically calculated and then co-registered to their locations in the 
relevant VHR image, a sub-pixel optical-elevation co-registration can be directly 
achieved with reduced computation cost. Additionally, this co-registration al-
lows taking advantage of the image spectral information for reliable land-cover 
classification to detect the elevations that lie within natural terrain-level classes. 
This detection of terrain elevations allow DTM reconstruction and hence eleva-
tion data normalization in the co-registered image space. Thus, the objectives of 
this research are as follows: 1) to segment the employed image and label the 
generated segments based on traditional land-cover classification technique; 2) 
to achieve accurate co-registration of a dense set of matching point elevations 
with their image locations; 3) to extract aboveground elevations for the image 
segments and hence map the building roofs. The novelty of this research lies in 
the combination of the developed algorithms for effective elevation data incor-
poration in stereo-based building detection. An early and concise version of this 
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work was presented in [15]. 
The rest of the paper is outlined as follows. The proposed elevation incorpora-

tion method is described in Section 2. The elevation-based building detection 
and its validation procedure are presented in Section 3. The datasets, results, 
and accuracy assessment are provided in Section 4. Finally, the conclusions are 
drawn in Section 5. 

2. The Elevation Incorporation (EI) Method 

The proposed elevation incorporation (EI) method for stereo-based elevation 
data generation, co-registration, and normalization has three phases to achieve a 
dataset that is ready for building detection. The method starts in Phase 1 by 
processing the input image by pixel-based classification and image segmenta-
tion. In Phase 2, the height information is photogrammetrically triangulated 
based on stereo images. In Phase 3, the aboveground heights are then calculated. 
After that, a building detection process can be executed. Further details on these 
phases are described in the following subsections. 

2.1. Phase 1: Image Classification and Segmentation 

This phase is proposed to combine the advantages of both pixel-based and ob-
ject-based processing. It simply aims to produce classified image objects based 
on a pixel-based classification. This phase is extremely important when an ob-
ject-based classification software package is not available and noise-free results 
are needed. In this phase, it is required to divide the image objects into two dif-
ferent classes: terrain land-cover class (TLC class) and off-terrain land-cover and 
the land-use class (OLU class). While the TLC segments include the labels of 
water, soil land, and grass land; the OLU segments have the labels of trees 
(off-terrain land-cover) or urban areas (land-use) that include building roofs 
and traffic areas. The four steps involved in this phase are: 1) pixel-based classi-
fication, 2) image segmentation, 3) segment labeling, and 4) segments’ repre-
sentative points (RPs) calculation. All of these steps are described as follows: 

1) Pixel-based classification—Pixel-based classification techniques are widely 
available and successfully used in land-cover mapping. However, their results 
usually suffer from salt and pepper noise. In contrast, object-based classification 
methods do not produce noisy results. However, the packages of these methods 
in the remote sensing software are expensive and narrowly accessible. Addition-
ally, the methods depend heavily on the segmentation results which are the first 
step in all object-based image analysis approaches. Therefore, we propose gene-
rating a bitmap for the TLC objects and another one for the OLU objects. These 
two bitmaps are obtained through a pixel-based classification. For higher accu-
racy, a statistical classification technique is recommended. Thus, the Maximum 
Likelihood Classification technique described by [16] is selected to be imple-
mented. 

2) Image segmentation—To reduce the VHR image complexity and divide it 
into small objects based on a homogeneity measure of the color information, an 
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image segmentation technique is required to be executed. It is recommended in 
this study to apply the multiresolution segmentation technique as introduced in 
[17]. This technique, as concluded by [18], is one of the most appropriate tech-
niques for segmenting VHR images of urban areas. The results of implementing 
multiresolution segmentation are usually vector format polygons. The shapes of 
these polygons depend critically on the selected segmentation parameters of 
scale, compactness, and smoothness. Trial-and-error method is usually followed 
until an acceptable result is achieved. Thus, to save time and achieve more accu-
rate results, we recommend creating an over-segmented image by randomly se-
lecting a small scale value to obtain small objects that are guaranteed not to in-
clude two different classes. 

3) Segment labeling—There is a very limited number of packages that offer 
object-based classification. Thus, we propose performing pixel-based classifica-
tion and then transferring the labels of the identified classes to the result of ex-
ecuting the image segmentation. This is easier to perform since pixel-based clas-
sification techniques are relatively straightforward to program and hence several 
software tools provide these techniques. To transfer the classification result from 
the pixels to the image segments, each segment is classified based on the class 
related to the majority of the pixels contained within that segment (i.e., majority 
voting technique). If the employed image is over-segmented, the case of having 
several class minorities instead of one dominant class is avoided. 

