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Abstract 

The article presents the proof of the validity of the generalized Riemann hy-
pothesis on the basis of adjustment and correction of the proof of the Rie-
manns hypothesis in the work [1], obtained by a finite exponential functional 
series and finite exponential functional progression. 
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1. Introduction 

In this paper we give the proof of the generalized Riemann’s hypothesison the 
basis of adjustments and corrections to the proof of the Riemann’s hypothesis of 
the zeta function, which was undertaken in [1], as well as values of specified 
limits of the cofficient c. The paper also provides a refutation of the hypothesis 
of Mertens. 

The formulation of the problem (Generalized Riemann’s hypothesis). All 
non-trivial zeros of Dirichle’s function ( ),L s χ  have a real part that is equal to 

1
2

σ = . 

1). For this we first will provethe Riemann's hypothesis for the zeta 
function ( )nς . 

1.1). The solution. For the confirmation of the Riemann’s hypothesis we will 
give the definitions and prove the following theorem. 

Definition 1. The expression  

( ) ( ) ( ) ( ) ( )
1
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is called finite exponential functional series with respect to the variable exponent 
1
k

, where { }1,2,3, ,k n =   . 

Definition 2. The progression of the type  

( ) ( ) ( ) ( ) ( ) ( ) ( )2, , , , xa x a x q x a x q x a x q x⋅ ⋅ ⋅            (2) 

is called finite exponential functional progression, if their first member ( )a n  is 

a function of x  or is equal to 1 and the denominat or ( )q n  is a function of 

the variable 
1
xx . 

Theorem 1. If the set of natural numbers { }1,2, , , ,nN k n+ =    is the union 
of subsets 1 2 3 4 5 6, , , , ,M M M M M M  and these subsets are disjoint and have 
appropriately for , , , , ,m r s t v u  the elements, the number of elements of the set 

1 2 3 4 5nN M M M M M M+ = ∪ ∪ ∪ ∪ ∪  equal to  

n m r s t v u= + + + + + . 

Proof. The theorem is proved similarly to the theorem 7.11 ([2], p. 50).  

Theorem 2. ( ) ( )
1k

M n kµ
∞

=

=∑  of a series
( )

( )
1

1
s

n

n
s n

µ
ς

∞

=

=∑  equals.  

( ) 1.5M n n<  

Proof. Let the number ( )N N n=  be the quantity of elements of the set of 
natural numbers { }1,2,3, ,nN n+ =  . The positive integers nN +  consist: of 1; 
primes, the quantity of which is denoted by ( )П П n= ; of natural numbers, 
which are divided on mp  with quotient from 1 with 2m ≥ , the number of 
which is denoted by ( )к кК К n= ; the number of positive integers, which are 
decomposed into a product of a pair number of primes, we denote by 

( )n nT T n= , and the amount of numbers, which can be converted into product 
of unpaired number of primes, will be denoted by ( )н нT T n= . Then the 
amount of natural numbers N , of the set of natural numbers nN + , according to 
the theorem 1, equals  

1 n н к
nN П Т Т K К+ = + + + + +                       (3) 

The number of the natural series nN +  approximately can be expressed as a 
finite exponential function series 

( )
[ ]

[ ]
1

3 4
1

2

n
nk

k
f n n n n n n

=

= = + + + +∑                (4) 

We will write the number of natural numbers ( )K n , approximately as finite 

exponential function series consisting of the first ( )1n −  members of the 

series (4), and we denote it as ( )2f n , then 

( )
1

3 4
2

2

n
n

k

k
f n n n n n n

 
   

 

=

= = + + + +∑  .             (5) 
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In the sum of the series (4) each term of the series is taken, as the amount of 

natural numbers. For example, k kn n =   ; { }100 1;2;3;4;5;6;7;8;9;10  =  ;

{ }3 100 1;2;3;4  =   and so on. 

A series [ ]( )3 4 nn n n n+ + + +  is greater than the series of the natural 

number of positive integers ( )1 nf n N +> . 

Definition 3. The natural numbers that overlap, are called the finite exponential 
function series of (5), in which they occurmore than once. Let that N n=  and 

1 1
n n
=
 
 

. The function ( ) ( )2f n K n> , because in the function except the 

numbers ( )K n  are included and the numbers which overlap. 

Definition 4. Two infinitely great ( )f n  and ( )nϕ , which are not equal to 

each ether ( ) ( )f n nϕ≠  are called equivalent if ( )
( )

lim 1
n

f n
nϕ→∞

= when ( ) 0nϕ ≠ . 

We assume that the set of natural numbers ( )1 1,2,3, , 1,M n n= −  with al-
gebra 1 , , , ,0,1A N= + ⋅ −  is vector space 1P . In this space we set the standard  

max
n n

x n n= = , and the set of numbers [ ] ( )( )1
2 , , ,n nM n n n−=   with algebra 

[ ]
2 , , , ,0,1nA n= + ⋅ −  will be assumed as vector space 2P  with standard   

max
n n

x n n= = . 

