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Abstract 

In analogy to the role of Lommel polynomials ( )Rn zν  in relation to Bessel 

functions ( )J zν  the theory of Associated Hermite polynomials in the scaled 

form ( )Hen zν  with parmeter ν  to Parabolic Cylinder functions ( )D zν  is 

developed. The group-theoretical background with the 3-parameter group of 
motions ( )2M  in the plane for Bessel functions and of the Heisen-

berg-Weyl group ( )2W  for Parabolic Cylinder functions is discussed and 

compared with formulae, in particular, for the lowering and raising operators 
and the eigenvalue equations. Recurrence relations for the Associated Her-
mite polynomials and for their derivative and the differential equation for 
them are derived in detail. Explicit expressions for the Associated Hermite 
polynomials with involved Jacobi polynomials at argument zero are given and 
by means of them the Parabolic Cylinder functions are represented by two 
such basic functions. 
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1. Introduction 

Let us motivate our intentions by an analogy of Bessel functions ( )J zν  to Pa-
rabolic Cylinder functions ( )D zν . Both sets of functions satisfy a certain 
second-order differential equation and a certain 3-term recurrence relation. The 
3-term recurrence relation for the Bessel functions in the form ( )J n zν +  pro-

How to cite this paper: Wünsche, A. 
(2019) Associated Hermite Polynomials 
Related to Parabolic Cylinder Functions. 
Advances in Pure Mathematics, 9, 15-42. 
https://doi.org/10.4236/apm.2019.91002 
 
Received: November 26, 2018 
Accepted: January 20, 2019 
Published: January 23, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

http://www.scirp.org/journal/apm
https://doi.org/10.4236/apm.2019.91002
http://www.scirp.org
http://www.scirp.org
https://doi.org/10.4236/apm.2019.91002
http://creativecommons.org/licenses/by/4.0/


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.91002 16 Advances in Pure Mathematics 
 

vides the possibility to express it successively by the sum of two Bessel functions 
with lower indices ( )J m zν +  and ( )1J m zν + − , ( m n< ), and we may continue this 
up to the case where we have presented ( )J n zν +  by a superposition of two Bes-
sel functions ( )J zν  and ( )1J zν −  considered as our “basic” functions of the 
form 

( ) ( ) ( ) ( ) ( ) ( )1
1 1J R J R J , 0,1,2, , ,n n nz z z z z nν ν

ν ν ν ν+
+ − −= − = ∈     (1.1) 

with coefficients ( )Rn zν  which are polynomials of n-th degree of variable 1z−  
called Lommel polynomials. Their explicit form is known [1] (cited according to 
Watson [2]). We find this in Watson [2] (from p. 294 on in very detailed form) 
and in Bateman and Erdélyi [3] (chap. 7.5.2, p. 43) with the explicit formula for 
the Lommel polynomials1 ( [ ]µ  means integer part of µ ) 

( ) ( ) ( ) ( )
( ) ( )

22

0

1 ! 1 ! 2R .
! 2 ! 1 !

n
k n k

n
k

n k n k
z

k n k k z
ν ν
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  − 

=

− − + − −  ≡  − + −  
∑          (1.2) 

Whereas Lommel derives his polynomials by a somewhat cumbersome induc-
tion ([2], chap. 9.61.) Watson derives the Lommel polynomials from some 
(Laurent) series of products of Bessel functions that according to his statement is 
simpler. Furthermore, he discusses in chap. 9.7 (from p. 303 on) a related  

function ( )
2

, ,R
4 2

n

n n
z zg zν ν

   ≡   
  

 which in similar form was introduced by  

Hurwitz [4] (cited on page 302 in [2]). 
By an analogous process one may relate the Parabolic Cylinder functions 

( )D n zν +  to the sum of two Parabolic Cylinder functions ( )D zν  and ( )1D zν −  
considered as our “basic” functions of the form 

( ) ( ) ( ) ( ) ( )1
1 1D He D He D ,n n nz z z z zν ν

ν ν νν +
+ − −= −          (1.3) 

with polynomials ( )Hen zν  of n-th degree in variable z which possess the expli-
cit form 

( ) ( )
( )
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       (1.4) 

where ( ) ( ),Pk uα β  denotes the Jacobi polynomials introduced in this form by 
Szegö [5] and here taken for argument 0u = . The polynomials (1.4) are asso-
ciated to the Hermite polynomials in a scaled form and are for 0ν =  identical 
with the scaled Hermite polynomials usually denoted by ( )Hen z  that means 

( ) ( )0He Hen nz z≡ . We call them Associated Hermite polynomials (scaled for 
applications in connection with the Parabolic Cylinder functions ( )D zν ). They 

 

 

1We change slightly the standard notation of the Lommel polynomials [1] [2] [3] according to 
( ) ( ),R Rn nz zν

ν →  for reason which is better to feel after the development of the analogous formal-
ism for Parabolic Cylinder functions. 
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were introduced together with some of their basic relations in [6]. 
One of the possible applications of Parabolic Cylinder functions is in quantum 

mechanics for the calculation of eigenfunctions of squeezing and rotation oper-
ators in the two-dimensional phase plane that means for the general quadratic 
combinations of a pair of boson annihilation and creation operators and, more 
generally, for several pairs of boson operators. This is also connected with the 
reduction to two possible normal forms and one degenerate form of quadratic 
combinations of such operators. For squeezing operators the eigenfunctions are 
not normalizable and up to now are little known. 

The notions “Associated Hermite polynomials” and “Generalized Hermite 
polynomials” are not used in fully unique sense in literature, e.g., [7] [8]. How-
ever, our notation ( )Hen zν  for them seems to be unique and specifies them. 
Our “Associated Hermite polynomials” are related to the Parabolic Cylinder 
functions in the analogous way as Lommel polynomials are related to Bessel 
functions. They are, in general, not orthogonal polynomials and satisfy a 4-th 
order differential equation. 

In the following Sections we develop more systematically some formalism for 
the Parabolic Cylinder functions in connection with their Associated Hermite 
polynomials. Later, after this we will come back again to the analogies between 
Bessel functions and Parabolic Cylinder functions with discussion of the 
group-theoretical background. 

2. The Parabolic Cylinder Functions in the Form ( )D zν  

The Weber equation with parameter ν ∈  

( )
2 2

2

1 ; 0,
4 2
z y z

z
ν ν

 ∂
− + + = 

∂ 
                 (2.1) 

with important application in physics (e.g., quantum mechanics) is satisfied, for 
example, by the following two independent solutions 

( )
2 2

1 1 1
1; exp F ; ; ,

4 2 2 2
z zy z νν

   
= − −   

   
 

( )
2 2

2 1 1
1 3; exp F ; ; ,

4 2 2 2
z zy z z νν

   −
= −   

   
            (2.2) 

with the Wronski determinant 

( )( ) ( ) ( ) ( ) ( )1 2 1 2 2 1, ; ; ; ; ; 1.W y y z y z y z y z y z
z z

ν ν ν ν ν∂ ∂
≡ − =

∂ ∂
   (2.3) 

It is independent of variable z due to differential Equation (2.1) with no 
first-order derivative and with a second-order derivative without a coefficient in 
front depending on z as it is easily to derive. In addition, it is independent on 
parameter ν  that is a special property of the two solutions (2.2). Due to inde-
pendence of z we obtain the Wronski determinant (2.3) setting, for example, 

0z = . 
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From the two linearly independent solutions ( )1 ;y zν  and ( )2 ;y zν  one 
constructs by superposition as definition ( ) ( ); Dy z zνν ≡  the following solu-
tion of the Weber Equation (2.1) 

( )
2 2

2
1 1

2

1 1

2 2
2

1 1

1 !
12D 2 exp F ; ;

14 2 2 2!
2

3 !
1 32 F ; ;

2 2 22 1 !
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14 2 2 2!
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z zz

z z

z z
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ν
ν

ν
ν

ν
ν

  −      ≡ − −   +     −  
 −   −  +  

   − −    
  −    +  = −   +     −  

 − 
 +
−

2

1 1
3F 1 ; ; ,

2 2 21 !
2

zν
ν


 + −  

   −    

         (2.4) 

where we used in the second representation the Kummer transformation of the 
Confluent Hypergeometric function (e.g., [9], (chap. (6.3, Equation (7))) 