4) Segments’ RPs calculation—Once the generated image segments are clas-
sified and given labels, a representative point (RP) that is guaranteed to be inside 
the segment boundary is required to be calculated based on the geometry of the 
segment shapes. For the regular segment shapes, this RP is the centroid that lies 
inside the polygon boundary. However, if the centroid lies outside the boundary, 
this RP point is replaced by the center of the greatest circle that fits inside the 
polygon as introduced by [19]. By working with these RPs instead of all the pix-
els of the employed image, we reduce the computational cost tremendously. 

When all of the four steps in this phase are executed, labeled segments (com-
monly known as objects) for the TLC and OLU class objects along with their RPs 
are achieved. 

2.2. Phase 2: Height Calculation and Co-Registration 

Since the buildings are inherently elevated objects, the elevation data must be 
available. Photogrammetric approaches can be implemented to generate the 
needed elevation data. These data are usually in the form of DSMs that describe 
the elevation information of the visible surface. 

To perform accurate elevation-based building detection, the optical data must 
be co-registered with the elevation data. However, optical-elevation data 
co-registration usually suffers from problematic misregistration especially when 
the VHR images are acquired off-nadir. Thus, we propose the use of photo-
grammetrically-triangulated matching points for co-registration. Such a proposal 
is supported by the fact that these points are generated in both the image space 
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(pixel and line coordinates) and the object-space (X, Y, and the elevation-Z). By 
having a dense set of matching point information, accurate optical-elevation da-
ta co-registration can be achieved by assigning the derived ground elevation to 
its corresponding image location. Hence, the three steps for this phase are: 1) 
image radiometric enhancement, 2) point matching and triangulation, and 3) 
optical-elevation data co-registration. 

1) Image radiometric enhancement—Since automatic image matching is 
going to be executed for generating dense matching points based on pixels’ 
brightness values, enhancing radiometric information of the employed stereo 
images will improve the quality of generating point matches. The recommended 
image enhancement is achieved by applying the Wallis adaptive filter as it is de-
scribed in [20]. 

2) Point matching and triangulation—The matching points are required to 
be generated automatically by executing an image matching technique. 
Area-based pyramid matching, introduced in [21], is a well-established approach 
that is implemented by many photogrammetric software packages for dense 
matching due to its speed and accuracy. Hence, this matching technique is se-
lected for this phase. Thereafter, the matched points between the stereo images 
need to be photogrammetrically triangulated to calculate their corresponding 
ground elevations. 

3) Optical-elevation co-registration—Once the matched points are accu-
rately generated, each image location (pixel and line) of these points is assigned 
the calculated ground elevation (Z). By doing that, a sub-pixel optical-elevation 
data co-registration is easily achieved. 

2.3. Phase 3: Aboveground Height Calculation 

In order to have elevation data that describe only the off-terrain surface for each 
image segment, the elevations generated in the previous phase need to be nor-
malized. The normalization process is conducted by filtering out the ter-
rain-level effects. This process is commonly conducted by extracting the ter-
rain-level elevations and then subtracting them from their corresponding surface 
elevations (i.e., the DSM elevations). However, terrain elevation extraction from 
DSM data is still a problem to some extent. Unlike the algorithms that only use 
the elevation information available in the DSM data, we propose exploiting the 
spectral or radiometric information available in the co-registered VHR image. 
Hence, the three steps involved in Phase 3 are: 1) terrain point detection and 
terrain model generation, 2) surface model generation, and 3) aboveground 
height calculation. 

1) Terrain point detection and terrain model generation—In Phase 1, we 
have achieved an over-segmented image identifying the TLC and OLU segments. 
Additionally, from Phase 2, we have a set of matching point elevations co-registered 
accurately to their corresponding image locations. Thus, the terrain-level points can 
be directly detected and identified as all points lying within the TLC bitmap that 
represents the segments of the terrain-level classes such as soil and grass. Once 
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the terrain-level points are detected, a surface interpolation technique to gener-
ate the DTM for the study area is applied. 

2) Surface model generation—In the same manner as the previous step, all 
of the generated and co-registered elevations (including both TLC and OLU 
classes) need to be interpolated in the image space in order to generate a DSM. 
Since the elevations are co-registered accurately in the image-space, the resulting 
surface and terrain models are not orthogonal but represent a kind of line-of- 
sight elevation model. This is the key concept of accurate optical-elevation data 
co-registration. 