Then, the denominator of an exponential function of finite progression, which  

operates in the space 1P  will take as 
1
nq n= , and the denominator of an expo-

nential function of finite progression, which operates in the space 2P , as 
1
nq n= . 

The finite exponential functional series (4) is approximable by the sum of the 
finite exponential functional progression 

1 1 2 3 1
2

1 1n n n nn n n n nϕ
 

= + + + + +  
 

                  (6) 

Proposition 1. The finite exponential functional series (4) and the sum of  
the finite exponential functional progression (6) are equivalent. 

Proof. To prove the equivalence of the finite exponential functional series 

( )1f n  with the finite functional progression 
1

1
nnϕ

 
  
 

 the sum of the functional 

series is written in the form of 

( ) ( )

( ) ( )

3
1

1
31 ,

n

nn

f n n n n

n n n n n n

= + + +

 
< − + + + + +  
 





 

Then let us write that 
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( ) ( )3
1

1 1 2 3 1
2

1

1 1 1 11 1
3 2 24 2

1 11
22

...
lim lim

1

1
lim 1

1

n

n n
n n n n

n

n
n

n n nf n

n n n n n

n n n n

n n n

ϕ
→∞ →∞

− −−

−→∞ −

+ + +
=

   
+ + + + +      

   
 
⋅ + + + +  
 = =

 
⋅ + + +  
 







 

Therefore, in accordance with the definition 4, the functional series and 
functional progression will be equivalent. 

Proposition 1 is proved. 
Proposition 2. The finite exponential functional series (4) and the sum of the 

finite exponential functional progression (6) ( )12 S N⋅  are equivalent. 

Proof. The sum of the finite exponential functional progression 
1

1
nnϕ

 
  
 

 can 

be calculated by the formula 

( ) ( )1 1
1 12 2 2 2
1n

n nS N n n
n n

− −
⋅ = ⋅ > ⋅ = −

−
                 (7) 

and then the limit ( )1
1

1

lim
n

n

f n

nϕ
→∞  

  
 

 will be equal to: 

( ) ( ) ( )

( )

1
3

1
1

1

1 1 1
3

3 4

1
lim lim

1
lim

1lim 1,

nn

n n
n

nn n n

n

n

n

n n n n n nf n
n n

n

n n n n n n n n

n n
n n n n

n n

ϕ
→∞ →∞

→∞

→∞

− + + + + +
=

  −
  
 

 
− + + + + +  

 =
−

+ + + + +
= =

−







 

where lim 1n
n

n
→∞

=  and 20 1n n
n

< − <  ([3], p. 67). 

Therefore, in accordance with the definition 4, the functional series (4) and 

the finite sum 12 S⋅  of the functional progression (6) at ( ) 21n n
n

− ≈ , when 

n →∞ ,will be equivalent. 

Proposition 2 is proved. 

From the expression (4) and (7) one can see that 
1

1
nnϕ

 
  
 

 is within limit of 

function 
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( ) ( )
1

1 1 12nf n n S n n nϕ
 

≈ ≥ ⋅ > −  
 

. 

The sum of the finite exponential functional progression (6) with 
1
nq n=  

equals ( ) ( )12 S N n n⋅ ≈ − . When ( ) ( )1,n S N→∞ →∞ . We will compare the 

function ( )12 S n⋅  with the function ( ) nf n N += . We find 

( )
( )1

1

lim lim lim lim 1
1 12 2 21

n n n n

n

f n N N Nk
S n n n n n

n
n

→∞ →∞ →∞ →∞
= = < = =

− − −⋅ ⋅
−

. 

Therefore, 1 1k < . 
Lemma 1. The number of natural numbers that overlap is less than 1,5 n . 
Proof. To prove this proposition let us denotethrough nK  is the numbers 

that occur more than once in the finite exponential functional series (4) when 
n →∞ , and use the exponential functional series ( )2f n . 

The series (5) is taken is this form to be because it includes all numbers that 
overlap. This follows from the expression 2 n N> , ln 2 lnn N⋅ > . Two is 
taken because it is thes mallest prime number that can not be decomposed into 
prime factors. 

The finite exponential functional series (5) will be replace by the sum of finite 
exponential functional progression 

1 2

2
1

1

n
k

n n

k
n nϕ

=

 
   = +    

  
 

∑ .                     (8) 

Proposition 3. The finite exponential functional series (5) and the finite 
exponential functional progression (8) are equivalent. 

Proof. The functional series (4) can be written as 

( )
11 11

32
1

n
nk

k n
f n n n n n

=

 
= + + + +  

 
∑ 

, 

and the functional progression (6) is as 

1 1 2 2 2
2

1
1

1 1 .

n
kn n
nn n n n

k
n n n n nϕ

−

=

     = + + + + + +             

∑  

Discard the first members of the series and progression, we find that 

( )
1 111 2

32
2 2

1
 or 1 .

n
k

n n n

k
f n n n n n nϕ

=

 
   = + + + = +    

  
 

∑  

We show that 
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( )
1 1 1 2 3 2

2
3 3 and 1

n nn
k n n n n n

k n
f n n n n n n nϕ

−

=

  
= = + + + + +        
∑   

are equivalent: 

( ) ( )
1 1

3
2 1 1 2 2

2
3

1
lim lim lim 1

21 2

n
k

n
k n

n nn n n
n n n n

n n n nf n
k

n nn n n nϕ

=

−→∞ →∞ →∞

− +
= = = =

     −
+ + + +             

∑



. 

