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Abstract 
In this paper, the methods developed by [1] are used to analyze flowback da-
ta, which involves modeling flow both before and after the breakthrough of 
formation fluids. Despite the versatility of these techniques, achieving an op-
timal combination of parameters is often difficult with a single deterministic 
analysis. Because of the uncertainty in key model parameters, this problem is 
an ideal candidate for uncertainty quantification and advanced assisted his-
tory-matching techniques, including Monte Carlo (MC) simulation and ge-
netic algorithms (GAs) amongst others. MC simulation, for example, can be 
used for both the purpose of assisted history-matching and uncertainty quan-
tification of key fracture parameters. In this work, several techniques are 
tested including both single-objective (SO) and multi-objective (MO) algo-
rithms for history-matching and uncertainty quantification, using a light tight 
oil (LTO) field case. The results of this analysis suggest that many different 
algorithms can be used to achieve similar optimization results, making these 
viable methods for developing an optimal set of key uncertain fracture para-
meters. An indication of uncertainty can also be achieved, which assists in 
understanding the range of parameters which can be used to successfully 
match the flowback data. 
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1. Introduction 

In recent years, as a result of low gas prices and relatively high oil prices, many 
producers have turned their attention to LTO reservoirs as a means of producing 
commercial wells. Much like shale gas reservoirs, LTO reservoirs are typically 
very low in permeability and require extensive hydraulic fracturing to allow for 
commercial production. As a result, operators are seeking new methods to esti-
mate hydraulic fracture properties, particularly early in the well life. Over the 
past 5 years there have been numerous authors have identified quantitative 
flowback analysis as a suitable method which in most cases aligns well with more 
conventional long-term production data analysis (i.e. [2]). 

Although the majority of the literature has focused on shale gas reservoirs, 
there has been a substantial amount of research conducted in analyzing flowback 
from LTO wells. These methods have been applied to LTO plays across North 
America. A comprehensive literature review was given by [2] and the reader is 
guided to this work for details. In this paper only the papers relevant to MC si-
mulation and application of evolutionary algorithms to the flowback problem 
will be discussed. 

[3] developed a simple straight-line method for estimating fracture pore vo-
lume for shale gas wells that exhibit a period of unit slope which falls between 
the early transient flow period and the late transient flow period during mul-
ti-phase flow. In their relationship, rate-normalized pressure (RNP) is inversely 
proportional to fracture pore volume and total compressibility. The authors use 
a combination of the generalized reduced gradient method (GRG) and evolutio-
nary algorithms in order to decouple the involved parameters. The GRG algo-
rithm is used to find a possible optimal combination of the unknown parameters 
and then the evolutionary algorithm is used to generate the probability density 
function (PDF) and cumulative distribution function (CDF) associated with the 
unknown parameters. Although the approach of decoupling parameters is 
unique, the GRG algorithm has been shown by many authors to get trapped in 
local optima rather than finding the true global optimum, and therefore, this 
approach could be strengthened by using a more rigorous algorithm such as a 
GA which typically will find the near optimal. With the exception of the applica-
tion of assisted parameter estimation algorithms, this approach is very similar to 
flowing material balance (FMB) applied by [1], although this analysis focused on 
single-phase fracture depletion prior to the breakthrough of formation fluids.  

Reference [4] developed an approach for analyzing both flowback and 
long-term online production data from gas condensate wells using numerical 
simulation combined with a MO GA to derive key fracture and reservoir para-
meters. The authors rigorously modeled flowback data using a triple-porosity 
system (matrix, primary hydraulic fractures and induced/natural fractures) us-
ing the multiple interacting continua approach (MINC, [5]). The model also in-
cludes multiple water trapping mechanisms (permeability jail, capillary pressure 
and gravity segregation). This is likely the most rigorous method developed to 
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date, although it is also the most computationally intensive. The model could be 
more rigorous by including coupled flow-geomechanical simulation, although 
this would add additional computational intensity. 

The base tool used in this work is a modified version of what was developed 
by [1] which is described in detail in [2]. The objective of the current work is to 
apply MC simulation both for uncertainty quantification as well as as-
sisted-history matching purposes. Several other SO and MO techniques for as-
sisted history-matching (focusing on evolutionary algorithms) are tested to de-
termine the ability of each algorithm to identify the global minimum and there-
fore output the most realistic set of key uncertain fracture parameters. Results of 
the application of a gradient-based algorithm are presented to demonstrate how 
these techniques are insufficient in optimization of complex problems, unless 
the initial guess is closer to the absolute minimum than any local minima in the 
search space. Application of several evolutionary algorithms suggests that these 
algorithms are useful for this application, assuming a suitable search space is de-
fined. Discussion will also be provided on how to speed up the performance of 
these algorithms making them more applicable for wide-spread use by industry.  

2. Theory and Methods 

The analysis procedure used in this work is shown in Figure 1. The emphasis of 
this work is on the final 2 steps of the analysis procedure in which a variety of 
algorithms are used in an attempt to find the optimal solution and quantify un-
certainty in key fracture parameter estimates. The first three steps, however, will 
also be demonstrated in the context of the field example, as these steps assist in 
setting up the search space for the stochastic simulation and assisted histo-
ry-matching. 

Algorithms Used. In this work, six different algorithms were tested for the 
purpose of uncertainty quantification and assisted history-matching. The me-
thods applied in this paper include: 1) MC MO simulation (Palisade® @RISKTM); 
2) Microsoft® Excel’s SO Gradient-based (GRG2) algorithm (GRG Nonlinear 
Solver); 3) Microsoft® Excel’s SO Evolutionary Solver; 4) Palisade® Evolver’s SO 
GA; 5) GAPS MO GA (based on the NSGA-II-non-dominated sorting genetic 
algorithm) algorithm; and 6) Palisade® Evolver’s SO OptQuestTM algorithm. Each  
 

 
Figure 1. Summary of procedure for analyzing flowback data using deterministic, stochastic and assisted history-matching tech-
niques. 
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algorithm will be briefly discussed here, with more details available in the litera-
ture. 

There are two main characteristics of all of these algorithms: 1) the OF; and 2) 
constraints. The OF is the key parameter that one is attempting to minimize or 
maximize (minimization in this case). Constraints are relationships which must 
be satisfied for a solution to be considered acceptable. The OFs used in this work 
are sum of squares OFs comparing measured water and oil rate with modeled 
rate. Cumulative production OFs can also be introduced to further constrain the 
problem. The OFs used in this work will be discussed in the coming sections. 
Since there are no hard constraints which are applicable to this problem, the on-
ly constraints used will be the input ranges of uncertain parameters, which will 
also be discussed in the coming sections. 

Monte Carlo Simulation. Traditional deterministic analysis techniques com-
bine single-point estimates of key input variables to provide a single-point esti-
mate of the result. This type of analysis assumes that the true values of all inputs 
are known in order to derive an accurate solution. Often these single-point esti-
mates may differ greatly from the actual result and can lead to negative out-
comes such as financial loss. In the majority of real-life problems, certainty in all 
parameters is rarely the case; while some variables may be known precisely or 
can be estimated with a reasonable degree of accuracy (ex. from lab testing or 
other methods), others may contain a high degree of uncertainty [6]. Stochastic 
simulation provides a platform to incorporate the uncertainty of inputs in order 
to derive a range of possible outcomes. This provides the analyst with vastly 
more information about the problem and assists in making smart decisions in 
which both the potential upside and downside are understood. Using these tech-
niques in essence is similar to running hundreds or thousands of what-if scena-
rios simultaneously, while removing the often time-consuming and/or biased 
human component. Further, the results are presented in a manner in which they 
can easily be interpreted. The key components of a stochastic simulation include: 
1) defining uncertain variables using a probability distribution; 2) defining key 
output variables; 3) running a series of simulations using an appropriate sam-
pling technique (MC or Latin Hypercube); 4) developing a distribution of suita-
ble output parameters using an OF. In this work, MC simulations were con-
ducted using Palisade Corporation’s @RISKTM add-in for Microsoft® ExcelTM. As 
mentioned previously. MC simulation is conducted in such a way that multiple 
objectives are considered. 

Microsoft® Excel’s GRG Non-Linear Solver (GRG2 Gradient-Based Algo-
rithm). This technique is based on the Generalized Reduced Gradient 2 (GRG2) 
algorithm which is an extension of a version of the GRG code developed by [7] 
and is a SO algorithm. The solver combines a graphical user interface and alge-
braic modeling language for linear, nonlinear and integer programs and is inte-
grated into the host spreadsheet as closely as possible [8]. These techniques are 
generally applied to smooth problems (i.e. smooth in both the OF and con-
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straints), although these methods are often applied unwisely to optimization 
problems that do not meet the smoothness criteria [9]. These algorithms are 
“downhill” in nature and therefore tend to get trapped in the closest local mini-
ma surrounding the initial guess and struggle to escape these local minima. Ap-
plication of a good initial guess (i.e. the deterministic solution) or the mul-
ti-restart technique, in which the algorithm is started from multiple randomly 
generated starting points, can allow these algorithms to find the absolute mini-
ma rather than being trapped in local minima in the vicinity of the starting 
point. 

