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Abstract 
This paper discusses the bathymetric mapping technologies by means of satellite remote sensing 
(RS) with special emphasis on bathymetry derivation models, methods, accuracies, advantages, li-
mitations, and comparisons. Traditionally, bathymetry can be mapped using echo sounding sound-
ers. However, this method is constrained by its inefficiency in shallow waters and very high oper-
ating logistic costs. In comparison, RS technologies present efficient and cost-effective means of 
mapping bathymetry over remote and broad areas. RS of bathymetry can be categorised into two 
broad classes: active RS and passive RS. Active RS methods are based on active satellite sensors, 
which emit artificial radiation to study the earth surface or atmospheric features, e.g. light detec-
tion and ranging (LIDAR), polarimetric synthetic aperture radar (SAR), altimeters, etc. Passive RS 
methods are based on passive satellite sensors, which detect sunlight (natural source of light) 
radiation reflected from the earth and thermal radiation in the visible and infrared portion of the 
electromagnetic spectrum, e.g. multispectral or optical satellite sensors. Bathymetric methods can 
also be categorised as imaging methods and non-imaging methods. The non-imaging method is 
elucidated by laser scanners or LIDAR, which measures the distance between the sensor and the 
water surface or the ocean floor using a single wave pulse or double waves. On the other hand, 
imaging methods approximate the water depth based on the pixel values or digital numbers (DN) 
(representing reflectance or backscatter) of an image. Imaging methods make use of the visible 
and/or near infrared (NIR) and microwave radiation. Imaging methods are implemented with ei-
ther analytical modelling or empirical modelling, or by a blend of both. This paper presents the 
development of bathymetric mapping technology by using RS, and discusses the state-of-the-art 
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bathymetry derivation methods/algorithms and their implications in practical applications. 
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1. Introduction 
Hydrography measures the physical features of water bodies with their prediction of change over time, which 
includes not only bathymetry, but also the shape and features of the shoreline, the characteristics of tides, cur-
rents, waves, and the physical and chemical properties of the water for the purpose of safe navigation [1]. Ba-
thymetry is a method of quantifying depths to study the topography of water bodies, including oceans, seas, riv-
ers, streams, and lakes. The measurement of bathymetry using satellite imagery is one of the fundamental re-
searches in the field of remote sensing (RS) of the marine environment, which has numerous practical applica-
tions to the coastal environment and its monitoring. Accurate determination of water depth is essential for vari-
ous purposes such as monitoring underwater topography, movement of deposited sediments, and producing ma-
ritime charts for navigation. Such information is also vital for port facility management, dredging operations, 
and to predict channel infill and sediment budget. Bathymetric information plays an essential role in all branches 
of oceanography, paleoclimate studies, and marine geology. Bathymetric mapping is the process of making ba-
thymetric maps based upon the depth data. Bathymetric maps represent the water body depth as a function of 
geographical coordinates, similar to topographic maps representing the altitude of Earth’s surface at different 
geographic coordinates. The most popular type of bathymetric maps is represented by lines of equal depths called 
isobaths [2]. Nowadays, bathymetry is mapped using echo sounders and the depth datasets are processed to 
compile nautical charts, shaded relief maps, and digital terrain/bathymetric models. Bathymetric data are gener-
ally used to generate navigational charts, 3D models, and seafloor profiles. Traditionally, ocean floor data are 
collected by measuring the time taken by the laser light, or an acoustic sonar pulse, to travel through the water 
column to the ocean floor and back, based on the speed of sound in water, sensor characteristics, time, and other 
variables. Spatial resolution, coverage, temporal resolution and data type vary among the different bathymetry 
acquisition systems [3]. Traditional bathymetric acquisition methods are capable of generating accurate point 
measurements or depth profiles along transects, but are constrained by their inefficiency, logistical expenses and 
inaccessibility in remote areas . Environmental conditions and technical restraints avoid their explicabilities to 
near-shore waters [4] as shallow coastal waters are perilous for navigation, especially during low tides. An al-
ternative is to combine the shipboard and the satellite data to improve bathymetric prediction [5]. By comparison, 
RS method is faster and applicable to various environments, including shallow coastal waters, and clear rivers 
[6]. RS allows modeling of bathymetry at spatial scales that are impossible to achieve with traditional methods. 
Bathymetry can be estimated using RS by using several techniques, each having its own depth detection capa-
bility, accuracy/error/precision, strengths/advantages, drawbacks and best application environment [7]. The two 
broad categories used in remote sensing for deriving bathymetry information are active RS methods and passive 
RS methods. Passive RS methods employ passive sensors, which measure energy that is naturally available, e.g. 
multispectral or optical satellite sensors. Passive sensors record electromagnetic radiation (EMR) that is reflect-
ed (e.g., blue, green, red, and near-infrared light) or emitted (e.g., thermal infrared energy) from the surface of 
the Earth. However, the use of passive remote sensing for modeling water depth in fluvial environments remains 
a challenge [8]. Active sensors, on the other hand, transmit pulses of electromagnetic energy and record the ori-
gin and strength of the backscatter received from objects within the system’s field of view, e.g. synthetic aper-
ture radar (SAR), and light detection and ranging (LIDAR). Advantages for active sensors include the ability to 
acquire measurements in all-weather and day and night conditions. Active sensors can be used for examining 
wavelengths that are not sufficiently provided by the sun, such as microwaves, or to better control the way a 
target is illuminated. Methods for derivation of bathymetry can also be categorized as non-imaging methods and 
imaging methods (Table 1). LIDAR and satellite altimetry are the two major non-imaging methods used for ba-
thymetry derivation. LIDAR is elucidated as light detection and ranging, which measures the distance between 
the sensor and the water surface or an ocean floor using a single wave pulse or double waves. It is the time drift 
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Table 1. Types of non-imaging and imaging systems with their strengths and limitations (source: modified from Gao [7]). 