( ) ( )1 1 1 1F ; ; e F ; ; ,za c z c a c z= − −              (2.5) 

and with 1 3! π , ! 2 π
2 2

   − = − = −   
   

. A second independent solution of the  

Weber equation can be constructed in various ways from superpositions of the 
kind 

( ) ( ) ( ) ( ) ( )1 1; D D D i D i ,f z z z z zν ν ν νν α β γ δ− − − −= + − + + −       (2.6) 

with coefficients ( ), , ,α β γ δ  but maximally only two of the four basic functions 
( ) ( )( )1D ,D iz zν ν− −± ±  can be linearly independent solutions of the Weber equa-

tion. For example  

( ) ( ) ( )1 1
! π πD exp i D i exp i D i ,

2 22π
z z zν ν ν

ν ν ν− − − −
    = + − −    

    
    (2.7) 

is such a relation between three of these functions [3] (chap. 8.2. (6)). 
Instead of ( )D zν  other authors use a fully equivalent form of basic Parabol-

ic Cylinder function with notation ( )U , zµ  related to ( )D zν  as follows (e.g., 
Temme [10] in chap. 12 of NIST Handbook [11] and also J. Miller [12] in the 
older Handbook by the editors Abramowitz and Stegun [13]) 

( ) ( ) ( )1
2

1D U , , U , D .
2

z z z zν µ
ν µ

− −

 ≡ − − ⇔ ≡ 
 

         (2.8) 

A few but very important special cases of these definitions which can be also 
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expressed by other Special functions are [10] (p. 309) 

( ) ( )
3

2 22

1 3 1
2 4 4

D U 1, K K ,
4 42 2π

z z zz z
    

= − = +         
 

( ) ( )
2

1 1
2 4

D U 0, K ,
2π 4
z zz z

−

 
= =  

 
 

( ) ( )
3

2 22

3 3 1
2 4 4

D U 1, K K ,
4 42π

z z zz z
−

    
= = −         

         (2.9) 

and (e.g., [10], p. 309, 12.7 (iii)) 

( )
2

0
1D U , exp ,
2 4

zz z
  = − = −  

   
 

( )
2

1

2

1 πD U , exp 1 Erf
2 4 2 2

πexp Erfc .
4 2 2

z zz z

z z

−

     = = −      
     
   

≡    
  

       (2.10) 

Herein, ( )K uν  is a standard notation for a category of Bessel functions (e.g., 
[3], chap. 7.2.2. Equation (13), [11], p. 251) 

( ) ( ) ( )
( )

I IπK ,
2 sin π

u u
u ν ν

ν ν
− −

≡                (2.11) 

and ( )Erf u  denotes the Error function defined by2 

( )
2

202

2Erf d exp , 0 .
π

zz tt a
a aa

   ≡ − >  
   

∫          (2.12) 

The function ( ) ( )Erfc 1 Erfu u≡ −  is the Complementary Error function. 

3. Series Representations of the Parabolic Cylinder  
Functions 

If we insert in (2.4) the well-known Taylor series of the Confluent Hypergeome-
tric function 

( ) ( )
( )

( )
( )1 1

0

1 ! 1 !
F ; ; ,

1 ! 1 ! !

k

k

c k a za c z
a k c k

∞

=

− + −
≡

− + −∑              (3.1) 

then we may derive two different series representations of the Parabolic Cylinder 
functions ( )D zν . 

 

 

2Using Erdélyi, Vol. 2 [3] (chap. 8 together with chap. 9.9.) one has to pay attention that in relations 
to the Error function ( )Erf x  the last is defined there under the same notation without the factor 

2
π

 in comparison to the modern definition (2.12) which is here given and which is used in Pro-

gram “Mathematica”. 
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If we use the first representation in (2.4) we obtain a series representation 
which can be written in the following compact form 

( ) ( ) ( )
2

2

0 Pochh.

1
D exp 2 π ,

14 2! !
2

k k

k
k

z zz
kk

ν

ν ν
ν

∞

= =

−   
= − −   − −      

 

∑


      (3.2) 

where ( )kν−  denotes the Pochhammer symbol according to the definition 

( ) ( )
( ) ( ) ( )
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Using the first of the given representations of the Pochhammer symbol ( )kν−  
one finds from (3.2) 
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∑

∑

   (3.4) 

These representations fail to act in the important special cases of non-negative 
integers 0,1,2,nν = =   due to infinities in numerators and denominator. Us-
ing the second of the given representations of the Pochhammer symbol ( )kν−  
one finds from (3.2) alternatively 

( )
( )

2
2

0

!D exp 2 π .
14 2! ! !

2

k

k

z zz
kk k

ν

ν
ν

ν ν

∞

=

   
= −   − −     − 

 

∑      (3.5) 

This representation fails to provide the result without limiting transitions for 
negative integers 1, 2, 3,nν = − = − − −   due to infinities in numerator and de-
nominator. This is the main reason why we gave in (3.2) the representation by 
the Pochhammer symbol3. 

If we use the second representation in (2.4) we obtain from the series repre-
sentation of the Confluent Hypergeometric function (3.1) a series representation 

of ( )D zν  which can be written in the following form ( 1 π
2

 − = 
 

) 

( )
( )2 2

0

22 1D exp cos π ! ,
14 2 2 !!
2

k

k

zz k kz
k

ν

ν
ν ν∞

=

  − + −  =           − 
 

∑      (3.6) 

or separated in the even and odd part 

 

 

3The Pochhammer symbol ( )k
a  is programmed in “Mathematica” as “Pochhammer [a,k]” in a 

way that it does not fail also in the mentioned special cases of failure of formulae (3.4) and (3.5). 
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( ) ( )
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We gave here only Taylor series for ( )
2

exp D
4
z zν

 
 
 
  since pure Taylor se-

ries of ( )D zν  are complicated and not favorable for applications. 

The basic Parabolic Cylinder functions ( )D zν  were introduced in a way that 
they are vanishing for real z x=  in the limit x → +∞  for arbitrary real indic-
es ν ∈ . 

4. Lowering and Raising Operators for the Indices of the 
Parabolic Cylinder Functions and Derivatives and  
Recurrence Relations 

Practically, from every of the given explicit representations of ( )D zν  in last 
Sections 2 and 3 one can derive formulae for the differentiation of this function.  

The simplest form they take on if we differentiate ( )
2

exp D
4
z zν

 
± 
 

 and find  

or may check the known formulae (e.g., [3] [10]) 

( ) ( )
2 2

1exp D exp D ,
4 4
z zz z

z ν νν −

   ∂
=   ∂    

 

( ) ( )
2 2

1exp D exp D .
4 4
z zz z

z ν ν +
   ∂
− = − −   ∂    

           (4.1) 

These relations can be written 

( ) ( ) ( )1D D D ,
2
z z A z z

z ν ν νν −
∂ + ≡ = ∂ 

 

( ) ( ) ( )†
1D D D .

2
z z A z z

z ν ν ν +
∂ − ≡ = ∂ 

             (4.2) 

We call 
2
z

z
∂

+
∂

 the lowering and 
2
z

z
∂

−
∂

 the raising operator for the  

Parabolic Cylinder functions ( )D zν  and denote them by A and †A , respec-
tively  

†i i , i i ,
2 2 2 2
z z z zA A

z z z z
∂ ∂ ∂ ∂   ≡ + = + − ≡ − = − −   ∂ ∂ ∂ ∂   

      (4.3) 

The operators A and †A  are Hermitean adjoint ones to each other in spaces 
of functions of real variables z and they satisfy the following commutation rela-
tions 

[ ]† †, , 1, ,1 ,1 0.
2 2
z zA A A A

z z
∂ ∂    ≡ + − = = =    ∂ ∂ 

       (4.4) 
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These are the commutation relations for a Heisenberg-Weyl Lie algebra 
( )2w  (corresponding to Lie group ( )2W ) in representation by a pair of boson 

annihilation and creation operator in a space of functions ( )f z  and each set of 
the Parabolic Cylinder functions ( ) ( )D , 0,1,2,n z nν ± =   forms a basis of a 
countably infinite irreducible unitary representation of this Lie algebra characte-
rized by the index ν  within the interval 0 1ν≤ < . The simplest eigenvalue 
equations for arbitrary ν  are 

( ) ( )† D D .A A z zν νν=                     (4.5) 

However, only the functions ( )Dn z  with 0,1,2,n =   from these eigen-
functions prove themselves to be normalizable. Only for the irreducible repre-
sentation with index 0ν =  with the basis functions  

( ) ( )D , 0,1,2,n z n± =   onto functions ( )Dn z  with 0n ≥  acting onto them 
with the lowering operator A it arises the impression that this representation 
breaks down with 0n =  for ( )0D 0A z =  but coming from below and acting 
with the raising operator †A  onto functions ( )Dn z  with 0n <  we do not 
have a breakdown at 0n =  and all basis functions ( )D n z±  are related also in 
this representation. 