Microsoft® Excel’s Evolutionary Solver. The version of the Evolutionary Solver 
available in the standard version of ExcelTM is a SO algorithm developed by [10]. 
Although the exact workings of the solver are not available in the literature or 
from the developer, much like other GAs, this algorithm retains a population of 
solutions, although this is a steady-state GA (rather than a generational GA) 
meaning that only one solution is replaced by a better solution at each model 
iteration. This GA operates on a time-based constraint in which the algorithm 
has a set amount of time to find a better solution than the existing best solution 
and outputs a single best solution. As a result of the time-based nature of this 
GA, the longer maximum time without improvement defined by the user gives 
the algorithm a better chance of locating the absolute minimum, although the 
technique is designed to find a “good” solution rather than the optimal solution 
(the two may be equivalent or at least similar).  

As with other GAs there are four main steps applied within the algorithm: 1) 
Selection; 2) Crossover/Mating; 3) Mutation; and 4) Replacement. Reference 
[11] offers a variety of other more advanced algorithms which combine the sim-
ple GA with classical optimization techniques, other evolutionary algorithms as 
well as Tabu Search and Scatter Search which may lead to better ultimate solu-
tions. These advanced versions were not tested in this work. 

Palisade® Evolver’s Genetic Algorithm. Palisade® Evolver’s GA is a SO GA 
which contains 5 potential solving methods: 1) Recipe; 2) Order; 3) Grouping; 4) 
Budget; and 5) Project. The Recipe method is the default method and is designed 
to be used when parameter values can be varied independently and can be ap-
plied to the majority of optimization problems, especially when the relationship 
between the adjustable variables are not well understood, or cannot be handled 
better by one of the other techniques. In this work, the Recipe solving technique 
is used. The GA used in EvolverTM is unique, much like that used in Microsoft® 
Excel’s Evolutionary Solver, in that it uses a steady-state approach, meaning that 
only one organism is replaced at a time rather that the entire generation. Ac-
cording to [11], this method has been shown to work as well or better than the 
generational method, although no evidence is provided in their literature. When 
comparing the results of Evolver’s GA with other GA’s that use the generational 
approach, the number of “equivalent generations” can be set by constraining the 
number of trails to be equal to the size of the population multiplied by the de-
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sired number of generations. Parallelization is also utilized by the program to 
improve computational efficiency. The same four general steps of a GA are ap-
plied in this algorithm as were applied in Excel’s Evolutionary Solver. This algo-
rithm is designed to find the global minima. A uniform crossover scheme is used 
by this algorithm, meaning that half of the parameters of the child come from 
each parent. 

GAPS Multi-Objective Genetic Algorithm (Based on NSGA-II Algorithm). 
GAPS is a MO GA based on the NSGA-II algorithm developed by [12]. As a MO 
GA, the algorithm is designed to account for objective conflict and yields a Pa-
reto Front of solutions which are all mathematically equivalent. If a single op-
timal solution is desired, then the user must select the solution along the Pareto 
Front which is most applicable to the problem being solved. The NSGA-II algo-
rithm is an extension of the NSGA algorithm developed by [13]. The basis of the 
algorithm is the nondominated sorting procedure, hence the name of the algo-
rithm. The modified algorithm was developed to handle the main criticisms of 
the original algorithm, and offers the following benefits over the original algo-
rithm: 
• Utilizes a faster method for nondominated sorting. 
• Preserves elitism, meaning that the best solutions are maintained without 

modification. 
• Incorporates a parameter-less diversity preservation mechanism to replace 

the need for a sharing parameter, which is the traditional mechanism for 
maintaining diversity. 

• Utilizes parallelization to improve solution speed by allowing calculations to 
be spread out over multiple processors. 

There are two key concepts to the algorithm, being: 1) nondominated sorting; 
and 2) diversity preservation and follows the same general concept of the other 
GAs discussed above, although is generational in nature. This algorithm has 
been shown to work well for three OFs by [5], although it generally begins to fail 
as further objectives are added in complex problems (four or more in this par-
ticular problem). To handle this deficiency, the U-NSGA-III algorithm was de-
veloped by [14]. This algorithm uses a continuous single-point crossover scheme, 
meaning that crossover occurs at randomly chosen points and the two children 
get the genetic material from either side of the crossover point. 

Palisade® Evolver’s OptQuest Algorithm. OptQuestTM is a “black box” opti-
mizer first developed by [15] to find the global optimum solution. The algorithm 
is not totally context-independent because the selection of the solution repre-
sentation gives some information to the optimization algorithm. The model al-
lows the user to represent solutions as a mixture of continuous, discrete, integer, 
binary, permutation and other specialized variables which provides the optimiz-
er with some information about the system. The software ultimately chooses 
solvers based on the characteristics of the optimization model (pure or mixed, 
constrained or unconstrained and deterministic or stochastic). The optimizer is 
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based in Scatter Search, but also uses the principles of Tabu Search, an Artificial 
Neural Network and other methods in attempt to derive a global optimum solu-
tion more rapidly. Scatter Search is an optimization algorithm comparable to a 
GA. 

3. Field Example 

A full analysis demonstrating each step of the analysis procedure (shown in Fig-
ure 1) will be provided. One MFHW from a 3-well pad in a LTO play in the 
Western Canadian Sedimentary Basin (WCSB) will be analyzed, although the 
other two wells on the pad, as well as other wells in the area and other LTO plays 
in North America, have also been analyzed using this procedure. This well was 
previously analyzed by [1], but using a deterministic approach. To protect oper-
ator confidentiality, well location and reservoir and completion information has 
been withheld. A summary of the completion and stimulation performed is giv-
en below: 
• Cased-hole completion. 
• Hydraulically fractured with hybrid water fracs in 18 stages using plug and 

perf technology (single perforation cluster per stage).  
• Fracture stages spaced at ~330 ft. 
• 1350 STB of fracture fluid and 45 T of proppant pumped per stage. 

Assessing the microseismic collected on this well, the assumption of circular 
bi-wing planar fractures appears to be reasonable and will be used in this analy-
sis. Preceding the flowback data used for this analysis, plugs were drilled out 
with coil tubing following stimulation, after which the well was placed on flow-
back monitoring through a test separator. Rate and pressure data was gathered 
every 15 minutes for approximately 300 hours during flowback following a 12 
day shut-in period.  

Input common to the different flowback analysis techniques are shown below 
in Table 1. Note that the individual hydraulic fracture width is approximately 
twice what is expected for a simple bi-wing planar fracture (0.25 in/stage). This 
is likely due to some fracture complexity (or possibly multi-planar fractures) 
which could not be resolved at the microseismic level.  

Raw Data and Diagnostic Plots. Water, oil and gas rates as well as bot-
tom-hole flowing pressure and gas-oil ratio (GOR) are shown below in Figure 
2(a), while water RNP and its derivative (RNP’) are shown in Figure 2(b).  

From Figure 2(a) it can be observed that flowback initiates with more than 2 
days of single-phase water production (fracture fluid) prior to the breakthrough 
of hydrocarbons (formation fluid). Hydrocarbons breakthrough at just after 2 
days, with an initial oil rate of ~36 STB/D. For about the first 6 days of hydro-
carbon production (8 days total), the GOR is approximately constant at 1250 
scf/STB which is equal to the solution gas level. At ~8 days there is a rapid drop 
in flowing pressure (resulting from a rapid decrease in choke size) below the 
bubble-point followed by a rapid increase in GOR suggesting a breakthrough of  
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Table 1. Input parameters for flowback field example. 

Fracture Properties Parameter Value 

Initial Fracture Pressure (psia) 5000 

Initial Water Saturation (%) 100 

Fracture Porosity (proppant pack) (%) 31 

Fracture Compressibility (psi−1) 1 × 10−4 

Number of Hydraulic Fractures 18 

Individual Hydraulic Fracture Width (ft) 0.0417 

Total Hydraulic Fracture Width (ft) 0.75 

Reservoir Properties Parameter Value 

Formation Pressure (psia) 3700 

Net Pay (ft) 197 

Matrix Porosity (%) 4 

Initial Mobile Oil Saturation (%) 99 

Initial Mobile Water Saturation (%) 1 

Formation Compressibility (psi−1) 4 × 10−6 

Matrix Permeability (md) 0.0003 

Reservoir Temperature (˚F) 140 

Fluid Properties Parameter Value 

Fracture Water Salinity (%) 50,000 

Formation Water Salinity (%) 200,000 

Oil Gravity (˚API) 52 

Gas-Oil-Ratio (scf/stb) 1250 

Bubble-Point Pressure (psia) 2858 

Gas Gravity (air = 1) 0.747 

 

 
Figure 2. Flowback data: (a) Water, oil and gas rate, as well as bottom-hole flowing pressure and GOR; and (b) Water RNP and 
RNP’. 
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gas into the fractures. Therefore, only the first 8 days of production were consi-
dered for this analysis as this is the period where production is under two-phase 
(water + oil) flow in the formation and fractures (the tool cannot currently 
model three-phase flow). Over the first 8 days of production, water rate and 
bottom-hole flowing pressure generally decline, while the hydrocarbon rate gen-
erally increases following breakthrough as would be expected from a formation 
with minimal mobile water and constantly decreasing bottom-hole flowing (and 
fracture) pressure. From Figure 3(b), BBT flow-regimes can be identified using 
the RNP’ curve from the period of single phase production. The first 
flow-regime interpreted is a short period of transient radial flow within the frac-
tures (0-slope), which appears to last until ~0.1 days of material balance time 
(MBT), although the data is scarce and noisy during this period making it diffi-
cult to conclude this flow-regime identification with a significant degree of cer-
tainty. From ~0.1 days to ~3 days of MBT a clear period of fracture depletion 
(unit-slope) is identified up until breakthrough. After-breakthrough (ABT), the 
derivative is non-linear in nature, as would be expected as multiple flow-regimes 
are occurring, although a depletion-like signature remains dominant.  