3) Aboveground height calculation—Since the RPs of the OLU class seg-
ments (the segments that represent the urban areas and trees) are generated, the 
information required now is the aboveground elevations of this class of seg-
ments. We already have the co-registered and interpolated DTM and DSM of 
the study area. Hence, the elevations of the DTM can be subtracted from their 
corresponding ones in the DSM at the locations of the calculated segments’ RPs 
to compute the aboveground elevations. The resulting information represents 
the normalized/aboveground elevations at the RPs of the OLU class segments. 
These elevations help in distinguishing the elevated building-roof areas from 
terrain-level traffic areas even when the spectral and/or image-spatial informa-
tion of these two different urban classes is very similar. 

The whole EI method developed in the previous sections is flowcharted in 
Figure 1. The figure shows the three phases along with their involved steps. 
 

 
Figure 1. The proposed elevation incorporation (EI) method. 
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3. Building Detection and Validation Procedure 
3.1. Elevation-Based Building Detection 

After executing the EI method, the complexity of the VHR image employed is re-
duced by image segmentation. This complexity is further reduced by applying im-
age classification to categorize these image segments into two different classes: 
TLC segments (i.e., terrain land-cover class) and OLU ones (i.e., off-terrain 
land-cover and the land-use class) as described earlier. After that, the four steps of 
the elevation-based building detection illustrated in Figure 2 can be implemented: 

Step 1: Thresholding operation—The RPs of the elevated objects can be easily dis-
tinguished from the terrain objects by applying a thresholding operation. This opera-
tion is simply executed by selecting empirically a threshold value, for instance, of one 
building floor (e.g. 3m) to detect off-terrain objects (represented by their RPs) since we 
already excluded terrain effects and achieved the normalized elevation data. 

Step 2: Vegetation suppression—The detected elevated objects may 
represent building roofs or trees. Therefore, this type of vegetation must be re-
moved from the detection result. Fortunately, vegetation objects can be easily 
detected using vegetation indices based on the spectral information of VHR im-
ages. A comprehensive list of different vegetation indices is presented and inves-
tigated in [22]. Among these ones, the Normalized Difference Vegetation Index 
(NDVI) is selected in our study. 

Step 3: Segmentation enhancement—Once the elevated non-building ob-
jects are removed, the remaining elevated objects should represent building ob-
jects. This result usually needs to be post-processed because most of the building 
roofs have been over-segmented into small objects. In this case, we propose to 
enhance the segmentation results by optimizing the segmentation parameters 
and then merging the existing segments based on a supervised segmentation 
technique. Reference [23] developed a supervised segmentation software tool for 
semi-automatic determination of the optimal parameters of the multiresolution  
 

 
Figure 2. The flowchart for elevation-based 
building detection procedure. 
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segmentation. This software tool is called Fuzzy-based Segmentation Parameter 
optimizer (FbSP optimizer). The tool takes the segmentation parameters for a 
manually segmented object and calculates automatically the optimal values for the 
automatic segmentation parameters that produce the results close to that generat-
ed manually (i.e., supervised segmentation). In this study, we recommend taking 
advantage of this tool to achieve better segmentation results in urban areas. 

Step 4: Map post processing—The proposed finishing step includes merging 
all of the detected edge segments and then assigning to the building roof objects 
all of the polygons surrounded completely by the detected edge objects. A few 
morphological functions (e.g., opening and closing functions) might be required 
to be executed. Some misdetected objects of small size can be easily removed 
based on applying an area-based threshold. At this point, an accurate and relia-
ble building mapping should be achieved. 

3.2. Accuracy Assessment 

The quality of the detection should be evaluated. The commonly used building 
detection performance measures are completeness, correctness, and overall 
quality. Completeness is the percentage of entities in the reference data that were 
detected automatically, while correctness indicates how well the detected entities 
match the reference data. On the other hand, the overall quality of the results 
provides a compound performance metric that balances completeness and cor-
rectness. The formulas of these three measures are described in [24] as follows: 

( ) ( ).Completeness Comp TP TP FN= +                 (1) 

( ) ( ).Correcteness Corr TP TP FP= +                  (2) 

( ) ( ).Overall Quality OQ TP TP FN FP= + +               (3) 

where the true positive (TP) is the number of building objects available in both 
detection result and the reference data. The false negative (FN) is the number of 
building objects in the reference dataset that are not detected automatically. The 
false positive (FP) represents the number of building objects that are detected 
but do not correspond to the reference dataset. It is worth mentioning that the 
accuracy assessment can be pixel-based or object-based. In this study, the defini-
tion for the performance measure entities in this study represents the total 
number of pixels that are labeled as roof (i.e., the total area in pixel units) as 
recommended in [24] [25]. 