From (4.2) we find first the derivative of ( )D zν  

( ) ( ) ( )( )1 1
1D D D ,
2

z z z
z ν ν νν − +
∂

= −
∂

               (4.6) 

and second, the 3-term recurrence relation 

( ) ( ) ( )1 1D D D 0.z z z zν ν νν+ −− + =                 (4.7) 

Using the following general disentanglement of linear combinations of opera-
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z
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which can be proved by complete induction4 one finds from (4.2) (see also (3.3) 
for representation with the Pochhammer symbol) 
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  (4.9) 

 

 

4For αβ  in this formula can be chosen an arbitrary sign but it has to be the same in all parts of 
the right-hand side. 
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The second formula fails to act for nonnegative integers 0,1,ν =   in cases 
of 0nν − < . 

Alternatively we find from (4.1) 

( ) ( ) ( )
2 2

D 1 exp exp D ,
4 4

n
n

n n

z zz z
zν ν+

   ∂
= − −   

∂   
 

( ) ( ) ( )
2 2!

D exp exp D .
! 4 4

n

n n

n z zz z
zν ν

ν
ν−

−    ∂
= −   

∂   
        (4.10) 

Inserting in the first of these formulae 0ν =  and in the second 1ν = −  and 
using (2.10) we find known formulae for the Parabolic Cylinder functions 

( )D zν  with positive and negative integer ν . 
The formulae up to this point are more or less known but are necessary to 

make the paper widely self-contained. In next Section we show that we can gen-
erate the Parabolic Cylinder functions from two basic such functions by multip-
lication with a certain kind of polynomials which generalize the Hermite poly-
nomials ( )Hn z  in the scaled form usually denoted by ( )Hen z . 

5. Representation of Parabolic Cylinder Functions by Two 
Neighbored Basic Ones with the Recurrence Relation 

Applying the recurrence relations (4.7) to ( )D n zν +  one may successively re-
duce it to a superposition of two basic functions ( )D zν  and ( )1D zν −  with 
coefficients depending on variable z of the form  

( ) ( ) ( ) ( ) ( ) ( )1
1 1D He D He D , 0,1,2, ; ,n n nz z z z z nν ν

ν ν νν ν+
+ − −= − = ∈   (5.1) 

where ( )Hen zν  are sequences of polynomials of degree n depending on ν  as a 
parameter. For reason which we see below we call them associated Hermite po-
lynomials. In the same way by the same recurrence relations (4.7) one may suc-
cessively reduce ( )D n zν −  to a superposition of the two basic functions ( )D zν  
and ( )1D zν +  with coefficients depending on variable z of the form (see also 
(3.3) for Pochhammer symbol ( )nν− ) 
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The general form of the polynomials ( )Hen zν  of degree n is the following 
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1 1 ! !
.

2 ! ! ! !2

n
k k

n k
n k j

k j

n
k jk

n k
k j

k j

n j j
z z

n k j k j

n j
z

n k j k j j

ν ν
ν

ν
ν

 
  

−
−

= =

 
  

−
−

= =

 − − − +
=   − − − 

 − − − −
 =
 − − − − 

∑ ∑

∑ ∑

       (5.3) 

The inner sum in this expression can be expressed in two different ways (due 
to transformations relations) by the Jacobi polynomials ( ) ( ),Pk uα β  [3] [5] taken 
for argument 0u =  or 3u =  as follows 
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( ) ( )
( )

( ) ( )

( )
( )

( ) ( )

2
, 2

0

2
, 1 2

0

!
He P 0

2 !

! 1 P 3 .
2 ! 2

n

k n k n k
n k

k

n

k n n k
kk

k

n k
z z

n k

n k
z

n k

ν νν

ν

 
  

− − + − −

=

 
  

− − − − −

=

−
=

−

−
=

−

∑

∑

         (5.4) 

For the initial members ( )0He zν  of the sequences of polynomials (5.3) or 
(5.4) the sum consists only of the term to 0k =  and due to ( ) ( ),

0P 1zα β =  for 
arbitrary values of variable z and parameters ( ),α β  we find 

( )0He 1.zν =                     (5.5) 

The given representations of ( )Hen zν  can be proved, for example, by com-
plete induction after derivation of the recurrence relations (6.4). It is remarkable 
that the upper index ν  of the Associated Hermite polynomials denoting a pa-
rameter is only contained in the Jacobi polynomials in the representation (5.4). 
The Associated Hermite polynomials satisfy the following symmetry property 

( ) ( ) ( ) ( ) ( ) ( )He i He i i He i 1 He .n nn n n
n n n nz z z zν ν ν ν− − − −= − = − = − −     (5.6) 

Applying this identity and substituting 1ν ν→ −  in (5.2) this formula can be 
written in the form 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( )
( ) ( ) ( ) ( ) ( ){ } ( )

1 1
1 1 1

1 1

1 !
D i He i D i He i D

1 !

!
1 He D He D , 0 ,

!

n n
n n n

n n n
n n

n
z z z z z

z z z z n
n

ν ν
ν ν ν

ν ν
ν ν

ν
ν

ν
ν

−− − +
− − − −

− −
− −

− −
= − − −

−

−
= − − ≥

−

(5.7) 

which, in particular, is advantageous in the special cases of integer ν , in partic-
ular, 0ν =  in which factors in front of the right-hand side of (5.2) become un-
determined without limiting considerations or without using the Pochhammer 
symbol. 

In the special case 0ν =  the involved Jacobi polynomials in (5.4) are eva-
luated to 

( ) ( ) ( ) ( ) ( )
( )

, , 1 1 !1P 0 P 3 ,
2 2 ! !

k
k n k k n

k kk k

n
k n k

− − − − − −
= =

−
           (5.8) 

as one may see also from (5.3) and the sequence of polynomials ( )0Hen z  pos-
sesses the form 

( ) ( )
( ) ( )

( )
22

0

0

1 ! 1He H He .
! 2 ! 2 22

n
k n k

n n nk n
k

n z zz z
k n k

 
  − 

=

−  
= = ≡ −  
∑     (5.9) 

This means that they possess a form of scaled Hermite polynomials ( )Hn z  
which is usually denoted by ( )Hen z . In the Appendices A and B we give some 
initial members of the sequences ( )Hen zν  for integer and for semi-integer ν  
in explicit form. In Appendix C we give explicit formulae for the Parabolic Cy-
linder functions ( )D zν  with integer nν = ±  related to the basic functions 
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( )0D z  and ( )1D z− . We mention that by means of the polynomials ( )Hen z  
the operator disentanglement formula (4.8) can be represented in the form 
( 2α γ→ ) 

( )
( ) ( )

0

1 !
He .

! !

kn kn n k

n k
k

n zz
z k n k z

γγ β γβ β
γβ

−

−
=

 −∂ ∂   − =      ∂ − ∂    
∑     (5.10) 

The right-hand side may be considered as disentanglement in normal order-
ing of the operators on the left-hand side. Other forms of operator disentangle-
ment can be found in [14]. 

In general, the Parabolic Cylinder function ( )D zν  can be composed according 
to (5.1) and (5.2) only from two basic Parabolic Cylinder functions where it is also 
possible to develop formulae with steps of ν  greater than 1. In special cases of 
zeros of one of the functions ( )D zν  or ( )1D zν −  in (5.1) and analogously in 
(5.2) the 3-term relations reduce to 2-term relations, for example, in case of a 
zero of ( )1D zν −  for a certain 0z z=  according to 

( ) ( ) ( ) ( )1 0 0 0 0D 0 : D He D .n nz z z zν
ν ν ν− += ⇒ =       (5.11) 

Optimization problems for relative extrema in some problems may lead to the 
search for zeros of functions in series of the form ( )0 Dn nn c zν

∞
+=∑  with coeffi-

cients nc  to determine and for such and also other cases it would be useful to 
know also generating functions for the Associated Hermite polynomials and in 
case of Bessel functions for the Lommel polynomials. 