Casing pressures were converted to sandface pressures using a wellbore mod-
el, and initial formation pressure was estimated from p* obtained from a Diag-
nostic Fracture Injection (DFIT) test which also yielded the estimate of matrix 
permeability. The GOR and bubble-point pressure are defined based on PVT 
analysis of the reservoir fluid from a group of off-setting wells. Initial fracture 
pressure was determined by a trial and error process conducted by [1] and was 
maintained for this analysis.  

Rate-Transient Analysis of BBT Single-Phase Data. To assist with the his-
tory-matching process, rate-transient analysis (RTA) is applied to the 
flow-regimes identified in Figure 2(b) (repeated in Figure 3(a)). Radial flow 
analysis, which is shown in Figure 3(b), is used to analyze flow-regime (FR) 1 
and estimate fracture conductivity (permeability). Delimiters are shown to high-
light the interpretted period of radial flow. Using the slope of the radial flow 
plot, fracture permeability is estimated to be ~3500 md, assuming a fracture 
width of 0.5 in/fracture with a small negative skin. The negative skin may be a 
result of maximum proppant concentration near the wellbore as discussed pre-
viously. The FMB, which is shown in Figure 3(c), is used to assess FR 2 and es-
timate BBT fracture volume and fracture half-length. From the x-intercept of the 
plot, the total fracture volume is estimated to be approximately 24,000 STB, and 
the BBT fracture half-length to be ~441 ft per stage, assuming a circular fracture 
shape and a fracture width of 0.5 in/fracture. From the y-intercept an additional 
measure of fracture permeability can be derived to be ~3400 md, assuming a 
fracture width of 0.5 in/stage. The total calculated fracture volume is approx-
imately equal to the total volume injected during the fracture stimulation, sug-
gesting that the majority of pumped fluid has been converted into effective frac-
ture volume (prior to hydrocarbon breakthrough). This conversion percentage is  
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Figure 3. Rate-transient analysis of BBT single-phase data: (a) Water RNP and RNP’ plot; (b) Early radial flow analysis; (c) Flow-
ing material balance; and (d) Fetkovich type-curve. 

 
higher than expected even for a well with minimal natural fracturing (as inferred 
from microseismic and experience in the formation of interest), and may result 
from the impact of the other two wells being stimulated on the same pad prior to 
flowback of the well. These values will be used in the deterministic histo-
ry-matching process. Finally, the fracture parameters estimated from radial flow 
analysis and the FMB can be confirmed by using the Fetkovich type-curve 
(Figure 3(d)) which is designed for analyzing radial to boundary-dominated 
flow behaviour. Because MBT is used in the calculation of tDd, fracture depletion 
data falls down the harmonic stem, with a positive deviation indicating the 
breakthrough of formation fluid.  

Parameters estimated from quantitative RTA of this flowback data are pro-
vided in Table 2.  

Deterministic History-Match. Deterministic history-matching was first 
conducted to validate the application of the conceptual model to this dataset, 
confirm selection of a fracture shape and geometry model, and confirm 
RTA-derived parameters for BBT fracture properties. For this analysis, a circular 
shape with a single bi-wing fracture being generated from each stage was se-
lected for simplicity, as was done by [1], under the assumption that cylinder ra-
dius is equal to fracture half-length.  

https://doi.org/10.4236/apm.2019.93012


J. D. Williams-Kovacs, C. R. Clarkson 
 

 

DOI: 10.4236/apm.2019.93012 252 Advances in Pure Mathematics 
 

Table 2. Parameters solved from each BBT RTA technique. 

Radial Flow Plot Parameter Value 

Fracture Conductivity, FcT (md-ft) 2625 

Fracture Permeability (md) 3500 

Flowing Material Balance Parameter Value 

Fracture Fluid-In-Place (STB) 24,000 

BBT Half-Length, xf_BBT (ft) 411 

Fracture Conductivity, FcT (md-ft) 2550 

Fracture Permeability (md) 3400 

Fetkovich Type-Curve Parameter Value 

xf/rwa ~1000 

Fracture Conductivity, FcT (md-ft) 2625 

Fracture Permeability (md) 3500 

 
The history-matches, guided by the BBT RTA-derived parameters are pro-

vided in Figure 4. The deterministic history-match was not significantly 
changed from what was presented by Clarkson et al. (2014), although minor im-
provements were made. Note the deterministic history-match is shown here in 
black to maintain continuity of this match throughout the paper.  

From Figure 4 it can be seen that the deterministic history-match to water is 
very good throughout the eight days of flowback modeled, while the hydrocar-
bon match is very good for the first 6.5 days at which point it begins to underes-
timate production. After conducting the first 3 stages of the analysis procedure, 
the remainder of the paper will focus on the stochastic simulation and assisted 
history-matching component of the procedure which is the main contribution of 
this work.  

The key history-match parameters are given in Table 3 (assumed to be frac-
ture permeability, cylinder radius (fracture half-length) BBT and ABT of forma-
tion fluid, breakthrough pressure and the Corey relative permeability exponents 
for oil and water in the fractures). Matrix relative permeability coefficients were 
assumed to be 2 for oil and water formation fluid, although due to the very high 
mobile oil saturation, these curves have minimal impact on the analysis. 

From Table 3, it can be seen that the fracture half-length decreases following 
the breakthrough of formation fluids, as expected. A ~7% decrease in drainage 
radius (~4% decrease in effective half-length) was observed and this was applied 
during stochastic simulation and assisted history-matching to reduce the num-
ber of uncertain parameters. In many cases the reduction in half-length as a re-
sult of breakthrough can be significantly larger. Further, breakthrough pressure 
was set slightly higher than formation pressure to account for the supercharge 
effect associated with high-rate injection. Matrix relative permeability exponents 
were set to two for both water and oil throughout. 

Stochastic Simulation and Assisted History-Matching. In this section, the re-
sults from multiple stochastic and assisted history-matching techniques will be  
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Figure 4. Deterministic flowback match: (a) Water, oil and gas production rates; and (b) Cumulative water, oil and gas. 

 
Table 3. Key history-match parameters for flowback simulation. 

History-Match Parameter Parameter Value 

Fracture Permeability (md) 3500 

BBT Drainage Area (Ac) 14 

BBT Half-Length, xf_BBT (ft) 441 

ABT Drainage Area (Ac) 13 

ABT Half-Length, xf_ABT (ft) 425 

Breakthrough Pressure (psi) 3825 

Corey Oil Exponent—Fracture, n’ 1.2 

Corey Water Exponent—Fracture, m’ 5.0 

 
discussed. As mentioned previously, the algorithms used include: 1) MC simula-
tion (Palisade® @RISKTM); 2) Microsoft® Excel’s Gradient-based (GRG2) algo-
rithm (GRG Nonlinear Solver); 3) Microsoft® Excel’s Evolutionary Solver; 4) Pa-
lisade® Evolver’s GA; 5) GAPS MO GA (based on the NSGA-II) algorithm; and 
6) Palisade® Evolver’s OptQuestTM algorithm. The results of each individual 
technique will be discussed followed by a comparison of the results of each of the 
techniques. As discussed previously, only the first 8 days of flow data were ana-
lyzed because, during this flow period, the flowing pressure remains above the 
bubble point, and therefore only two-phase flow exists in the matrix and frac-
tures. During this period, the GOR is also relatively constant, as would be ex-
pected for flow above the bubble point. 

Monte Carlo Simulation. As discussed previously, stochastic history-matching 
can be a multi-step process, with multiple refinement stages. For example, two 
sets of MC simulations were conducted in the presented example. Following the 
first stage, inputs including fracture compressibility and matrix properties were 
held constant for the final set of simulations, which will be discussed here. Fur-
ther refinement stages could be conducted using information from past runs to 
adjust input distributions and increase the number of success cases. The para-
meter distributions for the first refinement stage are shown below in Table 4.  
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Table 4. Input distributions/ranges for Monte Carlo simulation and assisted histo-
ry-matching. 

Uncertain Parameter Distribution Type Low Value High Value 

Fracture Permeability (md) Uniform 3000 4000 

BBT Drainage Area (Ac) Uniform 10 14* 

BBT Half-Length, xf_BBT (ft) Uniform 372 441* 

Breakthrough Pressure (psi) Uniform 3700 4100 

Corey Oil Exponent—Fracture, n’ Uniform 1 3 

Corey Water Exponent—Fracture, m’ Uniform 1 10 

*Upper bound on fluid in place given assumptions of fracture shape, width and porosity. 