Method Sensor Type Accuracy Controlling Factors Advantages Drawbacks Scope of Application 

Imaging 
Microwave 
or SAR 
sensor 

Active Relatively 
low 

Image resolution, 
slicks, waves, fronts, 
weather condition 

- Applicable over 
large areas 
- Unaffected by 
cloud cover 

- Relative low 
accuracy 

Bathymetry 
derivation from 
open oceanic 
waters 

Non- 
imaging 

Radar 
Altimetry Active Very low 

accuracy 

Elastic thickness of 
the lithosphere and/or 
crustal thickness, 
sediments 

Global coverage, 
needs only simple 
altimetry with no 
iono/tropo-sphere 
measurement 

Possible over a 
limited wavelength 
band 

Coarse 
bathymetry 
derivation for 
oceans 

Non- 
imaging 

LIDAR Active ≈15 cm 

Water clarity or 
turbidity, bed 
material, surface 
state 

Wide depth range; 
concurrent 
measurement not 
essential 

- Expensive 
- Limited 
swath width 

Varied aquatic 
environments of 
narrow range 

Imaging Optical 
(analytical) Passive Relatively 

high 

Water quality (clarity 
or turbidity), cloud  
cover, atmospheric  
conditions 

- Based on physical 
process 
- Relatively higher 
accuracy 

- Complex execution 
as input parameters 
are required 
- Real-time in-situ 
data essential 

Turbid and shallow 
inland waters, 
estuaries, river 
channels 

Imaging Optical 
(empirical) Passive Varying 

accuracy 

Atmospheric 
calibration, water  
turbidity, bottom  
reflectance 

- Simple to execute 
- Accurate at 
definite depth 

- Limited depth 
- Accuracy lower 
at a larger depth 
- Real-time ground 
truth essential 

Near shore and 
coastal waters, 
open waters 

Imaging Video Passive Relatively 
high Image resolution 

- Capable to produce 
minor bathymetric 
change 

Restricted area 
Bathymetry 
along profiles 

Intertidal zone 
and estuaries 

 
of the returned radiation pulses from the object at the sensed spots, which is eventually used to produce bathy-
metric information. However, this method is limited by the coarse bathymetric sampling interval and high cost. 
The basic assumption for deriving ocean bed topography from satellite altimeter measurements (non-imaging 
method) is summarized elsewhere [9]. The conceptual approach employs the sparse depth sounding measure-
ments to restrict the long-wavelength depth while the shorter-wavelength topography is envisaged from the down-
ward-continued satellite gravity measurements [10]. On the other hand, imaging methods approximate the water 
depth based on the pixel values or digital numbers (DN) of an image. Imaging methods make use of the visible 
and/or near infrared (NIR) light and microwave radiation. Radio detection and ranging (radars) are imaging 
sensors whilst radar altimeters and scatterometers are non-imaging sensors used for bathymetry derivation. Ra-
dar satellites use short pulses of electromagnetic radiation (EMR) in the microwave range (10 s or 100 s of GHz), 
therefore they do not depend on daylight and are unaffected by wind, fog, dust, clouds, and bad weather condi-
tions. These satellites measure the radar pulses reflected from the ground surface, evaluate the signal strength or 
intensity to recover information on the structure of the earth’s surface, and identify the elapsed time between 
pulse emission and return. In case of microwave imagery, radar observes the backscattered variations from the 
sea surface, e.g. roughness caused by modulations in the wave spectrum with respect to the surface current [11]. 
Such variations in the current velocity at the ocean surface can be recognized because of interactions between 
tidal flow and bed topography. Although imaging method using microwave data is not subject to cloud cover, it 
is rather complicated because numerical inversion in place of analytical inversion is employed to derive bathy-
metry from speckle infested radar imagery. Additionally, its accuracy is rather low as a result of its vulnerability 
to wind influences [12]. 

2. Remote Sensing Technologies Involved in the Derivation of Bathymetry 
Various active and passive, both in the category of imaging and non-imaging, space-borne/airborne platforms 
can be effectively used for bathymetry derivation. Some of the most popular technologies are optical RS, 
LIDAR, radar Altimetry, and SAR. 
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2.1. Bathymetric Measurements Using Optical RS 
Optical RS-based bathymetry is derived from the principle that the total amount of radioactive energy reflected 
from a water column is a function of water depth. Optical RS takes advantage of shortwave radiation in the blue 
and green spectrum that has strong penetration capabilities. As the incident solar radiation propagates through 
the water, it is scattered and absorbed by water molecules and in-water constituents, leaving varied energy to be 
emitted and recorded in RS imagery. The energy received by the sensor is inversely proportional to the water 
depth after removing atmospheric corrections and water column effects. Therefore, the intensity of the returned 
signal is indicative of the depth at which the solar radiation has penetrated. Optical RS can be implemented for 
bathymetry derivation using two methods; analytical modeling and empirical modeling. Analytical modeling of 
bathymetry is based on the characteristics of propagation of light in the water column. An analytical model is 
based on number of optical properties of water, such as the attenuation coefficient and backscattering are re-
quired as input parameter [7]. The flow radiative transfer model is a commonly used analytical model and it re-
quires the input of the spectral signatures of suspended and dissolved materials, and bottom reflectance [13]. In 
case of empirical models, the mathematical relationship between the remotely sensed radiance of a water body 
and the depth at few sampled locations (ground truth) is established empirically independent of the characteris-
tics of light transmittance in water. A strong correlation exists between water depth and the single band radiance 
for waters of uniform optical properties and bottom reflectance. Lyzenga [14] suggested the use of multiple 
spectral bands to overcome the problem of varying optical properties of the water column. The establishment of 
this empirical model requires a set of in-situ measurements that may include water and bottom reflectance, the 
vertically averaged diffuse attenuation coefficient, and the concentrations of suspended inorganic constituents, 
chlorophyll, and dissolved organic carbon. The field measured spectral reflectance over a wide range of wave-
length is helpful to understand the most suitable band(s) for sensing bathymetry. This is especially significant in 
conditions of spatially varying turbidity and water qualities. In addition, other in-situ measurements may include 
a collection of water samples and determination of water depth at the sampling locations (determined by the 
GPS) using echo sounder. The least square regression analysis is used to formulate this empirical model. Re-
gression of the observed water depth against the spectral reflectance in the most sensitive spectral band (s) is 
capable to yield an efficient empirical model for water depth. Applications of this model to the entire satellite 
image results in the generation of a bathymetric map. The empirical modeling method is valid given that the to-
tal water reflectance is related essentially to water depth, and to water turbidity [15]. This claim has been backed 
by Ji et al. [16] who concluded that water column scattering dominates the exit radiance from the water except if 
it is very shallow and transparent water bottom [7]. Optical RS methods are potentially used for derivation of 
bathymetry from space-borne/airborne multispectral (MS) and hyperspectral (HS) imageries. 