The use of two neighbored basic Parabolic Cylinder function as basis func-
tions is particularly interesting for the irreducible representation of ( )D zν  
with integer indices nν = ±  using in this case ( )0D z  and ( )1D z−  according 
to (2.10) as such. This case concerns also the most important applications in 
quantum mechanics. In case of the irreducible representation of the Parabolic 
Cylinder functions with semi-integer indices one cannot find according to (2.9) 
two equally well appropriate neighbored basic functions but it is well possible 
that by choosing ( )1

2

D z  and ( )3
2

D z
−

 as basis functions one may obtain more 
symmetric representations that we do not try to do here. 

6. Recurrence Relations for the Associated Hermite  
Polynomials 

Recurrence relations for the Associated Hermite polynomials ( )Hen zν  were de-
rived in [6]. For some completeness of the description of these polynomials we 
partially repeat this here with some modifications. 

As preparation for the calculation of relations for the Associated Hermite po-
lynomials and of their differentiation it is useful to know some algebraic rela-
tions for the Jacobi polynomials. First of all these are recurrence relations. Since 
beside the variable u we have in the Jacobi polynomials ( ) ( ),Pn uα β  two kinds of 
indices, the lower index 0,1,2,n =   of the degree of the polynomials and two 
upper indices which may take on arbitrary real (or even complex) numbers there 
exists a great variety of such relations. We collect some of the most basic ones in 
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Appendix D. 
The derivation of the recurrence relations for the Associated Hermite poly-

nomials can be made using the recurrence relations for the Parabolic Cylinder 
functions (4.7) which by the substitution nν ν→ +  we write for this purpose 
in the form 

( ) ( ) ( ) ( )1 1D D D ,n n nz z z n zν ν νν+ + + + −= − +              (6.1) 

and use now the representation (5.1) leading to the following form of the 
left-hand side of (6.1) 

( ) ( ) ( ) ( ) ( )1
1 1 1D He D He D .n n nz z z z zν ν

ν ν νν +
+ + + −= −          (6.2) 

If we apply for the Parabolic Cylinder functions on the right-hand side of (6.1) 
the same representation (5.1) we find 

( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( )

1 1

1 1
1 2 1

D He He D

He He D .

n n n

n n

z z z n z z

z z n z z

ν ν
ν ν

ν ν
ν

ν

ν ν

+ + −

+ +
− − −

= − +

− − +
      (6.3) 

Since the representation of the Parabolic Cylinder functions by two neigh-
bored such functions is unique one finds by comparison of (6.2) with (6.3) the 
recurrence relation (compare also Drake [8] (Equation (1.1)) 

( ) ( ) ( ) ( )1 1He He He .n n nz z z n zν ν νν+ −= − +              (6.4) 

For 0ν =  it provides the recurrence relation for the polynomials ( )Hen z  
closely related to that for the usual Hermite polynomials ( )Hn z . 

We now calculate 

( ) ( )

( )
( )

( ) ( ) ( ) ( )( )

( )
( )

( ) ( )

( )
( )

( ) ( )

1
1 1

1
2

1, , 1 1 2

0

1
2

1, 1 1 2
1

1

1
2

, 1 2

0

He He

1 !
P 0 P 0

1 2 !

1 !
P 0

1 2 !

!
P 0 ,

1 2 !

n n

n

l n l l n l n l
l l

l

n

l n l n l
l

l

n

k n k n k
k

k

z z

n l
z

n l

n l
z

n l

n k
z

n k

ν ν

ν ν ν ν

ν ν

ν ν

−
+ +

+ 
  

− − + + − − − + − + + −

=

+ 
  

− − + + − + + −
−

=

− 
  

− − + − − −

=

−

+ −
= −

+ −

+ −
=

+ −

−
=

− −

∑

∑

∑

     (6.5) 

where we applied the identity (D.3). If we now apply the recurrence relation (D.2) 
for the Jacobi polynomials ( ) ( ),Pn uα β  with fixed lower indices n but varying 
upper indices with the substitutions , ,n k k n kα ν β ν→ → − − → + −  then 
from this follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 1 ,P P P .k n k k n k k n k
k k kn k u n u uν ν ν ν ν νν ν− − + − − − − + − − − − + −− = + −   (6.6) 

Inserting this with 0u =  in (6.5) we find an identity of the Associated Her-
mite polynomials in the form 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 1 1 1

1
1 1

He He He He

He He He .
n n n n

n n n

z z n z z

z z z z

ν ν ν ν

ν ν ν

ν ν

ν

− +
+ + − −

+
+ −

− = + −

= − −
     (6.7) 
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from which using (6.4) follows 

( ) ( ) ( )1 1
1 1He He He .n n nz z z zν ν νν− +
+ −+ =              (6.8) 

In next Section we derive formulae for the differentiation of the Associated 
Hermite polynomials from which we finally develop the differential equation for 
these polynomials. 

7. Derivative of the Associated Hermite Polynomials and 
Differential Equations 

By differentiation of the Associated Hermite polynomials ( )Hen zν  in the re-
presentation (5.4) we find 

( ) ( )
( )

( ) ( )
1

2
, 1 2

0

!
He P 0 .

1 2 !

n

k n k n k
n k

k

n k
z z

z n k
ν νν

− 
  

− − + − − −

=

−∂
=

∂ − −∑        (7.1) 

The right-hand side is the same as the last line on the right-hand side of (6.5) 
and therefore we may write the result of differentiation in the forms 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
1 1

1
1 1

1
1 1

He He He

He He

He He He .

n n n

n n

n n n

z z z
z

n z z

z z z z

ν ν ν

ν ν

ν ν ν

ν ν

ν

−
+ +

+
− −

+
+ −

∂
= −

∂
= + −

= − −

           (7.2) 

From this follows by index substitutions 

( ) ( ) ( ) ( )1
1He 1 He He ,n n nz n z z

z
ν ν νν ν +
+

∂
= + + −

∂  

( ) ( ) ( )1 1
1He He He .n n nz z z

z
ν ν ν+ +
−

∂
= −

∂
                (7.3) 

By repeated differentiation using the representation in last line of (7.2) we ob-
tain 

( ) ( ) ( ) ( ) ( )

( ) ( )

2
1

1 12

1
1

He He He He He

He 2 He ,

n n n n n

n n

z z z z z z
z z zz

z n z z
z z

ν ν ν ν ν

ν ν

ν

ν

+
+ −

+
−

∂ ∂ ∂ ∂
= + − −

∂ ∂ ∂∂
∂ ∂ = − − ∂ ∂ 

  (7.4) 

where we used (7.3) for the transformation of the result. This means that the 
Associated Hermite polynomials satisfy the equation 

( ) ( )
2

1
12 H 2 He .n nz n e z z

z zz
ν νν +

−

 ∂ ∂ ∂
− + = − 

∂ ∂∂ 
         (7.5) 

For 0ν =  we obtain the differential equation for modified Hermite polyno-
mials ( ) ( )0H Hn ne z e z≡ . 

The full elimination of the derivative ( )1
1Hen z

z
ν +
−

∂
∂

 by means of the last of 

Equations (7.3) provides 

( ) ( )
2

1
2 2 He 2 He .n nz n z z

zz
ν νν ν + ∂ ∂

− + + = 
∂∂ 

           (7.6) 
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On the other side one obtains 

( ) ( ) ( )
2

1
2 2 He 2 He .n nz n z n z

zz
ν νν ν − ∂ ∂

+ + + = + 
∂∂ 

         (7.7) 

Under the assumption that both Equations (7.6) and (7.7) are correct (for (7.6) 
it is proved) one finds from these equations by forming the sum 

( ) ( ) ( ) ( )
2

1 1
2 2 He He He ,n n nn z n z z

z
ν ν νν ν ν− + ∂

+ + = + + 
∂ 

       (7.8) 

and for the difference 

( ) ( ) ( ) ( )1 1He He He .n n nz z n z z
z

ν ν νν ν− +∂
= + −

∂
            (7.9) 

Calculating the derivative from (5.4) we find 

( ) ( )
( ) ( ) ( ) ( )

2
, 2

0

!
He 2 P 0 .