 
Because enough data was not available to construct proper input distributions, 
uniform distributions were used for each parameter between a reasonable low 
and high value. In some cases, the high and low value were constrained by phys-
ical limits (i.e. the upper limit of half-length, the lower limit of n’ and m’ and 
breakthrough pressure) whereas other limits were set at a reasonable range and 
then adjusted following the screening stage of iterations. The input parameter 
ranges were also further constrained by the initial screening phase of simulations 
(500,000 iterations with significantly wider parameter ranges), as well as rea-
sonable limits on the uncertain parameters. The initial screening phase was used 
to rule out outlier matches which occurred with minimal frequency. The same 
limits were used for the application of the assisted-history matching techniques, 
which will be discussed in the following section. This analysis is comparable to 
that conducted by [16], although the number of uncertain parameters was re-
duced from 10 to 5, placing the focus on the most important parameters. Using 
this approach allows reasonable coverage of the sample space with a smaller 
number of iterations. [17] conducted significantly less simulations than would 
be needed to cover the sample space, although the purpose of that work was to 
demonstrate the purpose and application of MC simulation to history-matching 
flowback data from MFHWs. 

The following objective functions (OFs) were used in either the MC simula-
tions, assisted history-matching algorithms or both. The OFs take the form of 
sum of squared residuals for the rate and cumulative production of the water 
and oil phases. Because the well is flowed above the bubble point throughout the 
analysis period of the flowback, and the GOR is relatively constant at approx-
imately the solution gas level, the gas phase is not considered and is effectively 
lumped in with the oil phase. 

Water Rate OF: 

( )2
, ,1w

n
q w data w simiOF q q

=
= −∑                     (1) 

where, n is the number of data points collected during the portion off the flow-
back data being analyzed for each phase. 

Oil Rate OF: 

( )2
, ,1o

n
q o data o simiOF q q

=
= −∑                     (2) 
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Cumulative Water OF: 

( )2
, ,1w

n
Q w data w simiOF Q Q

=
= −∑                     (3) 

Cumulative Oil OF: 

( )2
, ,1o

n
Q o data o simiOF Q Q

=
= −∑                     (4) 

Summed Rate OF: 

( ) ( )2 2
, , , ,1t

n
q w w data w sim o o data o simiOF w q q w q q

=
 = − + −  ∑          (5) 

where, 

1w ow w+ =                            (6) 

The summed rate OF given by Equation 5 is used for the SO algorithms. 
There are however two issues associated with using summed OFs: 1) objective 
conflict leading to erroneous results; and; 2) weighting can have a significant 
impact on the results of the algorithm. In this work, a 1:1 weighting was used for 
direct comparison to the MO algorithms (equivalent to using ww = wo = 0.5).  

Alternate criteria, such as those applied by [16] [17], could also be used if a 
reasonable baseline deterministic match is not available. In these two papers, the 
authors used an R2 value of each phase (in terms of rate) greater than 0.9 (as 
suggested by [18]) and a total cumulative production for each phase within 10% 
(as suggested by [19]) for each phase to determine a successful match. This ap-
proach was shown to be relatively successful in the studies by [16] [17]. Howev-
er, some successful solutions in both cases were found where a high R2 value ex-
isted but the match was poor, due to the inherent nature of R2 as a match fit in-
dicator, especially when dealing with highly nonlinear problems with a large 
number of data points. For the current study, 100,000 iterations are conducted, 
and fairly strict criteria were enforced to obtain a successful match, including the 
following (solution has to be better than the deterministic solution for both 
phases): 
• ,w wq q deterministicOF OF<  

• ,o oq q deterministicOF OF<  

• ,w wQ q deterministicOF OF<  

• ,o oQ q deterministicOF OF<  

Using all four of these criteria, only 79 matches were found (~0.1%), while if 
only the two rate criteria were used, as is usually done with the assisted histo-
ry-matching techniques, ~10× the number of matches were found (~1%). Based 
on these results, it is clear that the random behaviour of MC simulation is not 
particularly efficient in finding optimal solutions, making the use of modern as-
sisted history-matching techniques desirable, particularly when a deterministic 
solution is not available. For the remainder of this paper, only the two rate OFs 
will be used in the application of all algorithms, because adding more OFs can 
often cause these algorithms to converge slowly and creates further objective 
conflict, potentially leading to finding a less desirable solution. The parameters 
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for the deterministic match, as well as the best 5 matches (in order of increasing 
OF value) when considering the summation of the two OFs, are shown below in 
Table 5 along with the mean, standard deviation and P10/P90 ratio of the 861 
acceptable matches. 

The history-match associated with the top 10 MC simulation history-matches 
as well as the deterministic history-match are shown in Figure 5. 

For later comparison to the assisted history-matching results, the average of 
the top five iterations were assumed to represent the best solution found using 
MC simulation, as each of these solutions have a total OF within 1% of each 
other. The values for each of the uncertain parameters are provided in Table 6. 
The average summed rate OF is ~14% lower than the deterministic solution. 
 
Table 5. Stochastic history-match parameters. 

Uncertain Parameter Deterministic 
Match 

1 
Match 

2 
Match 

3 
Match 

4 
Match 

5 
Mean 

Std. 
Dev. 

P10/P9
0 

Fracture  
Permeability (md) 

3500 3225 3184 3167 3159 3216 3425 254.41 1.23 

BBT Drainage Area 
(Ac) 

14 13.82 13.73 13.97 13.78 13.67 13.52 0.37 1.07 

BBT Half-Length, 
xf_BBT (ft) 

440 438 436 440 437 435 432 6.01 1.04 

ABT Drainage  
Area (Ac) 

13 12.83 12.75 12.97 12.79 12.69 12.54 1.41 1.04 

ABT Half-Length, 
xf_ABT (ft) 

425 422 420 424 421 420 417 5.79 1.04 

Breakthrough  
Pressure (psi) 

3825 4093 4096 4058 4099 4089 4024 56.75 1.04 

Corey Oil  
Exponent—Fracture, n’ 

1.20 1.44 1.44 1.35 1.42 1.51 1.40 0.12 1.26 

Corey Water  
Exponent—Fracture, 

m’ 
5.00 4.81 5.04 5.31 6.10 5.25 5.31 1.41 2.03 

Total Objective  
Function (millions) 

41.5 35.4 35.4 35.5 35.6 35.7 39.2 0.14 1.10 

 
Table 6. Average values of top 5 Monte Carlo simulations. 

Uncertain Parameter Top 5 Average 

Fracture Permeability (md) 3190 

BBT Drainage Area (Ac) 13.78 

BBT Half-Length, xf_BBT (ft) 437 

ABT Drainage Area (Ac) 12.80 

ABT Half-Length, xf_ABT (ft) 421 

Breakthrough Pressure (psi) 4087 

Corey Oil Exponent—Fracture, n’ 1.43 

Corey Water Exponent—Fracture, m’ 5.30 

Total Objective Function (millions) 35.4 
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Figure 5. Stochastic flowback history-match: (a) Water production rates; (b) Cumulative water production; (c) Oil production 
rates; (d) Cumulative oil production; (e) Gas production rates; and (f) Cumulative gas production. 

 
The parameter distributions generated from the stochastic history-matching 

exercise are provided in Figure 6. R2 values are shown to indicate the lognormal 
nature of the output distributions, and the deterministic and mean values are 
provided for reference. Note that the parameter distribution for BBT drainage 
area is not provided because the focus is on the half-length calculated from the 
drainage area (using the assumed shape and geometry constraints), since 
half-length is one of the key parameters controlling long-term production of the 
well.  
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From Table 5 and Figure 6 it can be seen that the range of values used to 
match the flowback data is fairly small (P10/P90 ≤ 2). Further it can be seen that 
the average values of the 861 successful matches are within 5% of the determi-
nistic match, with the exception of the relative permeability exponents (n’ = 17% 
and m’ = 6%), which are sensitive to small changes due to the small magnitude 
of their values. Some key results to point out are as follows: 
• Fracture permeability covers the entire input distribution, suggesting that 

fracture permeability may fall outside the search space. However, very few 
matches beyond the selected range were found during the screening phase.  

• Breakthrough pressures, including the deterministic match, are greater than  
 

 
Figure 6. Stochastic flowback history-match parameter distributions: (a) Fracture permeability; (b) Breakthrough pressure; (c) 
BBT half-length; (d) Corey oil relative permeability exponent, n’; (e) Corey water relative permeability exponent, m’. 
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reservoir pressure estimated from DFIT analysis. Values (other than the de-
terministic match) also fell near the upper limit of 4100 psia, suggesting a 
better match to the available data could be achieved using a breakthrough 
pressure of 4100 psia. However, experimentation with a variety of fracture 
parameters suggested that breakthrough pressures greater than 4100 psia led 
to model breakthrough significantly BBT in the actual data, which led to set-
ting the upper limit at the selected value. 4100 psia still yields a breakthrough 
earlier than the data—however, the fact that flow initiates at ~36 STB/D, 
which is higher than other similarly completed wells on the same pad, sug-
gests that some early-time hydrocarbon data may not have been recorded. An 
improved late-time match was observed with earlier breakthrough. Overall 
the results suggest a near fracture supercharge of up to 10% following an 11 
day shut-in between stimulation and the onset of flowback in which the 
bridge plugs were milled out. The supercharge has been shown to be much 
higher in some formations depending on factors such as the stimulation 
pumped, shut-in time between stimulation and flowback and other reservoir 
and fluid properties. 

• BBT half-length values fell in the range of 413 to 441 ft suggesting that a BBT 
half-length less than 400 ft is unlikely and that a high degree of fracture effi-
ciency was achieved. 

• Fracture relative permeability exponents to oil fall in a tight band between 1.1 
and 1.6, suggesting minimal potential variability in this parameter. 