2.1.1. Bathymetric Measurements Using MS Imagery 
Coastlines, lakes, shoals and reefs are some of the most continuously varying dynamic regions of the Earth. 
Monitoring and measuring spatial changes are critical for understanding the environment. Near-shore bathyme-
try can be estimated using MS satellite imagery [17]-[21]. MS/HS imagery provides bathymetry measurements 
which are not reliable enough to be used for navigation purposes. However, MS/HS imagery based method is a 
cost effective option for bathymetry over large areas. These bathymetric products are suitable for a range of en-
vironmental and scientific applications. Imagery derived bathymetry is not directly measured, it is inferred, and 
as such the bathymetry is estimated, with a lower accuracy than LIDAR or multi-beam echo sounders. The depth 
to which the imagery is useful is limited by light attenuation. Depending on water clarity, depths derived from 
aerial or satellite imagery are limited to 25 - 30 m because of light penetration issues [22]. There are two recog-
nized techniques for deriving bathymetry using MS satellite imagery: 1) radiometric approach and 2) photo-
grammetric approach [23]. 

1) Radiometric approach for deriving bathymetry: The radiometric approach exploits the fact that different 
wavelengths of light are attenuated to different degrees by water, with red light being attenuated much more 
quickly than blue light. RS technologies have exceeded the capability of existing MS satellite to detect light in 
the blue (450 - 510 nm), green (510 - 580 nm) and red bands (630 - 690 nm) to achieve superior estimates of 
depth, in water up to 15 meters deep. In addition, with the help of sound navigation and ranging (SONAR) based 
in-situ measurements, it is possible to achieve vertical and horizontal accuracies of less than 1 meter. Currently, 
airborne or space-borne high-resolution MS platforms are employed in order to improve bathymetric measure-
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ments, e.g. WorldView-2 (WV-2). These sensors are capable to detect light between 400 and 450 nm wave-
lengths – the EMR spectrum that provides the deepest penetration of clear water. Several studies using these da-
tasets have shown that accurate and precise bathymetric quantification can be achieved up to 20 meters and 
deeper. WV-2 is the first industrial high-resolution satellite to provide 1.84 m resolution MS imagery, plus a 
coastal blue spectral band focused on the 400 - 450 nm range, which can be used for bathymetric measurements 
with substantially improved depth and accuracy [24]-[29]. Large synoptic collections, enabled by WV-2 agility 
and rapid retargeting capabilities, allow to evaluate the differing absorption of the blue, coastal blue, and green 
spectral bands, and to calibrate their bathymetric measurements using a few in situ points, and then consistently 
extend the model across the entire study area. 

2) Photogrammetric approach using digital elevation model (DEM) for deriving bathymetry: In this method, 
stereoscopic images can be collected over the target area, a DEM [30] or digital bathymetry model (DBM) of the 
shallow ocean floor can be produced from the imagery. Early studies with both satellite imagery and digital 
photography appeared promising, and reveal that this method can be used to generate accurate bathymetric 
models of shallow environments without in situ data. However, the method has not been widely studied because 
of the limitations in the capabilities of current sensors. The challenge in collecting stereoscopic imagery of the 
shallow ocean floor is to understand the interaction of light with the air/water interface. At high angles of inci-
dence, the light is entirely reflected off the surface of the water, preventing any observation of sub-aquatic fea-
tures. Present multispectral satellite sensors are not capable to collect enough high-resolution stereoscopic im-
agery within the narrow angle needed to penetrate the sea surface. In addition, none of them is capable to pro-
vide shorter wavelength blue light necessary for maximum depth penetration. WV-2 can be used for imple-
menting this new method for measuring bathymetry. The Coastal Blue band can deliver maximum water pene-
tration and WV-2’s enhanced agility enables the acquisition of enormous amounts of high-resolution in-track 
stereo imagery at the ideal angle for water penetration. The advantage of this approach is that numerous images 
can be co-registered using tie points that are visible on land and water, and the resulting stereo composite can be 
used to calculate the water depth without relying on in situ measurements. [31] 

2.1.2. Bathymetric Measurements Using HS Imagery 
With the advent of HS scanners [32] which sample the upwelling radiance spectrum in several tens of bands 
which have water penetration, more spectral discrimination power can now be brought to bear on the coastal op-
tics problem. HS methods facilitate to discriminate more independent environmental variables than mul-
ti-spectral methods. HS imagery is more complex than MS imagery. The derivation of bathymetry from HS im-
agery is still under development. The increased number of spectral bands used by HS sensors enables the dis-
crimination between different components of the water column and sea bed. However, this extra complexity has 
restricted its applicability to the research application [33]. The additional spectral bands enable a more accurate 
evaluation of water depth and bottom type than is possible from the MS sensors discussed in the previous sec-
tion. HS imagery is still largely acquired using airborne acquisition methods and so does not have the advantag-
es associated with satellite imagery. The first HS sensor in space, Hyperion, has been used for mapping shallow 
water benthic habitat [34]. Airborne hyperspectral instruments can also provide the spectral and spatial resolu-
tions needed for deriving bathymetry. However, the cost of acquisition is higher, to the point of limiting the 
usage of HS airborne imagery in mapping large coastal areas. Increased developments and launches of satel-
lite-based HS sensors will make this acquisition technique more feasible for large area bathymetry processing. 
As an airborne technique, the advantages for deriving bathymetry from HS sensors are limited compared to oth-
er available airborne technologies. There is no easily identifiable depth, coverage or environmental advantages 
to airborne HS imagery derived bathymetry over LIDAR-based bathymetry. 