2 !

n

k n k n k
n k

k

n k
z z n k z

z n k
ν νν

 
  

− − + − −

=

−∂
= −

∂ −∑       (7.10) 

Using herein the identity (D.8) of Appendix D with the substitutions 
, ,n k k n kα ν β ν→ → − − → + −  one obtains from (7.9) 

( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

2
1 , 1 1 , 1 2

0

1 1

He

!
P 0 P 0

2 !

He He .

n

n

k n k k n k n k
k k

k

n n

z z
z

n k
n z

n k

n z z

ν

ν ν ν ν

ν ν

ν ν

ν ν

 
  

− + − + − − − − − + + − −

=

− +

∂
∂

−
= + −

−

= + −

∑  (7.11) 

Thus relations (7.8) and (7.9) and the equivalent relations (7.6) and (7.7) are 
proved. 

Now we are able to derive the differential equations for which the Associated 
Hermite polynomials are solutions. Using (7.6) and (7.7) we have two possibili-
ties with respect to the order of application which, clearly, have to lead to the 
same result. The first is  

( ) ( ) ( )

( ) ( ) ( )

2 2
1

2 2

2 2

2 2

0 2 1 2 He 2 He

2 1 2 4 1 He ,

n n

n

z n z n z z
z zz z

z n z n n z
z zz z

ν ν

ν

ν ν ν

ν ν ν ν

+    ∂ ∂ ∂ ∂ = + + + + − + + −    ∂ ∂∂ ∂     
   ∂ ∂ ∂ ∂ = + + + + − + + − + +   ∂ ∂∂ ∂    

(7.12) 

and the second 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

2 2
1

2 2

2 2

2 2

0 2 1 2 He 2 He

2 1 2 4 1 He .

n n

n

z n z n z n z
z zz z

z n z n n z
z zz z

ν ν

ν

ν ν ν

ν ν ν ν

−    ∂ ∂ ∂ ∂ = − + + − + + + − +    ∂ ∂∂ ∂     
   ∂ ∂ ∂ ∂ = − + + − + + + − − +   ∂ ∂∂ ∂      

(7.13) 

By transition to normal ordering (all powers of z stand in front of all powers  
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of the differential operator 
z
∂
∂

) we find the following differential equation of  

4-th order for which ( )Hen zν  are solutions 

( )( ) ( ) ( )
4 2

2
4 22 2 3 2 He 0.nn z z n n z

zz z
νν

 ∂ ∂ ∂
+ + − − + + = 

∂∂ ∂ 
     (7.14) 

In the special case 0ν =  and thus ( ) ( )0He Hen nz z≡  the operator of this 
differential equation factorizes as follows 

( )
2 2

2 2

0

2 He 0,nz n z n z
z zz z

=

  ∂ ∂ ∂ ∂
+ + + − + =  ∂ ∂∂ ∂  



       (7.15) 

where ( )Hen z  according to (7.5) satisfies already the shown differential equa-
tion of 2-nd order. 

8. Analogies and Differences between the Lommel  
Polynomials for the Bessel Functions to the Associated 
Hermite Polynomials for the Parabolic Cylinder Functions 

In the Introduction we already mentioned shortly the analogies between the 
Lommel polynomials ( )Rn zν  in relation to the Bessel functions to the Asso-
ciated Hermite polynomials ( )Hen zν  in relation to the Parabolic Cylinder func-
tions. We now come back to these analogies with more details. 

The Bessel functions ( )J n zν ±  can be generated from two arbitrary basic 
functions ( )J zν  and ( )1J zν   according to the relations ([2] [3]; see also foot-
note 1) 

( ) ( ) ( ) ( ) ( )1
1 1J R J R J ,n n nz z z z zν ν

ν ν ν
+

+ − −= −  

( ) ( ) ( ) ( ) ( ) ( ){ }1
1 1J 1 R J R J ,n

n n nz z z z zν ν
ν ν ν

− −
− − += − +          (8.1) 

where the sequences of polynomials Rn
ν  of n-th degree in variable 1z− , called 

Lommel polynomials, are given by 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( )
( )

( )

22

0

2
2 3

1 !
1 !

1 ! 1 ! 2R , 0 ,
! 2 ! 1 !

2 1F , ; , ,1 ; , 0 ,
2 2

n
k n k

n
k

n

n
n

n k n k
z n

k n k k z

n n n n z n
z

ν

ν
ν

ν
ν

ν ν ν

 
  − 

=

+ −
=

−

− − + − −  ≡ ≥ − + −  

−   = − − − − − ≥   
   

∑



  (8.2) 

where ( )2 3 1 2 1 2 3F , ; , , ;a a c c c u  is a Hypergeometric function in its standard nota-
tion and ( )nν  the Pochhammer symbol. The polynomials ( )Rn zν  possess the 
symmetry property 

( ) ( ) ( ) ( ) ( ) ( )1 1R 1 R R 1 R .n nn n
n n n nz z z zν ν ν ν− − − −= − = − = − −       (8.3) 

The Bessel functions ( )J zν  satisfy the differential equation 
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( )

( )

2
2 2

2 2
2 2

0 J

J ,

z z z
z

z z z z z
z z

ν

ν

ν

ν ν

 ∂  = + −  ∂   
  ∂ ∂     = + + + −     ∂ ∂     

      (8.4) 

with two commuting operators as factors in front. In contrast to the differential 
equation for the Parabolic Cylinder function the parameter ν  of the Bessel 
function is here involved quadratically that invites to the given factorization. 

The Parabolic Cylinder functions ( )D zν  can be generated from two arbi-
trary basic functions ( )D zν  and ( )1D zν   according to the relations 

( ) ( ) ( ) ( ) ( ) ( )1
1 1D He D He D , 0,1,2, ; ,n n nz z z z z nν ν

ν ν νν ν+
+ − −= − = ∈   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( )

11
1 1

!
D i He i D i He i D ,

!
0,1,2, ; .

n n
n n n

n
z z z z z

n

ν ν
ν ν ν

ν
ν

ν

−− − −
− − +

−
= − − −

= ∈ 
(8.5) 

where the sequences of polynomials ( )Hen zν  of n-th degree are given by 

( ) ( )
( )

( ) ( )
( ) ( )

( )
( )

( ) ( )

2
2

0 0

2
, 2

0

1 ! 1 !
He

2 ! ! ! 1 !2

!
P 0 .

2 !

n
k k

n k
n k j

k j

n

k n k n k
k

k

n j j
z z

n k j k j

n k
z

n k

ν

ν ν

ν
ν

 
  

−
−

= =

 
  

− − + − −

=

 − − − +
=   − − − 

−
=

−

∑ ∑

∑

        (8.6) 

They possess the symmetry property 

( ) ( ) ( ) ( ) ( ) ( )He i He i i He i 1 He .n nn n n
n n n nz z z zν ν ν ν− − − −= − = − = − −      (8.7) 

The Parabolic Cylinder functions ( )D zν  satisfy the differential equation 

( )
2 2

2

10 D .
4 2
z z

z νν
 ∂

= − + − 
∂ 

                (8.8) 

For the Lommel polynomials and for the Associated Hermite polynomials 
we know the explicit formulae ((8.2) and (5.3)). Since the formula for the Lom-
mel polynomials involves the Hypergeometric function ( )2 3 1 2 1 2 3F , ; , , ;a a c c c u  
which satisfies a differential equation of 4-th order the same should be true for 
the Lommel polynomials. However, we did not find it in literature and did not 
try to calculate it up to now. The derivation of the differential equation for the 
Associated Hermite polynomials (7.14) takes on an essential part of present pa-
per. 

Beside the mentioned similarities in both systems there are also essential dif-
ferences. The most striking one is that ( )Hen zν  are polynomials of n-th  

degree in z whereas ( )Rn zν  are polynomials of n-th degree in 1
z

, explicitly  

given in (8.2)5. A certain feeling why this is so one may attain if one compares 

 

 

5Therefore, a notation ( ) 1R Rn nz
z

ν ν  ≡  
 

 or similar would be better instead of the notation 

( ) ( ),R Rn nz zν
ν≡  for the Lommel polynomials based on literature. 
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the two most important relations for the two systems of functions ( )D zν  and 
( )J zν  beside the already written down differential equations that are the diffe-

rentiations and the recurrence relations 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1 1 1

1 1 1 1

1 1D D D , J J J ,
2 2

1D D D , J J J .
2

z z z z z z
z z

zz z z z z z
z

ν ν ν ν ν ν

ν ν ν ν ν ν

ν

ν
ν

− + − +

− + − +

∂ ∂
= − = −

∂ ∂

= + = +
 (8.9) 

As essential difference we see that on the right-hand sides of the recurrence 
relations the variable z stands for the Parabolic Cylinder functions ( )D zν  in 
the denominator and for the Bessel functions ( )J zν  in the numerator that ex-
plains this. 