• Fracture relative permeability exponents to water are far less constrained 
than those to oil falling between 2.1 and 9, although are significantly higher 
than those to oil. This has been observed in nearly all wells analyzed using 
these methods. In this case it can be seen that the values between the P10 
(3.5) and P90 (7.2) follow a lognormal distribution and yield a P10/P90 ratio 
of ~2.20% of the solutions fell outside this range and may be considered as 
outliers. 

Assisted History Matching. In addition to the MC simulation approach 
demonstrated above, five assisted history-matching algorithms were applied in 
an attempt to find the best possible history-match to the same flowback data set 
discussed above. Two types of algorithms were used in this analysis (gra-
dient-based and evolutionary) with a total of five techniques being tested: 1) Mi-
crosoft® Excel’s SO Gradient-based (GRG2) algorithm (GRG Nonlinear Solver); 
2) Microsoft® Excel’s SO Evolutionary Solver; 3) Palisade® Evolver’s SO GA; 4) 
GAPS MO GA (based on the NSGA-II) algorithm; and 5) Palisade® Evolver’s SO 
OptQuestTM algorithm. For this analysis, the lower and upper bounds given 
above in Table 4 are used as constraints on the algorithms, and no further con-
straints were applied. The same initial guesses for the uncertain parameters 
(Table 7) are used to seed each of the algorithms, although many evolutionary 
algorithms do not require an initial guess as they generate an initial population 
based on the constraints in the uncertain parameters. Most available evolutionary 
algorithms are implemented in a way that the initial guess will be a member of the  
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Table 7. Initial guesses for assisted history-matching parameters. 

Uncertain Parameter Value 

Fracture Permeability (md) 3100 

BBT Drainage Area (Ac) 13.96 

BBT Half-Length, xf_BBT (ft) 440 

ABT Drainage Area (Ac) 13 

ABT Half-Length, xf_ABT (ft) 424 

Breakthrough Pressure (psi) 3900 

Corey Oil Exponent—Fracture, n’ 1 

Corey Water Exponent—Fracture, m’ 1 

 
first population. As was discussed previously, and as will be demonstrated below, 
the initial guess is critical to achieving good results from the GRG algorithm be-
cause these algorithms will tend to find the closest local minima in the OF 
(downhill nature of the algorithm). The initial guesses were selected based on 
the following criteria: 
• Fracture permeability—RTA of early-time flowback data suggested a maxi-

mum fracture permeability of ~3500 psia (as was used in the deterministic 
history match) and therefore a slightly lower value was selected for this ap-
plication. 

• Breakthrough pressure—DFIT analysis suggested an initial reservoir pressure 
of ~3700 psia and therefore a 200 psia supercharge effect was assumed (~5%). 

• Drainage area—set based on results of the FMB in the deterministic analysis. 
• Relative permeability exponents—straight-line relative permeability curves 

were assumed as may be expected for homogeneous perfectly planar fractures 
under ideal flowing conditions. 

The results of each algorithm will be discussed, followed by a comparison of 
the results of each algorithm, as well as the average results of the top five MC 
simulations. 

Microsoft® Excel’s GRG Nonlinear Solver. As discussed previously, the initial 
guess is critical to the quality of the result using this type of algorithm due to the 
“downhill” nature of the algorithm and tendency to get trapped in local minima. 
This impact will be demonstrated in this section. Due to the deficiencies of this 
algorithm in solving complex problems with multiple minima, a poor result was 
expected using the initial guesses shown in Table 7. However, it was interesting 
to determine whether a reasonable quality initial guess (i.e. the deterministic so-
lution) could be used to converge on the absolute minimum and ultimately find 
an optimized solution. This is of interest because these algorithms run very 
quickly compared to GAs due to their simplistic nature, and are built directly 
into Microsoft® ExcelTM, allowing for fast and simple application following the 
deterministic history-matching exercise. To test the capacity of the algorithm for 
solving this problem, two runs were completed. In the first run the initial guesses 
shown in Table 8 were used, and in the second run, the deterministic solution  
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Table 8. Initial guesses and final solutions for Attempt #1 using EXCEL’s GRG non-linear 
solver. 

Uncertain Parameter Initial Guess Final Solution 

Fracture Permeability (md) 3100 3000 

BBT Drainage Area (Ac) 14 14 

BBT Half-Length, xf_BBT (ft) 441 441 

ABT Drainage Area (Ac) 13 13 

ABT Half-Length, xf_ABT (ft) 425 425 

Breakthrough Pressure (psi) 3900 3911 

Corey Oil Exponent—Fracture, n’ 1 1 

Corey Water Exponent—Fracture, m’ 1 1 

Total Objective Function (millions) 42.8  

 
(see Table 2) was used. In both cases the algorithm converged to a solution very 
quickly, given the speed of the tool being used, suggesting very few iterations 
were required to locate a minima, although the exact iteration count is not pro-
vided by the standard version of ExcelTM unless the algorithm is stopped at each 
iteration (which was not done in this case). The initial guess and final solution 
for the two sets of input parameters are provided in Table 8 and Table 9, with 
the solutions being compared to actual data and the deterministic history-match 
in Figure 7. 

From Table 7 and Table 8 it can be seen that the final solutions yield a 4% 
higher summed rate OF than the deterministic solution when using the initial 
guesses shown in Table 6, while the optimal solution using the deterministic 
match as the initial guess yields a 16% reduction in the summed rate OF which 
equates to an ~2% improved result over any of the MC simulations. From Fig-
ure 7 it can be seen that Attempt #1 yields a very poor history-match, especially 
to the hydrocarbon phases, while Attempt #2 yields an excellent history-match 
to all three phases. As will be seen in the coming sections, the gradient solver 
replicated the results of the evolutionary algorithms when seeded with the de-
terministic history-match as an initial guess. This suggests that no local minima 
exist between the deterministic solution and the absolute minimum. Further, 
this type of method may be used to optimize a history-match once a reasonable 
deterministic solution is found, although additional testing would be required to 
further substantiate this claim. 

Microsoft® Excel’s Evolutionary Solver. In this section the results of the Ex-
cel’s Evolutionary Solver will be demonstrated. This Solver algorithm is the first 
of two SO GAs which will be tested in this work. This solver also uses several 
classical optimization methods to attempt to improve upon the solutions found 
by the GA, thus making it a hybrid GA. As discussed previously, details of how  
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Table 9. Initial guesses and final solutions for Attempt #2 using EXCEL’s GRG 
non-linear solver. 

Uncertain Parameter Initial Guess Final Solution 

Fracture Permeability (md) 3500 3102 

BBT Drainage Area (Ac) 14 14 

BBT Half-Length, xf_BBT (ft) 441 441 

ABT Drainage Area (Ac) 13 13 

ABT Half-Length, xf_ABT (ft) 425 425 

Breakthrough Pressure (psi) 3825 4099 

Corey Oil Exponent—Fracture, n’ 1.2 1.45 

Corey Water Exponent—Fracture, m’ 5 5.61 

Total Objective Function (millions) 34.7  

 
Excel’s Evolutionary Solver works are not readily available and very little assis-
tance was provided by the developer to help understand exactly which tech-
niques are employed. Given that this is a time-based, rather than a genera-
tion-based algorithm, the exact number of iterations conducted is unknown, al-
though the algorithm converged significantly faster than the other algorithms 
tested, suggesting that significantly fewer 10,000 iterations were conducted in 
finding the best solution. The input parameters used for this algorithm are 
shown below in Table 10. A mutation rate of 15% was selected for all GAs, as 
this was preprogrammed into the version of the GAPS algorithm which was used 
in this work. A population size of 100 was used for all of the population-based 
algorithms based on the suggestions of Kanfar and Clarkson (2016). Max time 
without improvement was set to a high value to give the algorithm sufficient 
time to search for a better solution given the calculation speed of the spread-
sheet-based tool used in this work (~30 seconds/iteration). Based on the values 
provided in Table 10, and the approximate run speed of the spreadsheet, ~300 
iterations were allowed to find an improved solution, alternatively the algorithm 
will terminate once the maximum change of the combined OF falls below 0.01%. 
In this case it is unclear whether the algorithm terminates based on the time or 
convergence criteria. The same convergence criteria were used with Palisade’s 
algorithms, which will be discussed in a coming section. 

As with other SO algorithms, a single best solution is found by the algorithm. 
The parameters resulting from the optimization are found in Table 11 and the 
resulting combined OF is ~16% lower than that of the deterministic match. 

Palisade® Evolver’s Genetic Algorithm. In this section the results of Palisade® 
Evolver’s SO GA will be demonstrated. EvolverTM is the second SO GA used in 
this work. Much like Excel’s Evolutionary Solver, EvolverTM uses a steady-state 
approach, which the company has found to work as well or better than the ge-
nerational approach. Further, given that this is a proprietary commercial tool, 
details on the exact workings of the algorithm are not readily available. Based on 
the information provided by the developer, the algorithm operates in a manner  
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Figure 7. Gradient solver flowback history-match: (a) Water production rates; (b) Cumulative water production; (c) Oil produc-
tion rates; (d) Cumulative oil production; (e) Gas production rates; and (f) Cumulative gas production. 

 
Table 10. Input parameters for excel’s single-objective evolutionary solver. 