2.2. Bathymetric Measurements Using LIDAR 
The practicability of deriving water depths using airborne blue-green laser pulse was established as early as the 
late 1960s [35]. Lyzenga [36] pioneered the use of LIDAR in shallow water bathymetry. Airborne LIDAR is 
superior for mapping seafloor topography in coastal waters with low in-water constituents (suspended sediment 
concentrations or organic pigments) [37]. LIDAR bathymetry is an active non-imaging RS sensor that involves 
the transmission of laser light pulse using infrared and green wavelengths of the EMR spectrum [38] [39]. A la-
ser altimeter onboard an aircraft pulses both of these waves to the water surface and measures the time lapse for 
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the energy to return. The infrared light is reflected back to the sensor from the water surface while the green 
light penetrates through the water column. The water depth is estimated from the time difference between the 
infrared and green laser reflections using simple mathematical calculations that incorporate the characteristics of 
the water column along with system and environmental parameters. In LIDAR-based bathymetry systems, long-
er wavelength radiation is not ideal because of increasing absorption by water. Also, shorter wavelengths are not 
ideal because of strong scattering and absorption by in-water constituents, which causes shallower penetration in 
the water column [40]. Bathymetric LIDAR data are typically very dense, with millions of data points. Point 
spacing can vary from centimeter to several meters, which can be used to generate high resolution digital eleva-
tion or bathymetry models (DEMs or DBMs) to supplement SONAR or eco-sounding data for hydrographical 
and navigational purpose. The spatial resolution of depth measurements collected by LIDAR bathymetry sys-
tems depends on two principal variables; (a) the physical characteristics of the LIDAR sensor/laser scanner and 
scanning instrument, and (b) water depth. LIDAR based bathymetry systems are capable of measuring water 
depth from 1.5 to 60 m [41] at an accuracy up to 15 cm. The aircraft altitude above the water surface plays an 
important role in the spatial resolution of the footprint of the seafloor. The temporal resolution of the airborne 
LIDAR is limited by the episodic nature with which the surveys are carried out. The accuracies associated with 
the LIDAR bathymetry are quite high. Bathymetric LIDAR systems receive both image-based and discrete vec-
tor data. The actual signal received by the receiver is a waveform, and the properties of the waveform may vary 
from one sensor to the other. A variety of types of data transformations can be derived from the source data to 
establish models to represent bathymetry. The actual water depth is simply a difference between the two peaks 
of the waveform depicting the two surfaces, i.e., maxima of the two main signals [39]. Depth measurements 
captured as a point can undergo further data processing for modification of the ocean floor model and to account 
for any systematic errors introduced during the collection process. Based on the intensity of the signal from the 
ocean floor, LIDAR can also compute the surface difference between ocean surface and ocean floor. The reflec-
tance values are captured as a digital number (DN) value stored as a raster format associated with the depth 
measurement [3]. 

2.3. Bathymetric Measurements Using LIDAR 
Analogous to MS and HS imagery which deduce depth, SAR does not directly measure bathymetry; it infers 
depth from changes in the sea surface [12] [42]. This enables SAR to provide a potential solution in turbid aqua-
tic environments where other RS techniques are unsuccessful. However, SAR is one of the less frequently used 
technologies employed to determine near-shore bathymetry and the technique is not currently reliable enough to 
be used as a supplementary technology in bathymetry gaps caused by turbidity. Under favorable meteorological 
and oceanic hydrodynamic conditions (moderate winds and strong tidal currents), air and space borne SAR im-
agery can be used to identify features of the bottom topography of shallow seas [43] [44]. SAR bathymetry de-
termination is based on its capability to quantify the change in height and roughness of the sea surface. The 
rougher water enhances the radar backscatter giving a brighter zone on the radar image [42] [45]. Practical oper-
ation SAR bathymetric measurement requires knowledge of the tidal currents and the wind, as the wind speed 
and direction affects the roughness modulation. The SAR imaging mechanism consists of three steps: a) the in-
terface between (tidal) flow and bottom topography results in the inflection of the surface flow speed. This rela-
tion can be illustrated by numerous models with an increasing level of complications such as: continuity equa-
tion, shallow water equations, etc., b) modulations in the surface flow velocity cause deviations in the surface 
wave spectrum, which can be modeled with the action balance equation, and c) a deviation in the surface wave 
spectrum causes variations in the level of radar backscatter. Bragg model two-scale and first iteration Kirchhoff 
model can be used to compute the backscatter deviations. More detailed mathematical illustration is found else-
where [46]. SAR has the benefit of being unaffected by atmospheric disturbances and cloud cover. SAR pro-
duces relative bathymetry, rather than absolute depths. The technology is particularly suited to areas of sand-
banks and shoals where there are continuous changes in bathymetry. However, there are several uncertainties inhe-
rent in the measurement and manipulation of SAR bathymetry observations used to estimate ocean depth. These 
make SAR derived bathymetry difficult to determine and inherently unreliable compared to other technologies. 