Other essential differences of the two considered systems of functions are the 
underlying symmetry groups. Let us make a few remarks about this in the next 
Section. 

9. Group-Theoretical Background of the Bessel Functions 

Whereas the group-theoretical background of the Parabolic Cylinder functions 
as shown is the Heisenberg-Weyl group ( )2W  (see (4.3) and (4.4)) the 
group-theoretical background of the Bessel functions is the group of motions 

( )2M  of the two-dimensional Euclidean plane (Vilenkin [15], chap. IV). The 
generators of this group consist of two commuting translations 2T  in two in-
dependent directions of the plane and the one-parameter group of rotations 

( )2SO  in the plane which last does not commute with the translations (e.g., [15] 
[16] and [17]). Since this background is not so very well known let us give the 
most important relations in connection to the Bessel functions which show this. 
If we denote the two commuting operators of the Lie algebra of translations by 
( )1 2,Z Z  and the operator of the rotation by 3Z  then we have the commuta-
tion relations for ( )1 2 3, ,X X X 6 

[ ] [ ] [ ]1 2 2 3 1 3 1 2, 0, , , , .Z Z Z Z Z Z Z Z= = =            (9.1) 

We now form the new Lie-group operators ( )3, ,A A A+ −  

1 2 1 2 3 3i , i , i ,A Z Z A Z Z A Z+ −= + = − =  

1 2 3 3, i , i ,
2 2

A A A AZ Z Z A+ − + −+ −
= = − = −           (9.2) 

which satisfy the commutation relations 

[ ] [ ] [ ]3 3, 0, , , , .A A A A A A A A+ − + + − −= = + = −          (9.3) 

With respect to the Bessel functions ( )J zν  we consider the following reali-
zation of the operators ( )3, ,A A A+ −  

2
21 ,A z z

z z z+

 ∂ ∂  = + −  ∂ ∂  
 

 

 

6We use the notations of Barut and Raçzka [16] (chap. 14, §3). Vilenkin [15] uses ( )1 2 3, ,a a a  and 

Miller [17] ( )1 2, ,P P M . 

https://doi.org/10.4236/apm.2019.91002


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.91002 32 Advances in Pure Mathematics 
 

2
21 ,A z z

z z z−

 ∂ ∂  = + +  ∂ ∂  
 

2
2

3 ,A z z
z
∂ = + ∂ 

                     (9.4) 

or equivalently for ( )1 2 3, ,Z Z Z  

2 2
2 2

1 2 3
1 , i , i .Z z z Z Z z z
z z z z

∂ ∂ ∂   = + = = − +   ∂ ∂ ∂   
     (9.5) 

According to (8.4) the Bessel functions ( )J zν  are eigenfunctions of the op-

erator 
2

2z z
z
∂  + ∂ 

 to the eigenvalue ν±  and one verifies 

( ) ( ) ( )1J J J ,A z z z
z zν ν ν
ν

+ +
∂ = − = ∂ 

 

( ) ( ) ( )1J J J ,A z z z
z zν ν ν
ν

− −
∂ = + = ∂ 

 

( ) ( )3 J J .A z zν νν=                      (9.6) 

If we change the sign of ν  then the transformation ν ν→ −  leads to the 
transformations 3 3,A A A A± → − → −



 and the role of A+  and A−  becomes 
exchanged (beside sign changes) that preserves the commutation relations (9.3). 
The identity operator I in the realization 1I =  can be expressed by the 
Lie-algebra operators according to [16] 

( ) ( ) ( )2 2
1 2

2
2 2

2
2

2 2
2

2 2

1
2

1

1 1 1.

I Z Z A A A A A A A A

z z
z z z

z z
z z zz z

+ − − + + − − += + = + = =

 ∂ ∂  = + −  ∂ ∂  
 ∂ ∂ ∂ = + − − =   ∂ ∂ ∂  

       (9.7) 

Similar to the system of Parabolic Cylinder functions ( )J n zν ±  connected 
with the Heisenberg-Weyl group ( )2W  each (complete in some sense) system 
of Bessel functions ( )J n zν ±  with 0 1ν≤ <  and 0,1,2,n =   realizes a coun-
tably infinite irreducible representation of the (inhomogeneous) group of mo-
tions ( )2M  of the real two-dimensional Euclidean plane which can be represented 
as the semi-direct product ( ) ( ) ( )2 2 2M T SO×= ⊃  of the two-dimensional (com-
mutative) translation group ( )2T  with the one-parameter rotation group 

( )2SO  in the plane. 
In application to systems of modified Bessel functions ( )I zν  one has slightly 

to change the realizations of the lowering and raising operators and of the ei-
genvalue operator ( )3, ,A A A+ −  in comparison to (9.4) that we do not write 
down. 
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10. Conclusions 

In analogy to the known (but not well-known) relation of Bessel functions to 
Lommel polynomials we developed a similar concept for the relation of Parabol-
ic Cylinder functions in the form ( )D zν  to polynomials which we call Asso-
ciated Hermite polynomials and denote them by ( )Hen zν . These polynomials 
obey a fourth-order differential equation and their explicit form can be concisely 
expressed using the Jacobi polynomials ( ) ( ),Pk uα β  taken for argument u equal 
to zero. Recurrence relations for these polynomials are derived. For the proof of 
the differential equation we give in Appendix D contiguous relations in the 
most symmetrical form concerning the parameters ( ),α β  and derive from 
them an identity (D.8) for Jacobi polynomials which is only true for argument u 
equal to zero but likely can be generalized to general argument u with coeffi-
cients depending on u. In Appendices A-B we write down their explicit form for 
some initial members n and for some integer and semi-integer parameter ν . In 
Appendix C we represent the Parabolic Cylinder functions ( )D zν  for (posi-
tive and negative) integers ν  by means of two basic such functions ( )0D z  
and ( )1D z−  and the introduced Associated Hermite polynomials. 

Our motivation for the introduction of the Associated Hermite polynomials in 
2000 was analogies to the Lommel polynomials in relation to the Bessel func-
tions. The Parabolic Cylinder functions together with the Associated Hermite 
polynomials possess as group-theoretical background the Heisenberg-Weyl 
group ( )2W . For the Bessel functions together with the Lommel polynomials 
the group-theoretical background is the group of motions ( )2M  with the two 
(commuting) translations and the one-parameter group of rotations in the plane. 
We made a comparison of formulae of both groups in relation to the Bessel and 
to the Parabolic Cylinder functions and gave explicitly the basic operators of 
their Lie algebras (in particular, lowering and raising operators) in representa-
tion related to these functions. Besides great analogies between the kind of for-
mulae for these two sets of functions there are also essential differences. One  

such difference is that the Lommel polynomials are polynomials of variable 1
z

  

whereas the Associated Hermite polynomials are polynomials in z. This is dis-
cussed and presented by the corresponding formulae. 

We mention that in recent time the Parabolic Cylinder function are often used 
in a form denoted by ( )U , zµ  closely and equivalently related to the here used 
older form ( )D zν  by relation (2.8). Though some symmetries of ( )U , zµ  are  

related to the parameter value 0µ =  and of ( )D zν  to the value 1
2

ν = −  the  

most important applications of the Parabolic Cylinder function are connected 
with integer values of ν  in case of ( )D zν  in opposition to semi-integer val-
ues of µ  in case of ( )U , zµ . Finally, the normalizable Parabolic Cylinder 
functions are representable as superpositions of ( ) ( )D , 0,1,2,n z n =   that is 
very important for a rational representation of many formulae in quantum me-
chanics and we prefer this. 
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Appendix A. Sequences of Associated Hermite Polynomials 
( )Hen zν  with Integer Parameter ν  

For convenience we compile here some first members of the sequences of poly-
nomials form ( )Hen zν  in explicit form. 