Mutation Rate (%) 15 

Population Size 100 

Max Time Without Improvement (s) 10,000 

Convergence Criteria for Max Change (%) 0.01 

https://doi.org/10.4236/apm.2019.93012


J. D. Williams-Kovacs, C. R. Clarkson 
 

 

DOI: 10.4236/apm.2019.93012 264 Advances in Pure Mathematics 
 

Table 11. Optimal match parameters for excel’s single-objective evolutionary solver. 

Uncertain Parameter Value 

Fracture Permeability (md) 3156 

BBT Drainage Area (Ac) 14 

BBT Half-Length, xf_BBT (ft) 441 

ABT Drainage Area (Ac) 13 

ABT Half-Length, xf_ABT (ft) 225 

Breakthrough Pressure (psi) 4098 

Corey Oil Exponent—Fracture, n’ 1.46 

Corey Water Exponent—Fracture, m’ 5.66 

Total Objective Function (millions) 34.7 

 
comparable to a basic GA, although several specialty operators are included to 
improve the results of the algorithm. The algorithm is trial-based rather than 
generational-based, and therefore to mimic the generational approach used by 
the GAPS MO GA, 10,000 trials were conducted (equivalent to 100 generations 
with a population of 100). A convergence criteria for maximum change in the 
OF is also used as an input for termination of the algorithm, although this was 
not achieved. The input parameters used for this algorithm are shown below in 
Table 12. A cross-over rate of 50% is used as this is the default setting in the 
program, meaning that each child receives half of its genes from each parent. 
Changing the cross-over rate could significantly impact algorithm performance 
and can be changed during an optimization run.  

As with other SO algorithms, a single best solution is found by the algorithm. 
The parameters resulting from the optimization are given in Table 13, and the 
resulting combined OF is ~16% lower than that of the deterministic match. 

The best solution was found in the 7455th trial, although only 245 trials were 
required to get within less than 1% of the best solution, suggesting that signifi-
cantly fewer trials could have been run for this particular scenario. Fewer trials, 
however, would limit the search extent of the algorithm, which may lead to poor 
results in some cases, as the majority of the early trials produce significantly 
higher OF numbers. Figure 8(a) shows the average and minimum OF for the 
100 equivalent generations (100 trials is equal to 1 generation). From the average 
curve the steady-state nature of the algorithm becomes apparent. Unlike a gene-
rational GA, where you would expect to see the generational average decrease 
over time, in this case the average decreases for approximately 15 equivalent 
generations before beginning to fluctuate between 37 million and 47 million for 
the remaining 85 equivalent generations. From the minimum curve it can be 
seen that a value within 1% of the minimum is found (within the third equiva-
lent generation) and remains relatively constant for the remainder of the equiv-
alent generations. This result can be seen by plotting the algorithm’s improve-
ment progress Figure 8(b). The logarithmic x-axis is used to better show the op-
timization progression. Lastly, Figure 8(c) provides the OF value per trial, and  
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Table 12. Input parameters for excel’s single-objective evolutionary solver. 

Crossover Rate (%) 50% 

Mutation Rate (%) 15 

Population Size 100 

Number of Iterations 10,000 

Convergence Criteria for Max Change (%) 0.01 

 
Table 13. Best match parameters for excel’s single-objective evolutionary solver. 

Uncertain Parameter Value 

Fracture Permeability (md) 3102 

BBT Drainage Area (Ac) 14 

BBT Half-Length, xf_BBT (ft) 425 

ABT Drainage Area (Ac) 13 

ABT Half-Length, xf_ABT (ft) 4099 

Breakthrough Pressure (psi) 14 

Corey Oil Exponent—Fracture, n’ 1.45 

Corey Water Exponent—Fracture, m’ 5.61 

Total Objective Function (millions) 34.7 

 

 
Figure 8. EvolverTM SO GA results: (a) By equivalent generation, showing both the equivalent generation average and minimum; 
(b) By progression step; and (c) By trial, also showing the minimum achieved value. 
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it can again be seen that values approaching the minimum are found quite 
quickly and continue to be found throughout the remainder of the optimization.  

GAPS Multi-Objective Genetic Algorithm. In this section, the results of the 
only MO GA tested will be demonstrated. This is the GAPS algorithm developed 
by Mohammed Kanfar for the Tight Oil Consortium at the University of Cal-
gary, and is based on the NSGA-II algorithm as discussed previously. The bene-
fits of using MO algorithms were discussed previously, so in this section, the fo-
cus will solely be on the results of the algorithm. Although it is common practice 
in the application of GAs to run half the number of generations as the popula-
tion size, in this application an equal number of generations and populations 
were conducted to allow the algorithm to “dig deeper” towards an absolute 
minimum. Note that larger population sizes allow the algorithm to explore fur-
ther in the search space. The impact of running more generations will be dis-
cussed below. The algorithm was run with 100 generations with populations of 
100 following the recommendations of [5], who ran 50 generations with popula-
tions of 100 in a similar application using numerical rather than analytical si-
mulation (for a total of 10,000 runs). The input parameters used for this algo-
rithm are shown given in Table 14.  

As is the case with all MO Gas, the final generation does not converge to a 
single solution, but instead converges to a Pareto Front of nondominant ma-
thematically-equivalent solutions. In this case, the Pareto Front is convex in na-
ture, which suggests that two phase rate objectives are conflicting (a straight-line 
would suggest non-conflicting OFs). To converge on a single best solution, the 
solutions were filtered, removing solutions that have an OF higher than a certain 
threshold (with the threshold being continuously reduced until only several so-
lutions remained around the corner point of the Pareto Front), and then visual 
inspection was used to pick the final solution. There are currently no methods 
available in the literature for selecting the single best solution, and therefore an 
approach similar to that used by [5] was used in this application due to the simi-
larity of the problems. The evolution of the Pareto Front from generation to 
generation will first be investigated. The advancing Pareto Front is shown in 
Figure 9. Figure 9(a) provides the final generation, along with the other genera-
tions being shown in groups of ten generations. From this plot it can be seen 
that there is a large amount of scatter in the first 10 generations, but by the 
second ten generations convergence on the ultimate Pareto Front begins. For the 
Pareto Front, a semi-log presentation was chosen with the oil rate OF being on a 
log scale, while the water rate OF is plotted on a Cartesian scale, as this was 
found to best demonstrate the results in this case (however a Cartesian plot will  
 
Table 14. Input parameters for GAPS multi-objective genetic algorithm. 

Mutation Rate (%) 15 

Population Size 100 

Number of Generations 100 

Number of Iterations 10,000 
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Figure 9. Pareto diagram for flowback history-match: (a) Generations grouped into sets of 10 generations showing significant 
scatter in the first 10 generations; (b) Generations grouped into sets of 5 generations starting at generation 11; (c) Every 10th gen-
eration to show advancement of Pareto Front over time; (d) Every 10th generation between Generation 50 and Generation 100 to 
demonstrate convergence on the ultimate Pareto Front. The single best solution is shown with a star. 

 
be used in Figure 9(d)). In Figure 9(b), the first ten generations are eliminated 
and the remaining 90 generations are broken into groups of 5. Form this plot it 
can be seen that there is consistent improvement for approximately 50 genera-
tions prior to converging on the ultimate Pareto Front. This can also be seen in 
Figure 9(c), which shows every tenth generation starting at Generation 10. Fi-
nally, in Figure 9(d), the final 50 generations are shown and it can be seen that 
there is no obvious improvement beyond 50 generations and therefore the pop-
ulation to generation ratio of two used by [4] as well as many others when ap-
plying GAs is suggested for future applications of this algorithm. This will re-
duce runtime by 50% without having a significant impact on the final generation 
results. The single best solution selected using the method described above is 
shown with a star in Figure 9(d), and it can be seen that this point is near the 
corner point of the Pareto Front, suggesting relatively equivalent trade-off be-
tween the two objectives. From Figure 9 it can also be seen that the average val-
ue of the water rate OF is ~20× greater than that for the oil rate OF. This is due 
to the fact that water rates are much larger than the oil rates, and therefore vi-
sually similar deviations in rate will be approximately an order of magnitude 
higher. This information could have been used with the SO algorithms to reduce 
potential bias towards achieving a better water than hydrocarbon history-match, 
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although an equal weighting appears to still be effective for this problem based 
on the results of the proceeding and following sections.  

Next, generation 100 will be investigated in greater detail, focusing primarily 
on the extent of variability in the key parameter estimates during this final gen-
eration. The parameters corresponding to the best match and the average, stan-
dard deviation and P10/P90 ratio for Generation 100 are given in Table 15. The 
best match leads to a summed OF which is ~16% lower than that of the determi-
nistic match. 

Palisade Evolver’s OptQuestTM Algorithm. In this section the results of Pali-
sade Evolver’s OptQuestTM will be demonstrated. Much like Evolver’s GA, this is 
a SO algorithm. This algorithm has its basis in Scatter Search which draws many 
similarities to GAs, although also includes integer programming, Tabu Search 
and an Artificial Neural Network to improve its results and efficiency, as dis-
cussed previously. The algorithm is trial-based much like Evolver’s GA. In this 
case, since there is no basis for comparison of the algorithm, the maximum 
number of trials was set to a very large value (100,000) allowing the convergence 
criteria for maximum change in the OF to control the termination of the opti-
mization. The input parameters used for this algorithm are shown below in Ta-
ble 16.  

As with other SO algorithms a single best solution is found by the algorithm. 
The parameters resulting from the optimization are found in Table 17 and the 
resulting combined OF is ~16% lower than that of the deterministic match. 