2.4. Bathymetric Measurements Using Altimetry 
Satellite altimetry can be used to determine the gravity field of the oceans on a global scale. Gravity field data 
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can be used to approximate the bathymetry of deep-seafloor features, e.g. seamounts and ridges. Dense satellite 
altimeter measurements can be used in combination with sparse in situ depth soundings of the seafloor to com-
pile a uniform resolution bathymetric map of the seafloor topography. These maps have comparatively low ac-
curacy and resolution to be used for assessing navigational hazards, but these maps can be useful for various ap-
plications, e.g. locating obstructions to the major ocean currents and shallow seamounts. Altimetry-derived ba-
thymetry also reveals plate boundaries and oceanic plateaus. The basic theory for deducing seafloor topography 
from satellite altimeter measurements is summarized elsewhere [9]. The conceptual approach uses the sparse in 
situ depth soundings to restrict the long-wavelength depth while the shorter-wavelength topography is inferred 
from the downward-continued satellite gravity measurements [10] [47]. There are a number of complications 
that need careful handling; the most important ones are 1) computing bathymetry from gravity anomalies is 
possible over a limited wavelength band, and 2) longer wavelengths are highly dependent on the elastic thick-
ness of the lithosphere. The feasibility study of a bathymetry calculation technique based on the one-dimensional 
filtering of SEASAT tracks is published elsewhere [9]. Fundamentally, the algorithm is based on the linear ap-
proximation of the relationship between the geoid and a given density contrast interface. Several algorithms are 
developed to derive bathymetric predictions from satellite altimeter. The most popular methods are: 1) the 
one-dimensional inversion of satellite tracks using linear approximation of the transfer function [9] [48] [49], 2) 
the one-dimensional adjustment of synthetic and satellite tracks [50], 3) the geometrical analysis of satellite 
tracks [51], 4) the two-dimensional inversion of geoid anomalies [52], and 5) the two-dimensional inversion of 
satellite data and the merging with conventional geophysical measurements [10] [53] [54]. 

3. Methods for Derivation of Bathymetry Information Using RS Technology 
Numerous algorithms have been developed for deriving bathymetry information from multispectral and hyper-
spectral imageries, SAR imageries, and LIDAR data. Some of the most important algorithms are described in 
the following section; 

3.1. Derivation of Bathymetry Using Optical Remote Sensing Models 
Following are the most commonly used algorithms for calculating the bathymetry from multispectral and hyper- 
spectral imageries. 

3.1.1. Stumpf Model/Linear Ratio Model 
Stumpf et al. [55] proposed a “Ratio method” to overcome the drawbacks of changing substrate albedo in deriv-
ing bathymetry information. The model is based on the theory of light attenuating exponentially with depth, and 
proposed that the effects of substrate albedo are minimized using two bands to derive the depth. This principle is 
explained mathematically as follows: 

( ) ( )–1 ln lnd wZ g A R R R∞ ∞ = − − −                             (1) 

where Z is depth, g is a function of the diffuse attenuation coefficients for both downwelling and upwelling light, 
Ad is the bottom albedo, R∞ is the water column reflectance if the water were optically deep, and Rw is observed 
reflectance. The ratio model addresses the drawback by comparing the attenuation of two spectral bands against 
each other rather than using albedo as a variable in depth derivation. Different spectral bands attenuate at dif-
ferent rates. Therefore, the ratio between two spectral bands will vary with depth. The modification in the bot-
tom albedo should affect both spectral bands equally, but the modification in attenuation with depth will be 
greater than the alteration attributable to bottom albedo so that the ratio between two bands should remain com-
parable over different substrates at the similar depth. This can be illustrated mathematically as follows: 

( )( )
( )( )1 0

ln
– ,

ln
w i

w

nR
Z m m

nR i
λ

λ
=                                 (2) 

where, Z is depth, m1 is a tunable constant to scale the ratio to depth, n is a constant to ensure the ratio remains 
positive under all values, Rw is observed reflectance, and m0 is the offset for a depth of m0. The ratio transform 
method addresses several issues that have substantial significance to use passive MS imagery to map shal-
low-water bathymetry. First, 1) it does not require subtraction of dark water pixels, 2) the ratio transform me-
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thod has fewer empirical coefficients required for the solution, which makes the method easier to use and more 
stable over broad geographic areas, and 3) the ratio method can be tuned using available reliable depth sound-
ings. 

3.1.2. Jupp’s Model or Depth of Penetration Zone (DOP) Model [56] [57] 
A model that finds large usage in literature to reconstruct the bathymetry in coastal zones from MS imagery is 
the depth of penetration zone (DOP) method proposed by Jupp [56]. There are two parts to Jupp’s method: 1) 
the computation of DOP zones, and 2) the interpolation of depths within DOP zones. The method [56] has three 
critical assumptions: 1) attenuation of light is an exponential function of depth, 2) water quality does not vary 
within an image, and 3) reflective properties of the substrate are constant. The second and third assumptions are 
the weakness of this model because in some cases water and seabed properties fluctuate, as the satellite image 
normally covers a very large area. Considering a bunch of monochromatic light, the relative loss of radiant flux 
is proportional to the size of the path, to less of a coefficient of proportionality (extinction coefficient). Jupp’s 
model can be mathematically expressed as: 

( ) ( )2 2e 1 ekz kz
e b wL L L− −= + −                                 (3) 

where Le is measured at-sensor radiance, Lb is the emergent radiance from the seabed, Lw is the emergent ra-
diance from different layers of water, z is depth, k is the coefficient of absorption. If the term Lw is hypothesized 
as negligible and is directly related to the quality of the water (suspended sediments) and small changes in the 
seabed, then, among the depth of the water column and the logarithm of the measured at-sensor radiance, there 
will be a linear relationship. Under these conditions, rearranging Equation (3) lead to the classical DOP equation 
for the water depth determination: 

( ) ( )
1 1ln ln ,

2 2
N Ne bi i
i i

iN iN

L L
Z

k k= =
= −

− −∑ ∑                              (4) 

where N is the number of spectral bands. In practice, to guarantee homogeneity, the DOP model assumes con-
stant coefficient of absorption, which is the main cause of the failure of the DOP algorithm in some cases, where 
the spatial lack of homogeneity is very high. 