4. Datasets, Results, and Accuracy Assessment 
4.1. Test Data 

The datasets used in this study are three stereo VHR airborne images captured 
over the town center plaza of Overland Park, KS, USA. Each of these images 
covers a ground area of 1 Km by 0.75 Km with a ground sampling distance 
(GSD) of 0.25 m. The sensor information and the acquisition geometry are pro-
vided with the image data. Figure 3 shows the test images for this study. 
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(a)                       (b)                      (c) 

Figure 3. Test data used for the study: Three VHR airborne stereo images—(a), 
(b), and (c)—acquired in a sequence. Test/input image used for detecting the 
buildings is the image (b). 

 
As can be seen, these images contain natural land cover and man-made land 

use areas. The urban area in the images is with buildings of different sizes and 
with traffic areas of spectrally-spatially similar properties to building roofs. The 
land-cover features of the ground-level include soil lands, grass lands, and water 
bodies. 

4.2. Experimental Results 
4.2.1. Results of the EI Method 
The EI method was implemented as described in Section 2. In Phase 1, all the 
image processing steps were executed. The pixel-based classification in the first 
steps was implemented on the image (b) of Figure 3 using the Maximum Like-
lihood Classification technique. Then, this image was classified into six classes as 
shown in Figure 4(a). These classes are grass lands, solid lands, water bodies, 
shadows, trees, and urban areas. The same image was also over-segmented using 
the multiresolution segmentation as illustrated in Figure 4(b). The selected scale 
value for the segmentation was 25. After that, the classes generated in the first 
step were transferred to the generated image segments based on the predomi-
nant class of the pixels falling within each segment. The class labels of the seg-
ments are shown in Figure 4(c). The distribution of the calculated RPs of the 
generated image segments are shown in Figure 4(d). These RPs are guaranteed 
to be inside/within their corresponding segments. 

In Phase 2 of the developed EI method, the conventional photogrammetric 
approach was executed. The contrast of the test image was first enhanced by ap-
plying the Wallis adaptive filter. This filler improved the quality of the automat-
ically detected matching points and increased their count from 2000 to 11,000 
points (i.e., more than five times). The Root-Mean-Square-Error (RMSE) value 
of these matching points was less than one pixel. 

After implementing the image matching and calculating the matching points’ 
corresponding ground elevations, these points are co-registered to their im-
age-space locations and assigned their calculated object-space elevations. In 
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Figure 5, an example of the optical-elevation data co-registration is presented. 
After image segmentation, the same figure shows an image segment along with 
its RP centroid location. 

The grid pattern of point distribution was selected for the generated matching 
points as illustrated in Figure 6(a). Following that, based on the classification 
result in the first phase, the co-registered matching points were categorized into 
TLC points and OLU points. Figure 6(b) shows the LTC points and Figure 6(c) 
illustrates the OLU ones. 

Phase 3 was executed to detect the terrain and off-terrain elevations. As in 
Figure 7, an isometric view of a part of the study area is illustrated. Figure 7(a)  

 

 
(a)                                                          (b) 

 
(c)                                                           (d) 

Figure 4. The pixel-to-object classification result. (a) Pixel-based classification result; (b) segmentation result with a small scale; 
(c) the transferred classification result to the image segments; and (d) the calculated RPs of all generated image segments. 

 

 
Figure 5. An example of the optical-elevation data co-registration a long 
with the RP centroid of an image segment. 
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(a)                               (b)                              (c) 

Figure 6. The co-registered and categorized matching points: (a) The distribution of the generated 
matching points in the test image; (b) detected matching points that lie on the terrain segments based on 
the classification result; (c) the remaining points that lie on the OLU class segments. 

 

 
Figure 7. Isometric views of a part of the study. (a) 3D rendered DSM representation of a 
small part of the test image; and (b) a magnified part that illustrates the co-registered 
matching points and shows the possibility of delineating terrain-level points from the 
off-terrain ones based on image classification information. 
 
represents a 3D rendered DSM representation of a small part of the test image. 
This representation shows the co-registered matching points. Figure 7(b) shows 
a magnified isometric view of a part of the co-registered points. It is clear that 
image classification to map the TLC class was an effective technique to detect 
terrain-level points and hence generate a DTM in the image space. 

Once the terrain-level points have been detected, surface interpolation was 
implemented. In the same manner, all of the generated matching points were 
interpolated to reconstruct a DSM in the image-space based on the co-registered 
elevations of the matching points. By having both of these elevation models (i.e., 
DSM and DTM) in the image-space, the aboveground heights were calculated 
for all segments of the OLU class by finding the difference between the DSM and 
DTM elevations at the locations of the segment RPs. 