In this particular case, 33,756 trials were required to reach the set criteria, al-
though a value with a combined OF within 1% of the optimal value was found in 
13,421 trials which equates to a ~60% reduction in optimization time, although 
many significantly higher OF values were found in the final 20,000 trials. To  
 
Table 15. GAPS multi-objective genetic algorithm generation 100 results. 

Uncertain Parameter Optimal Match Average Std. Dev. P10/P90 

Fracture Permeability (md) 3136 3,584 290 1.24 

BBT Drainage Area (Ac) 13.98 13.99 0.21 1.00 

BBT Half-Length, xf_BBT (ft) 440 440 0.20 1.00 

ABT Drainage Area (Ac) 12.99 12.99 0.01 1.00 

ABT Half-Length, xf_ABT (ft) 424 424 0.20 1.00 

Breakthrough Pressure (psi) 4099 4093 0.01 1.00 

Corey Oil  
Exponent—Fracture, n’ 

1.45 1.50 0.03 1.05 

Corey Water  
Exponent—Fracture, m’ 

5.87 7.89 1.57 1.57 

 
Table 16. Input parameters for palisade’s single-objective genetic algorithm. 

Maximum Number of Iterations 100,000 

Convergence Criteria for Max Change (%) 0.01 
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Table 17. Best match parameters for evolver’s single-objective OptQuest algorithm. 

Uncertain Parameter Value 

Fracture Permeability (md) 3148 

BBT Drainage Area (Ac) 14 

xf_BBT (ft) 441 

ABT Drainage Area (Ac) 13 

xf_ABT (ft) 425 

Breakthrough Pressure (psi) 4099 

Corey Oil Exponent—Fracture, n’ 1.46 

Corey Water Exponent—Fracture, m’ 5.65 

Fracture Permeability (md) 34.7 

 
allow comparison with the GAs, the results were filtered into “equivalent gener-
ations” of 100 trials. Figure 10(a) provides the average and minimum OF for the 
338 “equivalent generations” (the 338th “equivalent generation only contains 56 
trials”). From the average curve, the differences between OptQuest’s perfor-
mance and a generational GA become apparent. Unlike a generational GA, 
where one would expect to see the generational average go down over time, in 
this case the average decreases for approximately 10 “equivalent generations” 
prior to stabilization with four groups of “equivalent generations” with signifi-
cantly higher values which occur when the algorithm tries radically different 
areas of the search space. This is characteristic of a Scatter Search Algorithm 
which utilizes Tabu Search and an Artificial Neural Network to stop the algo-
rithm from going back to areas of the search space which either have, or are ex-
pected to yield inferior solutions. From the minimum curve, it can be seen that a 
value within 1% of the minimum is found in the 133rd “equivalent generation” 
and remains relatively constant for the remainder of the “equivalent genera-
tions”. This result can be seen by plotting the algorithms improvement progress 
which is shown in Figure 10(b). Lastly, Figure 10(c) shows the OF value per 
trial, and it can again be seen that values approaching the minimum are found 
quite quickly and continue to be found throughout the remainder of the optimi-
zation. The same impact can be seen as in the “equivalent generation” case in 
Figure 10.  

Summary of Results. In the previous sections the results of several techniques 
including: 1) Deterministic Analysis; 2) MC MO simulation (Palisade® 
@RISKTM); 3) Microsoft® Excel’s SO Gradient-based (GRG2) algorithm (GRG 
Nonlinear Solver); 4) Microsoft® Excel’s SO Evolutionary Solver; 5) Palisade® 
Evolver’s SO GA; 6) GAPS MO GA (based on the NSGA-II) algorithm; and 6) 
Palisade® Evolver’s SO OptQuestTM algorithm were discussed individually. In this 
section the results of the different techniques will be compared. In Figure 11 the 
history-match to both the water and oil phases is shown for each of the tech-
niques, while in Figure 12 the key parameters and total OF’s are provided. The 
results from Excel’s GRG Nonlinear Solver have not been included s this required  
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Figure 10. Evolver’s SO OptQuest results: (a) By equivalent generation showing both the equivalent generation average and 
minimum; (b) By progression step; and (c) By trial also showing the minimum achieved value. 

 
manipulation of the initial guess to achieve an acceptable history-match (al-
though its key match parameters will be discussed below).  

From Figure 12 it can be seen that the deterministic match matches the ear-
ly-time hydrocarbon production better than the other algorithms, although it 
provides a far less superior late time match to the two hydrocarbon phases. The 
late-time hydrocarbon match can be improved further by increasing break-
through pressure, although it was determined that this leads to premature 
breakthrough by the model and therefore an upper limit of 4100 psia was en-
forced. It can also be seen that the water match from each of the solving tech-
niques is similar. Further the hydrocarbon rate profiles for all but the determi-
nistic history-match look similar. Additional key observations based on Figure 
12 are presented below: 
• Fracture permeability ranges from 3102 md to 3190 md with the lowest value 

coming from Evolver’s GA and the highest coming from the average of the 
top five MC simulations. Each of the algorithms finds a fracture permeability 
~350 md lower than the deterministic match (~10% difference). The percent 
variability from the five algorithms is approximately is ~2.5% when com-
pared to the deterministic match. 
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Figure 11. Flowback history-match using different algorithms: (a) Water rate match; (b) Cumulative water production match; (c) 
Oil rate match; (d) Cumulative oil production match; (e) Gas rate match; and (f) Cumulative gas produced match. 
 

• Breakthrough pressure approaches the upper limit for each of the five algo-
rithms and is significantly higher than the deterministic match (~7%). An 
earlier breakthrough yields a better late-time oil match, which is where oil 
rates are highest and therefore have greatest potential to add to the OF value. 
This is also the piece of data were the deterministic solution deviates most 
from the measured data. As mentioned previously, a breakthrough pressure 
of greater than 4100 psia leads to premature breakthrough, although also 
yields a better late-time history-match. A breakthrough pressure of 4100 psia 
suggests a 10% supercharge of the formation directly surrounding the frac-
tures which results from pumping the fracture at significantly higher pres-
sures than formation pressure (mini water flood effect). 
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Figure 12. Flowback key history-match parameters found using different algorithms: (a) Fracture permeability; (b) BBT 
half-length; (c) Breakthrough Pressure; (d) Oil relative permeability exponent, n’; (e) Water relative permeability exponent, m; 
and (f) Total OF value. 
 

• BBT half-length is nearly constant using each of the six techniques, ranging 
from 437 - 441 ft which is to be expected given the rather definitive results of 
the FMB shown above. The deterministic history-match used the same BBT 
half-length as the four main assisted history-matching techniques. 

• Oil relative permeability exponent shows almost no variability from the five 
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algorithms ranging from 1.43 - 1.46. This is ~20% higher than the value used 
in the deterministic history-match. 

• Water relative permeability exponent shows slightly more variability from 
each of the five algorithms, ranging from 5.30 - 5.87. Each of the algorithms 
predicted a water exponent exceeding that of the deterministic history-match 
by an average of ~4%. The percent variability from the five algorithms is ap-
proximately is ~11.4% when compared to the deterministic match. 

• The total OF for the four assisted history-matching algorithms was nearly 
identical, ranging from 34.7 - 35.4 million. The average of the top five MC 
simulations was ~2% higher than the other assisted history-matching tech-
niques. The five different algorithms improved the total OF from 14.7% - 
16.4%, although this suggests that the deterministic match still falls within 
the ±20% range often accepted in industry in this particular case. 

The above results demonstrate that each of the algorithms find a very similar 
optimal value for each of the key parameters suggesting that this likely 
represents the global optimum. After reviewing the total OF, it is clear that there 
is significant benefit to applying these algorithms once bounds on key parame-
ters can be estimated. Another interesting observation is that the deterministic 
history-match yielded values within 10% of the optimal values for three out of 
the five uncertain parameters. The only exceptions are the relative permeability 
exponent to oil water, which varied by ~20% and ~11% respectively. This higher 
differential can be attributed to the low values of these exponents, making them 
particularly sensitive when calculating percent difference (although the absolute 
value was within 0.25 and 0.66 of the average optimal values respectively).  

Based on the results shown above, it would be expected that application of 
Excel’s GRG Non-Linear Solver with the use of multi-restart mode would likely 
yield the same results. This was not tested to its full extent in this analysis, al-
though using the deterministic history-match as an initial guess led to similar 
parameters as those solved by the other algorithms. This result suggests that the 
multi-restart method would likely be successful in this problem and also demon-
strates that there are no local minima between the deterministic match and 
global optimum. 

4. Discussion 

The basis of this work is the tool developed by [1] for analyzing multi-phase 
(water, oil and gas) flowback data from MFHWs following hydraulic fracture 
stimulation to estimate key fracture properties such as effective fracture 
half-length and fracture permeability. The base tool, with the modifications dis-
cussed previously, was then used to conduct a deterministic history-match. Fol-
lowing the deterministic history-match, MC simulation was used to determine 
the variability in the key history-match parameters which can be used to effec-
tively match the data (rate OF for oil and water lower than the deterministic 
match). Once this analysis was conducted, the results of the best MC simulations 

https://doi.org/10.4236/apm.2019.93012


J. D. Williams-Kovacs, C. R. Clarkson 
 

 

DOI: 10.4236/apm.2019.93012 274 Advances in Pure Mathematics 
 

were compared to the results of several assisted history-matching techniques in 
an attempt to find the global optimum (which corresponds to the “true” fracture 
parameters, assuming the model and other hard inputs are correct). Algorithm 
complexity varied from Excel’s GRG Non-Linear Solver, which is based on GRG, 
to SO and MO GAs, and an algorithm known as OptQuestTM which combines 
several optimization techniques into a single algorithm. It was demonstrated 
that each technique could essentially locate the same optimal set of parameters, 
suggesting that this corresponds to the absolute minimum rather than a local 
minimum, which in turn led to a significant improvement in history-matching 
over the deterministic analysis. Despite the versatility of the methods described, 
there are several areas which warrant further discussion. 