3.1.3. Lyzenga Model or Linear Band Model 
Satellite RS data is the amount of light reflected, which is affected by the atmosphere, water clarity, depth at-
tenuation, bottom reflectance, scattered suspended material and so on [58]. Campbell [59] described that the 
sunlight spectrum has different penetrability, bottom reflectance and suspended material scattering. Therefore, to 
advance the accuracy of water-depth estimation, the RS data can be classified using multiband radiance. In ideal 
conditions, under the assumptions of a homogeneous atmosphere, similar wave situation, similar water property, 
and homogeneous bottom property, the water depth can be retrieved from a satellite. After penetrating the water 
column, the satellite sensor detects the visible light reflected from the bottom. In the water column, the light is 
attenuated exponentially with depth by Beer’s Law and the relationship of observed reflectance to depth and 
bottom albedo could be described as [55] [60]; 

( ) ( )expbR A R gz R∞ ∞= − − +                                              (5) 

where R∞ is the water column reflectance, if the water is optically deep, Ab is the bottom albedo, z is the depth, 
and g is a function of the diffuse attenuation coefficients for both down-welling and up-welling light. However, 
the derivation of depth from a single band is dependent on the albedo Ab, with a decline in albedo resulting in 
amplification in the estimated depth. Lyzenga [36] proposed a linear solution of correction for albedo with two 
bands as; 

0 1 2i jZ a a X a X= + +                                 (6) 

where ( ) ( )1 1 1lnX R Rλ λ∞= −    and λ is the wavelength. The algorithm corrects for a range of variations in 
both water attenuation and bottom reflectance using a linear combination of the log-transformed radiances in the 
blue and green channels. Lyzenga model has essentially attempted to account for unpredictability in bottom type 
by using multiple spectral bands. A variable, Xj, was defined for each of the N bands as: 
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( )lnj j WjX L L= −                                    (7) 

where, Lj = above-surface reflectance in band j and Lwj = averaged deep-water reflectance. The reflectance val-
ues were log-transformed to create a linear relationship between input reflectance and depth. Deep-water reflec-
tance was used to account for reflection because of surface effects and volume scattering in the water column 
and was assumed to result mostly from external water reflection, including sun-glint effects, and atmospheric 
scattering. However, the effect of deep water radiance was almost negligible in shallow water bodies. To ac-
count for water quality heterogeneity and depth-independent variability in reflectance values between bands this 
algorithm was updated by Lyzenga [36], and again Lyzenga et al. [61]. This produced (N + 1) depth-indepen- 
dent variables that could be used as indices of bottom type, and finally modeled depth as: 

0 1
N

j jjh h h X
=

= −∑                                   (8) 

where ho and each hj are constants defining a linear relationship between Xj and depth. ho and all of h1 to hj are 
determined through multiple linear regression between a set of known depths and the log-transformed reflec-
tance values found at those depths. The method increases operational flexibility since wavelength bands are not 
restricted by the algorithm. 

3.2. Derivation of Bathymetry Using LIDAR Models 
To map large linear bathymetry rivers, bathymetric LIDAR is a suitable RS technique, complementary to 
SONAR [62]. Most of the research works carried out by different authors was based on comparing the optical 
modeling results with LIDAR bathymetry results where the accuracy of optical models was compared to LIDAR 
bathymetry results. 

Bathymetry Estimation on a Simulated Green LIDAR Full Waveform (GLFW) 
A procedure for estimating the bathymetry (Ĥ) from peaks detection of surface and bottom on a simulated 
GLFW was developed using an approximation method. This approximation is classically based on a mixture of 
Gaussians laws fitted by an iterative least squares optimization algorithm. With approximation, water depth Ĥ 
can be estimated from a simulated GLFW having a real depth H. The method is based on three major steps: (1) 
Minimum depth determination, (2) Confidence interval of the minimum depth detectable. (3) Comparison of the 
values according to surface roughness parameters. Using this model waveforms can be generated and analyzed 
using a classical approximation method of water depth. Results for a flat water surface and a moderate rough-
ness show a minimal depth detectable of 0.41 m [62] [63]. 

3.3. Derivation of Bathymetry Using SAR Models [64] 
3.3.1. Wave Tracing Method [64] 
Fast Fourier transformation (FFT) is a technique used to decompose a function in spatial domain into its consti-
tuent frequency components. It can be very useful while obtaining regular periodicity in the images. FFT can 
also be used for retrieving the wavelength and wave direction of the ocean surface waves. The FFT of a SAR 
sub image of N × N pixel size gives a 2-D image spectrum. The peak in this spectrum represents the mean wa-
velength and the mean wave direction. The wavelength and angle of propagation can be estimated using: 

2 2

N xL
u v

∆
=

+
                                    (9) 

arctan v
u

θ  =  
 

                                  (10) 

where L is the measured peak wavelength, θ is the peak wave direction, Δx is the spatial resolution of the subset 
image, N is the size of the sub-image, and u and v are the coordinates of the dominant frequency with the centre 
point as origin. 

3.3.2. Linear Dispersion Relation 
The water depth (D) for the particular FFT box can be retrieved from linear dispersion relation 
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( ) 2, arctanh
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where L is the peak wavelength, ω is the peak frequency (ω = 2π/t), t is the peak period, and g is the acceleration 
due to gravity. The peak period should be estimated by the analysis of the wave tracks and by the first measured 
wavelength of a wave ray along with the first guess for the water depth. 