The first 12 initial members of the sequence of polynomials ( ) ( )1Hen z  are 

( )1
0He 1,z =  

( )1
1He ,z z=  

( )1 2
2He 2,z z= −  

( )1 3
3He 5 ,z z z= −  

( ) ( )( )( )1 4 2 2
4He 9 8 1 1 8 ,z z z z z z= − + = − + −  

( ) ( )( )1 5 3 2 2
5He 14 33 3 11 ,z z z z z z z= − + = − −

 
( )1 6 4 2

6He 20 87 48,z z z z= − + −  
( )1 7 5 3

7He 27 185 279 ,z z z z z= − + −  
( )1 8 6 4 2

8He 35 345 975 384,z z z z z= − + − +  

( )1 9 7 5 3
9He 44 588 2640 2895 ,z z z z z z= − + − +  
( )1 10 8 6 4 2

10He 54 938 6090 12645 3840,z z z z z z= − + − + −  
( )1 11 9 7 5 3

11He 65 1422 12558 41685 35685 .z z z z z z z= − + − + −           (A.1) 

The sequence of polynomials 

( ) ( ) ( ) ( )1 1 1He i He i i He i ,nn n
n n nz z z− − = − = −                 (A.2) 

is obtained from the sequence of polynomials ( )1Hen z  in (A.1) by substituting 
all minus signs on the right-hand side by plus signs. 

The first 12 members of the sequence of polynomials ( ) ( )0He Hen nz z≡  are 

( )0
0He 1,z =  

( )0
1He ,z z=  

( )0 2
2He 1,z z= −  

( )0 3
3He 3 ,z z z= −  
( )0 4 2

4He 6 3,z z z= − +  
( )0 5 3

5He 10 15 ,z z z z= − +  
( )0 6 4 2

6He 15 45 15,z z z z= − + −  
( )0 7 5 3

7He 21 105 105 ,z z z z z= − + −  
( )0 8 6 4 2

8He 28 210 420 105,z z z z z= − + − +  
( )0 9 7 5 3

9He 36 378 1260 945 ,z z z z z z= − + − +  
( )0 10 8 6 4 2

10He 45 630 3150 4725 945,z z z z z z= − + − + −  
( )0 11 9 7 5 3

11He 55 990 6930 17325 10395 .z z z z z z z= − + − + −             (A.3) 

The sequence of polynomials ( )He n
n z−  related to these polynomials are sep-

arately written down in explicit form. 
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The first 12 members of the sequence of polynomials ( )1Hen z−  are 

( )1
0He 1,z− =  

( )1
1He ,z z− =  

( )1 2
2He ,z z− =  

( )1 3
3He ,z z z− = −  

( )1 4 2
4He 3 ,z z z− = −  

( )1 5 3
5He 6 3 ,z z z z− = − +  

( )1 6 4 2
6He 10 15 ,z z z z− = − +  

( )1 7 5 3
7He 15 45 15 ,z z z z z− = − + −  

( )1 8 6 4 2
8He 21 105 105 ,z z z z z− = − + −  

( )1 9 7 5 3
9He 28 210 420 105 ,z z z z z z− = − + − +  

( )1 10 8 6 4 2
10He 36 378 1280 945 ,z z z z z z− = − + − −  
( )1 11 9 7 5 3

11He 45 630 3150 4725 945 .z z z z z z z− = − + − + −               (A.4) 

Generally ( )1Hen z−  is related to ( )0Hen z  by 

( ) ( )1 0
1He He .n nz z z−
−=                      (A.5) 

The sequence of polynomials 

( ) ( ) ( ) ( )1 1 1He i He i i He i ,nn n
n n nz z z− − −= − = −             (A.6) 

is obtained from the sequence of polynomials ( )1Hen z−  in (4) by substituting all 
minus signs on the right-hand side by plus signs. 

The first 12 members of the series of polynomials 

( ) ( ) ( ) ( )0 0He i He i i He i ,nn n
n n nz z z− = − = −            (A.7) 

are explicitly 

( )0
0He 1,z =  

( )1
1He ,z z− =  

( )2 2
2He 1,z z− = +  

( )3 3
3He 3 ,z z z− = +  

( )4 4 2
4He 6 3,z z z− = + +  

( )5 5 3
5He 10 15 ,z z z z− = + +  

( )6 6 4 2
6He 15 45 15,z z z z− = + + +  

( )7 7 5 3
7He 21 105 105 ,z z z z z− = + + +  

( )8 8 6 4 2
8He 28 210 420 105,z z z z z− = + + + +  

( )9 9 7 5 3
9He 36 378 1260 945 ,z z z z z z− = + + + +  

( )10 10 8 6 4 2
10He 45 630 3150 4725 945,z z z z z z− = + + + + +  

( )11 11 9 7 5 3
11He 55 990 6930 17325 10395 .z z z z z z z− = + + + + +            (A.8) 

The polynomials ( )He m
n z−  with non-positive upper integer index 0, 1, 2,m− = − −   
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are factorable and satisfy the following relation 

( ) ( ) ( ) ( )0He He He , 0 ,m m
n m n mz z z n m− −

−= − ≥         (A.9) 

for example 

( ) ( )1 0
1He He ,n nz z z−
−=  

( ) ( ) ( )2 2 0
2He 1 He ,n nz z z−

−= +  

( ) ( ) ( )3 3 0
3He 3 He ,n nz z z z−

−= +  

( ) ( ) ( )4 4 2 0
4He 6 3 He .n nz z z z−

−= + +                               (A.10) 

The scaled Hermite Hermite polynomials ( ) ( )0He Hen nz z≡  are connected 
with the usual Hermite polynomials ( )Hn z  by 

( )
( )

( ) ( ) ( )1He H , H 2 He 2 ,
22

n

n n n nn

zz z z 
≡ ⇔ = 

 
   (A.11) 

and play often a role in applications. 

Appendix B. Sequences of Associated Hermite Polynomials 
( )n zHeν  with Semi-Integer Parameter ν  

The first 12 initial members of the sequence of polynomials ( )
1
2Hen z  are 

( )
1
2
0He 1,z =  

( )
1
2
1He ,z z=  

( )
1

22
2

3He ,
2

z z= −  

( )
1

32
3He 4 ,z z z= −  

( )
1

4 22
4

15 21He ,
2 4

z z z= − +  

( )
1

5 32
5

93He 12 ,
4

z z z z= − +  

( )
1

6 4 22
6

35 129 231He ,
2 2 8

z z z z= − + −  

( )
1

7 5 32
7

285He 24 180 ,
2

z z z z z= − + −  

( )
1

8 6 4 22
8

63 1095 2655 3465He ,
2 4 4 16

z z z z z= − + − +  

( )
1

9 7 5 32
9

1911 27945He 40 1875 ,
4 16

z z z z z z= − + − +  

( )
1

10 8 6 4 22
10

99 35805 128835 65835He 777 ,
2 8 16 32

z z z z z z= − + − + −  

( )
1

11 9 7 5 22
11

443835 81585He 60 1197 9492 .
16 4

z z z z z z z= − + − + −          (B.1) 
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The first 12 initial members of the sequence of polynomials ( )
1
2Hen z

−
 are 

( )
1
2

0He 1,z
−

=  

( )
1
2

1He ,z z
−

=  

( )
1

22
2

1He ,
2

z z
−

= −  

( )
1

32
3He 2 ,z z z
−

= −  

( )
1

4 22
4

9 5He ,
2 4

z z z
−

= − +  

( )
1

5 32
5

33He 8 ,
4

z z z z
−

= − +  

( )
1

6 4 22
6

25 57 45He ,
2 2 8

z z z z
−

= − + −  

( )
1

7 5 32
7

145He 18 51 ,
2

z z z z z
−

= − + −  

( )
1

8 6 4 22
8

49 615 945 585He ,
2 4 4 16

z z z z z
−

= − + − +  

( )
1

9 7 5 32
9

1155 6705He 32 780 ,
4 16

z z z z z z
−

= − + − +  

( )
1

10 8 6 4 22
10

81 16695 38835 9945He 497 ,
2 8 16 32

z z z z z z
−

= − + − + −  

( )
1

11 9 7 5 32
11

157395 34335He 50 801 4830 .
16 8

z z z z z z z
−

= − + − + −           (B.2) 