Two of the biggest challenges when applying MC simulation and other as-
sisted history-matching techniques are: 1) selecting which variables to consider 
unknowns; and 2) developing an input distribution for the unknowns. These 
methods are typically most successful and converge faster when the number of 
inputs is limited to the minimum possible number with the smallest range to 
minimize the search space for the algorithm. In the case of flowback analysis, 
there are many uncertain inputs making this a difficult problem to solve using 
these methods, and therefore it is important to select the most important para-
meters as uncertain (i.e. fracture half-length and conductivity), while assuming 
that some less critical inputs that are constant (i.e. initial fracture pressure and 
fracture porosity). The next challenge is developing an input distribution for the 
uncertain parameters (particularly for MC simulation). In an ideal scenario, the 
input distributions can be developed from existing data allowing for greater pre-
cision and ultimately better output results, although this requires a significant 
amount of analogous data. For some scenarios, such as history-matching 
long-term production from wells with a significant number of analogs which 
have all been analyzed, this is feasible. Further, in many cases parameters such as 
matrix permeability have been demonstrated extensively in the literature to 
show a lognormal distribution. Unfortunately this is not the case with flowback 
analysis, where the data set is generally limited, or in many cases non-existent, 
due to the very new nature of industry interest in analyzing this data and lack of 
widespread (although rapidly growing) application. For example, the basic tech-
niques used in this work have been applied by several companies including in an 
SPE paper written by [20]. Due to a lack of data for developing an input distri-
bution, a simple uniform distribution was used in this work for the 5 selected 
input parameters, where the distribution range was limited as much as possible 
using available offset analysis as well as the deterministic history-match. As these 
methods gain further traction in industry, and are applied to more wells, devel-
oping better input distributions will likely be possible making the application of 
these methods more versatile. 

Another challenge is determining an acceptable number of iterations (i.e. the 
number of generations and population size in the GAPS algorithm) to allow 
achieving reasonable results while minimizing run time to make the application 

https://doi.org/10.4236/apm.2019.93012


J. D. Williams-Kovacs, C. R. Clarkson 
 

 

DOI: 10.4236/apm.2019.93012 275 Advances in Pure Mathematics 
 

of the techniques to a large number of wells more feasible. In this work, the 
purpose was to demonstrate the applicability of the different techniques used, 
and therefore run time was not a consideration, although this will become more 
important as these techniques continue to gain traction in industry. In this case, 
other than the ExcelTM Solver methods, each technique required multiple days of 
run time making the techniques not practically applicable to a large number of 
wells. Further, the tool is still in the research phase, and could be made signifi-
cantly more efficient (~1 iteration per second comparable to other similar com-
mercial tools), which would also help to significantly reduce run time. Trying to 
determine an acceptable number of iterations is an area of future work which 
will require application to more than the several wells which have been analyzed 
using these techniques. 

In this paper, it was demonstrated that Excel’s GRG Non-Linear Solver is 
highly ineffective when a relatively generic initial guess is used, as this algorithm 
will find the closest local minima to the initial guess. When the deterministic 
solution was used as the initial guess, the algorithm converged to parameters 
similar to the other techniques applied, suggesting there is no local minima be-
tween the deterministic solution and the optimal solution. This may not always 
be the case, and in some applications a complete deterministic analysis may not 
be conducted prior to applying an assisted history-matching algorithm. The 
convergence speed of this algorithm makes it ideal, although its application 
clearly has limitations. One solution is to apply the multi-restart techniques dis-
cussed previously, where the algorithm will run for a series of different initial 
guesses in attempt to find the global minima. It is likely that a substantial num-
ber of restarts would be required to find the optimal solution for the flowback 
problem, and therefore extensive testing would be required before confidently 
applying this technique and determining how its run time compares to the other 
algorithms tested. The standard version of Solver available in ExcelTM does not 
offer a multi-restart option, although the developer of this solver (Frontline 
Solver’s) offers more advanced versions which include this option as well as fur-
ther improvements and additional algorithms. 

In this work, six techniques were applied for assisted history-matching pur-
poses. These methods were selected as they were either developed within the re-
search group (GAPS algorithm) or commercially available from reputable ven-
dors that are used extensively in industry (Microsoft® and Palisade®).  

Future work on this topic will focus on the application of addition algorithms 
available both commercially and in the literature. Testing of further MO GA’s 
would be of particular interest as they overcome the biggest challenge of SO al-
gorithms which were the primary focus of this work. Testing further techniques 
is warranted, seeking algorithms which converge faster and/or are potentially 
more effective in consistently finding the optimal solution. A detailed investiga-
tion, using multiple examples (both simulated and field examples) will also be 
conducted to determine the number of iterations required to achieve the desired 
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result. This will allow for a better comparison of both convergence speed and 
accuracy which was not directly addressed in this paper. 

5. Conclusions 

In this work, several algorithms were tested for the purpose of uncertainty anal-
ysis and assisted history-matching of flowback data. In previous work, [16] [17] 
applied MC simulation to the same data set, although less iterations were con-
ducted with significantly more input parameters and with wider bounds, bring-
ing the results into question. The GAPS algorithm has also been tested by [4] for 
history-matching three-phase flowback with a numerical simulator and [3] at-
tempted to use a combination of algorithms to try to decouple parameters in one 
of their analysis tools, although more rigorous methods could have been applied. 
Other than these limited studies, uncertainty quantification and assisted histo-
ry-matching have not been investigated for application to the flowback problem. 
The main conclusions of this study are as follows: 
• MC simulation can effectively be applied for both uncertainty quantification 

and assisted-history matching, assuming enough trials are conducted to ef-
fectively cover the search space. For practical application, this limits the 
number of uncertain parameters and the distribution range for these para-
meters. 

• As anticipated, application of a gradient-based algorithm was not successful 
unless a very good initial guess was provided. This is due to the nature of the 
algorithm limiting its application in the absence of using the multi-restart 
feature. 

• Each of the techniques tested (excluding Excel’s GRG Non-Linear Solver), 
including both SO and MO techniques, was able to converge to a very similar 
optimal solution, suggesting that they were likely finding the global optima. 
There are often problems associated with applying SO algorithms to MO 
problems due to competing objectives, although this issue did not appear to 
arise in the analyzed well. It was demonstrated that each of these techniques 
provided a significant improvement in history-match quality over a single 
deterministic analysis, although deterministic history-matching is useful in 
determining which parameters should be considered uncertain and con-
straining the range of these uncertain parameters. 

• Further testing is warranted to determine the wide-spread applicability of 
these techniques, and to reduce run time making the application more desir-
able for industry applications. 

• Additional algorithms should be investigated for a larger number of wells to 
determine which techniques are most applicable to the flowback problem. 
Specifically, testing additional MO algorithms would be desirable as these al-
gorithms tend to better represent the problem. It is possible that MO algo-
rithms other than the GAPS algorithm could provide better results for flow-
back analysis. 
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Nomenclature 
Abbreviations 

ABT = After-breakthrough 
BBT = Before-breakthrough 
CDF = Cumulative distribution function 
DFIT = Diagnostic fracture injection test 
FMB = Flowing material balance 
FR = Flow-regime 
GA = Genetic algorithm 
GOR = Gas-oil ratio 
GRG = Generalized reduced gradient 
LTO = Light tight oil 
MBT = Material balance time 
MC = Monte Carlo 
MINC = Multiple interacting continua approach 
MO = Multi-objective 
NSGA = Nondominated sorting genetic algorithm 
PDF = Probability density function 
PVT = Pressure-Volume-Temperature 
RNP = Rate-normalized pressure 
RNP’ = Rate-normalized pressure derivative 
RTA = Rate-transient analysis 
SO = Single-objective 

Field Variables 

Fc = Fracture conductivity, md-ft 
m’ = Corey water relative permeability constant for the fractures, dimensionless 
n’ = Corey oil relative permeability constant for the fractures, dimensionless 
p = Pressure, psia 
pwf = Sadface flowing pressure, psia 
p* = Extrapolated initial reservoir pressure, psia 
qo = Oil production (surface) flowrate, STB/D 
qw = Water production (surface) flowrate, STB/D 
Qo = Cumulative water production (surface), STB 
Qw = Cumulative production (surface), STB 
rwa = Apparent wellbore radius (rwa = rw e-s), ft 
w = Objective function weighting factor, dimensionless 
xf = Fracture half-length, ft 

Dimensionless Variables 

tDd = Dimensionless decline time 
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Subscripts 

ABT = After-breakthrough 
BBT = Before-breakthrough 
BT = Breakthrough 
D = Dimensionless variable 
f = Fracture  
o = Oil 
T = Total 
w = Water 
wf = Sandface 
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