4.2.2. Results of the Elevation-Based Building Detection 
Elevation-based building detection and its validation as described in Section 3 
were then performed after executing the EI method. As in the first detection 
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step, thresholding was applied to detect the off-terrain RPs which represent 
building roofs objects. Then, based on the classification information extracted in 
Phase 1 of the EI method, the vegetation objects were suppressed. Figure 8 
shows the detected RPs that lie on top of building roofs in the test image. 

To enhance the created map of the detected buildings, the FbSO tool was ex-
ecuted and the optimized parameters were applied to merge the detected build-
ing segments. An example of the performance of this software tool is illustrated 
in Figure 9. 

Figure 10 shows the detected building objects based on stereo elevations. 
Many man-made ground-level objects of very similar spectral information to the 
building roofs were removed from the detected urban objects. The result was 
accurate and reliable because elevation was the key component used for building 
detection. The quality of the achieved detection results was then assessed and 
evaluated. 

4.3. Accuracy Assessment 

For the achieved result, the detection performance measures were calculated using 
a reference dataset that was generated manually in the test image. The deter-
mined performance measures are listed in Table 1. The total areas—in pixels–  
 

 
Figure 8. The detected building points shown as green dots in the test image. 

 

  
(a)                                 (b) 

Figure 9. The enhanced building map. (a) The detected building segments 
before executing the FbSP tool. (b) The results after applying the FbSP tool. 
The points on top of the building roofs represent the detected building points. 
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Figure 10. Detected building roofs and traffic areas. 

 
Table 1. Performance measures for assessing the building detection accuracy. 

Comp. Corr. Quality 

83% 94% 80% 

 
of true positive (TP), the false negative (FN), and the false positive (FP) were 
used as the input entities in the equations of the detection performance measures. 
Based on the assessment values shown in this table, the developed algorithm is 
promising despite the small size of the test area. This is proven quantitatively by 
the 80% detection quality measure and visually as shown in Figure 10. 

Table 1 shows that the detection result was reliable as indicated by 94% cor-
rect detection. This correctness value is attributed to two factors: 1) the use of 
the elevation data in the detection process, 2) the successful co-registration be-
tween the optical and elevation datasets. The incomplete detection result of 17% 
is due to the moderate quality of the generated photogrammetric elevations 
based on automatic matching techniques. These automatic techniques have 
some limitations in the homogeneous areas such as the building roofs where 
they lack enough texture information. However, the executed post processing 
and finishing procedures are capable of enhancing the shapes of the detected 
building objects. 

5. Conclusions 

In this paper, a method was developed to facilitate detecting buildings and dis-
tinguishing them from traffic areas of spectrally-spatially similar properties based 
on elevation information. The method introduced two techniques for achieving 
straightforward and accurate optical-elevation data co-registration and elevation 
data normalization for the purpose of building detection. 

For the elevation co-registration, it was made by assigning photogrammetri-
cally-derived elevations to their corresponding image locations. The employed 
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image in this co-registration was then segmented and classified into TLC and 
OLU. To normalize the co-registered elevations, the derived classification in-
formation was used to identify the terrain-level elevations and then interpolated 
to generate a DTM of the test area in the image space. Similarly, the DSM was 
interpolated from all generated and co-registered elevations. Therefore, the ab-
oveground elevations of the image segments of the land-use class (OLU) were 
calculated at their RPs by subtracting the DTM elevations from their corres-
ponding DSM ones. These normalized elevations were thresholded to detect the 
building roofs. 

After executing the developed method, the detection result was evaluated over 
a test dataset. The result was 94% correct due to the utilization of the elevation 
information. Additionally, this correctness value is attributed to the successful 
elevation and optical data co-registration. The missed building objects in the de-
tection were mainly due to the moderate quality of the matching-based generat-
ed elevation information. However, this limitation can be easily mitigated in the 
process of shape finishing and enhancement. 

After detecting and finishing building objects, the spectrally-similar ground 
level objects of building roofs were delineated accurately and reliably. The com-
bination of pixel-based and object-based techniques in this study is effective de-
spite the limitations of the photogrammetrically-derived elevations. 

Based on the achieved 80% quality measure, the detection performance can be 
considered as highly promising for the building detection. Thus, it can be con-
cluded that the developed algorithm facilitates the incorporation of the elevation 
data for object-based building detection applications. 

In this study, the accuracy of the elevation data is critical for the quality of the 
final detection result. Additionally, in some cases, NDVI-based thresholding for 
vegetation suppression may omit building objects that have high NDVI values or 
roof gardens. These cases pose limitations in the developed elevation incorpora-
tion and building detection procedures. Therefore, future research will address 
these limitations and investigate the challenges associated with more complex 
urban environments. 
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