The first 12 initial members of the sequence of polynomials ( )
3
2Hen z

−
 are 

( )
3
2

0He 1,z
−

=  

( )
3
2

1He ,z z
−

=  

( )
3

22
2

1He ,
2

z z
−

= +  

( )
3

32
3He ,z z
−

=  

( )
3

4 22
4

3 3He ,
2 4

z z z
−

= − −  

( )
3

5 32
5

3He 4 ,
4

z z z z
−

= − −  

( )
3

6 4 22
6

15 9 21He ,
2 2 8

z z z z
−

= − + +  

( )
3

7 5 32
7

45He 12 6 ,
2

z z z z z
−

= − + +  

( )
3

8 6 4 22
8

35 255 75 231He ,
2 4 4 16

z z z z z
−

= − + − −  
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( )
3

9 7 5 32
9

567 855He 24 165 ,
4 16

z z z z z z
−

= − + − −  

( )
3

10 8 6 4 22
10

63 5145 1395 3465He 273 ,
2 8 16 32

z z z z z z
−

= − + − + +  

( )
3

11 9 7 5 32
11

23835 1125He 40 477 1848 .
16 2

z z z z z z z
−

= − + − + +            (B.3) 

Appendix C. Sequence of Parabolic Cylinder Functions with 
Integer Indices 

The first 12 members of the sequence of Parabolic Cylinder functions with 
non-negative integer indices are 

( )
2

0D exp ,
4
zz

 
= − 

 
 

( )
2

1D exp ,
4
zz z

 
= − 

 
 

( ) ( )
2

2
2D exp 1 ,

4
zz z

 
= − − 

 
 

( ) ( )
2

3
3D exp 3 ,

4
zz z z

 
= − − 

 
 

( ) ( )
2

4 2
4D exp 6 3 ,

4
zz z z

 
= − − + 

 
 

( ) ( )
2

5 3
5D exp 10 15 ,

4
zz z z z

 
= − − + 

 
 

( ) ( )
2

6 4 2
6D exp 15 45 15 ,

4
zz z z z

 
= − − + − 

 
 

( ) ( )
2

7 5 3
7D exp 21 105 105 ,

4
zz z z z z

 
= − − + − 

 
 

( ) ( )
2

8 6 4 2
8D exp 28 210 420 105 ,

4
zz z z z z

 
= − − + − + 

 
 

( ) ( )
2

9 7 5 3
9D exp 36 378 1260 945 ,

4
zz z z z z z

 
= − − + − + 

 
 

( ) ( )
2

10 8 6 4 2
10D exp 45 630 3150 4725 945 ,

4
zz z z z z z

 
= − − + − + − 

 
 

( ) ( )
2

11 9 7 5 3
11D exp 55 990 6930 17325 10395 .

4
zz z z z z z z

 
= − − + − + − 

 
   (C.1) 

The first 12 members of the sequence of Parabolic Cylinder functions with 
negative integer indices represented in the form (5.2) or better (5.7) with 

0ν =  and using (2.10) are (definition of Complementary Error function  
( ) ( )Erfc 1 Erfu u≡ − ) 
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( )
2

1
1 πD exp Erfc ,
0! 4 2 2

z zz−

   
=    

  
 

( )
2 2

2
1 πD exp Erfc exp ,
1! 4 2 42

z z zz z−

      = − + −     
      

 

( ) ( )
2 2

2
3

1 πD exp Erfc 1 exp ,
2! 4 2 42

z z zz z z−

      = + − −     
      

 

( ) ( ) ( )
2 2

3 2
4

1 πD exp Erfc 3 exp 2 ,
3! 4 2 42

z z zz z z z−

      = − + + − +     
      

 

( ) ( ) ( )
2 2

4 2 3
5

1 πD exp Erfc 6 3 exp 5 ,
4! 4 2 42

z z zz z z z z−

      = + + − − +     
      

 

( ) ( )

( )

2
5 3

6

2
4 2

1 πD exp Erfc 10 15
5! 4 2 2

exp 9 8 ,
4

z zz z z z
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In applications (e.g., quantum mechanics) one has often to do with the scaled 
Parabolic Cylinder functions ( ) ( ) ( )D 2 D 2

n

n nz z′ ≡  which we do not expli-
citly write down. 

Appendix D. Some Algebraic Relations for the Jacobi  
Polynomials 

We collect here a few algebraic relations for the Jacobi polynomials which are 
interesting for the derivation of relations between the Associated Hermite poly-
nomials. 

The only general basic recurrence relation for the Jacobi polynomials with 
stable upper indices ( ),α β  is the three-term relation 

( )( )( ) ( ) ( )
( ) ( )( )( ) ( ) ( )

( )( )( ) ( ) ( )

,
1

,2 2

,
1

0 2 1 1 2 P

2 1 2 2 2 P

2 2 2 P ,

n

n

n

n n n u

n n n u u

n n n u

α β

α β

α β

α β α β

α β α β α β α β

α β α β

+

−

= + + + + + +

− + + + + + + + + + −

+ + + + + +

 (D.1) 

connecting neighbored terms with lower indices ( )1, , 1n n n+ −  is well known 
(e.g., [3], chap. 10.8. (11)). In addition there are possible a number of so-called 
contiguous relations where the upper indices ( ),α β  are involved with differ-
ences by integers. We give in the following a few basic ones of them. 

There exists the following recurrence relations with only one lower index n 
but with unstable upper indices ( ),α β  and constant coefficients (see also [3] 
(10.8) Equations (34)-(37)) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 1,P P P ,n n nn u n u n uα β α β α βα β β α− −+ + = + + +     (D.2) 

and the following recurrence relation with two lower indices n and 1n −  and 
unstable upper indices 

( ) ( ) ( ) ( ) ( ) ( ), , 1 1,
1P P P .n n nu u uα β α β α β− −
− = −               (D. 3) 

Both can be directly proved using basic definitions of the Jacobi polynomials 
or their explicit representations (e.g., [5] [18]). A recurrence relation with only 
one lower index but contiguous upper indices and with coefficients which de-
pend on the variable u is 

( ) ( ) ( ) ( ) ( ) ( )1, 1 , 1 1,1 1P P P .
2 2n n n

u uu u uα β α β α β− − − −− +
= +       (D.4) 

It also can be proved from the definition or from the basic explicit representa-
tions of the Jacobi polynomials. By linear combination of the above three conti-
guous relations which are complete as the fundamental ones we may obtain 
some other but no more fundamental forms. All these identities are true for 
general argument u. 

We now derive an identity which is only true for the special argument 0u =  
of the Jacobi polynomials. Setting 0u =  in the identity (D.4) we find 

( ) ( ) ( ) ( ) ( ) ( )( )1, 1 , 1 1,1P 0 P 0 P 0 .
2n n n

α β α β α β− − − −= +          (D.5) 

https://doi.org/10.4236/apm.2019.91002


A. Wünsche 
 

 

DOI: 10.4236/apm.2019.91002 42 Advances in Pure Mathematics 
 

and if we substitute first the parameter 1α α→ +  and second the parameter 
1β β→ +  we obtain from (5) the two identities  

( ) ( ) ( ) ( ) ( ) ( ), 1 1, 1 ,2P 0 P 0 P 0 ,n n n
α β α β α β− + −= +  
( ) ( ) ( ) ( ) ( ) ( )1, , 1, 12P 0 P 0 P 0 .n n n
α β α β α β− − += +              (D.6) 

The contiguous relation (D.2) specialized for argument = 0u  can be writ-
ten 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , 1 1,2 P 0 2P 0 2P 0 .n n nn n nα β α β α βα β β α− −+ + = + + +   (D.7) 

Substituting now the Jacobi polynomials on the right-hand side according to 
the identities (D.6) one obtains a relation which by some shortening of expres-
sions on both sides can be represented in the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1, 1 1, 1P 0 P 0 P 0 .n n nn nα β α β α βα β β α+ − − ++ = + + +    (D.8) 

As already announced by the derivation this identity is specific for the argu-
ment 0u =  of the Jacobi polynomials and cannot be generalized to arbitrary 

0u ≠  by simply substituting only the argument zero of the Jacobi polynomials 
by an arbitrary one. 

We mention in addition the following general relation between Jacobi poly-
nomials with different arguments [5] (chap. IV, (4.22.1)) 

( ) ( ) ( ) ( ) ( ) ( ), , 2 1 ,1 3P P 1 P .
2 1

n
nn

n n n
u uu u

u
α β α α β β α− − − −+ −   = = − −   +   

   (D.9) 

It is applied in (5.4) to get two different representations of the formula for 
( )Hen zν . 
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