4. Review on Case Studies Employed for Bathymetry Derivation 
As bathymetry derived from imagery is estimated rather than directly measured, it is worth discussing the influ-
ence and impact of the algorithms used to model the depths. A number of different algorithms have been derived 
to determine bathymetry from imagery. For HS and MS imagery derived bathymetry, it is just as important to 
select the most appropriate algorithm, as it is to select the most suitable image sensor. Mobley [65] compared six 
common algorithms used to derive bathymetry. Few case studies are discussed for comparison of methods, 
models, algorithms, and types of data used for derivation of bathymetry (Table 2). 

5. Summary and Discussion 
The seafloor is one of the last mostly unexplored and most dynamic landscapes on the planet earth. Technologi-
cal development for bathymetry derivation has progressed rapidly in the last century because of the advance-
ment of techniques using acoustics, optics, and radar. More acoustic depth soundings are required to validate RS 
based models for the derivation of bathymetry in remote regions of the world (e.g. Southern Ocean, around An-
tarctica, Arctic, etc.). The present review focuses mainly on techniques used for deriving the bathymetry, me-
thods and technologies evolved for bathymetric derivation, and limitations and advantages of bathymetric algo-
rithms. There are two broad ways in which RS methods for bathymetry derivation can be categorized: active 
RS/passive RS and non-imaging/imaging. The non-imaging LIDAR method is capable to detect elevations at 
sampled locations, but this method is not widely used for practical applications until recently because of tech-
nical constraints. LIDAR method is capable to derive a large range of depths up to 70 m in clear open waters 
with an accuracy of ±15 cm [7]. Airborne LIDAR is appropriate for bathymetric mapping over relatively small 
geographical areas. LIDAR accuracy and applicability are additionally constrained by water turbidity. In com-
parison, the passive optical imaging method is more flexible, because it can be implemented either analytically 
or empirically. Analytical modeling is complex to implement since it requires the input of in-situ measured pa-
rameters related to the optical properties of water. Empirical modeling is much easier to implement, since it re-
quires only a limited number of in-situ measurements at certain sampling spots. This implementation may pro-
duce results which have similar accuracy to the analytical or semi-analytical implementations under certain cir-
cumstances. The passive imaging methods are widely applicable to both shallow turbid coastal waters and open 
oceanic waters. It is just important to select the most appropriate bathymetric algorithm, as it is to select most 
suitable image sensors for an effective derivation of bathymetry. Each model or sensor has benefits and limita-
tions. For most of the case studies, optical data, such as WV-2, QuickBird, SPOT, Landsat and IKONOS, have 
been used [15] [20] [30] [55] [57] [61] [66]-[85]. 

In general, Lyzenga model (linear band model) used for QuickBird data can yield the error of water depth 
about 9.7%, while for IKONOS the RMS is ≈2.3 m [72]. The Lyzenga algorithm corrects for a range of varia-
tions in both water attenuation and bottom reflectance using a linear combination of the log-transformed ra-
diances in the blue and green spectral channels. The Stumpf model or ratio transform model can retrieve depths 
in less than 25 m of water [55]. It also performs better in scattering turbidity than the linear band model. The ra-
tio model is found to be somewhat nosier and cannot always adequately resolve fine morphology in water depths 
less than 15 - 20 m. In general, the ratio transform was found to be more robust than the linear transform [55]. In 
a few cases three models viz. Jupp’s, Stumpf and Lyzenga were used, where the depth was found to be less than 
30 m with different methodologies used. The empirical model (SPOT-5 imagery) can yield the accuracy of 0.5 
m based on in-situ data [15]. In shallow waters, empirical fitting is time-efficient, but requires real-time high- 
density depth soundings to provide precise results. In case of semi-analytical model (SPOT-5 imagery), the 
computed depths were found to be underestimated when water depth exceeded 2.5 m. In general, bathymetry 
derivation accuracy was observed to be depth dependent; more errors were observed at greater depths. In general, 
there are several benefits as well as limitations of optical RS models used for mapping the bathymetry. Two 
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Table 2. Summary of case studies utilizing various satellite datasets and methods for bathymetry derivation. 

Study Area 
(Satellite Data) [Ref.] Method Used Significant Conclusion Comments 

Larsemann Hills, 
Antarctic. (WV-2) [30] 

1. Lyzenga model 
2. Stumpf model 

Lyzenga model yielded better results than 
Stumpf model 

The coastal band in the WV-2 plays 
an essential role in bathymetry 

Coastal region near  
Mumbai, India. 
(RISAT-1 SAR) [64] 

1. Wave-tracing  
method 
2. Linear dispersion  
relation 

Using wave tracing method, the swell wavelength 
has been found to be in the range of 80 - 210 m. 
Using the Linear dispersion method the maximum 
swell wavelength was 210 m. 

The wavelength decreases as the wave 
moves closer to the coast. 

The lagoon of Venice. 
(QuickBird) [57] 

Stratified genetic 
algorithm (SGA). 

A very high correlation R2 = 0.96 was 
obtained with respect to in-situ data 

SGA performs better than generic 
Jupp’s model 

Wales, Alaska. 
(WV-2) [66] 

Relative Water Depth 
in ENVI software. 

A linear regression between measured and derived 
values of absolute depths resulted in R2 of 0.7221. 

Locations with potentially high  
suspended sediments were found to 
cause discrepancies between in-situ 
and derived depth values. 

Thessaloniki, Greece. 
(WV-2) [67] Lyzenga model 

Water depths measured: -Area with seagrass 2 - 6 m, 
-Area mixed with seagrass 2.4 - 6m, -Seagrass free 
area 6 - 15 m. 

In all areas the majority of the estimated 
depths (73% - 76%), differed adequately 
from the soundings. 

Strait southwest of  
the Singapore main  
island. (WV-2) [68] 

Shallow Water 
Remote Sensing 
Reflectance Model 

For water with a dark seabed, the Green band has 
the most depth sensitivity for depth up to about 5 m. 
In case of a bright seabed, the Red and Yellow 
bands are the most sensitive. 

In cases where the depth sensitivity is 
low, the spectral bands are still useful 
for the derivation of water optical 
parameters. 

The Southern coast of 
the island of Sardinia,  
Italy. (WV-2) [69] 

Jupp Method 
a) IDL 
b) ENVI 

Comparison of the two images being different in 
geometry and quality, the results coincide to a 
precision of 0.6 m. 

A satisfactory correlation between 
in situ and derived depths was 
observed 

Aquitaine, France. 
(SPOT-5) [15] 

1. Empirical  
calibration based 
on ground truth data 
2. Semi-analytical 
model. 

Semi-analytical model: The accuracy is satisfying 
(0.5 m) and not depth-dependent. Empirical model: 
The computed depths are under-estimated when 
water depth exceeds 2.5 m. The accuracy is depth- 
dependent getting worse with larger water depths 

Empirical fitting is time-efficient, but 
Requires simultaneous high-density 
soundings. The semi-analytical approach 
can be implemented in any place 
without any ground truth data. 

Kaneohe Bay, Oahu, 
Hawaii. (IKONOS,  
LIDAR) [20] 

Lyzenga model 
Water depths >20 m were obtained using Multibeam 
SONAR. Water depths <20 m were derived from an 
IKONOS image using Lyzenga method. 

The most accurate method was simple, 
empirical multiple linear regression 
against known depths. 

Eastern Banks,  
Moreton Bay. 
(QuickBird) [70] 

1. Lyzenga model 
2. Stumpf model 

Lyzenga algorithm was effectively used to map 
Water depth over the sand substrate type. An 
algorithm based on reflectance band ratios (Stumpf) 
was also tested separately on sand and seagrass 
substrate types. 

Lyzenga algorithm could not be 
used to derive depth over seagrass 
substrate types. Stumpf algorithm 
was not able to effectively derive 
water depth on either substrate type 

Naozhou Island in  
Guangdong, China. 
(SPOT-5) [71] 

1. Optical RS 
inversion technique 
for depth. 
2. Depth inversion 

The mean relative error of the depth segment ranges 
from 0 - 5 m. The dual-band model is the best of all 
the models used, its mean relative error is 22%, and 
its mean square error is 1.87 m. The model worked 
relatively well in the shallow water. 

The multi-spectral image of SPOT-5 
has the ability to inverse water depth, 
and its high resolution can describe 
more detail topographic information  
under water. 

South China Sea.  
(WV-2, QuickBird) [72] Lyzenga Model Using Lyzenga model the error of water depth from 

QuickBird image is found to be about 9.7%. 
The coastal blue band in WV-2 
may retrieve more information. 

Cancun and Hawaii,  
USA. (IKONOS,  
SHOALS LIDAR) [61] 

Lyzenga Model 

A single set of coefficients derived from a set of the 
IKONOS images gives good performance over a 
variety of conditions, with an aggregate RMS of 
2.3 m over all of the data sets. 

The algorithm corrects for a range 
of variations in both water attenuation  
and bottom reflectance using a linear 
combination of the log-transformed 
radiances in the blue and green channels. 

Cape Verde Islands,  
Africa. (QuickBird,  
IKONOS) [73] 

1. Lyzenga Model 
2. Jupp Model 
3. Stumpf Model 

The depth in coastal water (shallow water areas, 
depth < 30 m) with three different methodologies. 

The results show that the ratio model 
is more robust in case of the 
non-homogeneous environment. 

QingDaocity ShanDong 
province in China. 
(Landsat-TM) [74] 

Bottom Reflection  
Model Based on 
Remote Sensing  
Bathymetry 

The absolute values of negative linear relation 
coefficient −0.493425 is smaller than that derived 
from bottom classification. 

The precision of bottom type classification 
using multi-spectral image information 
is better than single-band method. 

Northwest Hawaiian  
Islands. (IKONOS, 
LIDAR) [55] 

1. Lyzenga Model 
2. Stumpf Model 

Both algorithms compensate for variable bottom 
type and albedo (sand, pavement, algae, and coral) 
and retrieve bathymetry in water depths of less 
than 10 - 15 m. 

The ratio transform is more robust 
than the linear transform. 
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of the algorithms (Linear/Lyzenga and Ratio/Stumpf) are found to be superior to accurately determine the shal-
low depth in highly turbid waters given sufficiently representative training data sets. The ratio transform method 
or Stumpf model has less number of empirical coefficients which makes the method simple to use and more sta-
ble over broad geographic areas. The ratio model is more robust in case of the non-homogenous environment. 
The ratio transform has limitations relative to the linear transform, particularly in an increased level of noise. On 
the other hand, Lyzenga linear band model employs two or more bands, which allows separation of variations in 
depth from variations in bottom albedo, but compensation for turbidity. Retrieval of bathymetry under restrictive 
environmental conditions is limited. The linear band algorithm modified from Lyzenga et al. [61] can provide 
slightly better results than Stumpf model using WV-2 data. The additional 4 spectral bands provided by the WV- 
2 have been found to be improved the linear band model marginally. A classification using band instead of raw 
band values achieved results comparable to the linear band algorithm. Although its data input requirements are 
the same as the more accurate band classification, its lower computation requirements may make it attractive af-
ter further validation. The linear ratio algorithm developed by Stumpf et al. [55] may prove completely ineffec-
tive in waters where turbidity is the predominant factor defining attenuation in the water column. In order to 
achieve better results using the linear ratio model, ground reference or in-situ datasets should be considered to 
represent a wide range of variance in bottom type and water column properties with statistically significant sam-
ple sizes at different depths. 
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