It follows that the finite exponential functional series ( )2f n  and the finite 

exponential functional progression 
1

2
nnϕ

 
  
 

 are equivalent. 

Proposition 3 is proved. 
To prove the theorem, we introduce the functions series  

1

1

1 11 11
64

4
2

n
k nk

k k
f n n n n n

 
 

=

 
  = = + + +
 
 

∑  ,               (9) 

where { }1 2,3, , 2 .k n =  

 
And functional progression 

2 2 4 8 1
4 4

4 1
n

n n n nn n n n nϕ
−  

 = + + + + +       
 .           (10) 

If we express the series (5), as a series 3 4 nn n n n      + + + +        , than 

the series (8) is taken 6 24 kn n n n       + + + +         is such form so that 

each element of the series (8) overlaps the each element of the series (5) with 
unpaired exponents of the root. And then we can write that 

6 3 5 2 14 k kn n n n n n n+             + + + > + + +               .    (11) 

Hence the amount of numbers that cover more numbers that overlap. 
Proposition 4. The finite exponential functional series (9) and the finite 

exponential progression (10) are equivalent. 
Proof. To prove the equivalence of the finite exponential functional series 

with the finite exponential functional progression in the form of the relation  

( )
( )

111
64

4
3 2 4 8 1

4 4 4

1 11 11
46 44

2 11 1
44 4

lim lim

1

1
lim 1

1

n

nn n
n n n

n

n
n

f n n n nk
n

n n n n

n n n

n n n

ϕ −→∞ →∞

−−

→∞ −−

+ + +
= =

 
 + + + + +
 
 

 
+ + +  

 = =
 
⋅ + + +  
 









 

Therefore, in accordance with the definition 4, the functional series (9) and a 
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functional progression (10) are equivalent. 
Proposition 4 is proved. 
Proposition 5. The finite exponential functional series (9) and the finite sum 

( )44 S n⋅  of the exponential function progression (10) are equivalent when 
21n n
n

− ≈  ([3], p. 67). 

Proof. The sum of functional series ( )4f n  is more than 1
2
n 
−  

 
, and the 

sum of functional progression 
2

4
nnϕ

 
  
 

 is considered, as the sum of the 

functional progression with 
2
nq n= . Then we find that ( )

4

4 2

14 4
1n

nS n
n
−

⋅ = ⋅
−

. 

In order to calculate the functional 
2

1nn
 

−  
 

, let us set 2t n=  or t n= , and 

then we obtain 
2 4 2 2 1 1 2

1 1 1 1 1 1 1n t t t t t tn t t t t t t
             

− = − = − ⋅ + = − ⋅ + ⋅ +                                      
. 

Since lim 1t
t

t
→∞

=  then 
2

4

81nn
n

 
− <  

 
. And then we will have 

( )
4 4

4

4

14 4 8 2
n n nS n

n

− −
⋅ ≈ = ,                 (12) 

Using the definition 4 we will have 

( )4
3 2 4

4

1
2lim lim 1

2
n n

n

n
f n

k
n n

nϕ
→∞ →∞

−
= = =

  −
  
 

. 

Therefore, a function of series (9) and the sum ( )44 S n⋅  of functional 
progression (10) are equivalent. 

Proposition 5 is proved. 
From the expressions (10) and (12) it is clear that ( )4 nϕ  is within 

( ) ( )
2 4

4 4 44
2

n n nf n n S nϕ
  −

≈ ≥ ⋅ >  
 

. 

Then we compare function n  with the function ( )4f n  when n →∞  
and we obtain  

( )4 4 4 4

2

4

8lim lim lim 2
1 1 44 4 81

n n n

n

n n nk
n n n n
n

n

→∞ →∞ →∞

⋅
= < = =

− − ⋅ −⋅ ⋅
−

. 

Hence, we have that 4 2k < , or 
2

42 0nn f n
 

− ⋅ <  
 

. 
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Therefore, ( )42
n f n< . Let us take into account the value of the finite 

exponential functional series ( )4f n , and write that  

( ) 3
2 2 2

nn nK n n n< < + = .  

Lemma 1 is proved. 
Then we can write that 

( ) ( )1 0N n c f n− ⋅ < ,                        (13) 

Using the inequality ( ) ( )1 2f n K n> ⋅  we will write that 

( ) ( ) ( ) ( )1 1 nf n K n n n K n≈ + − + +                   (14) 

If we substitute value of the function ( )2f n  (14) into (13), we obtain 

( ) ( ) ( ) ( )( )1 0nN n c K n n n K n− ⋅ + − + + < . 

Using Lemma 1, we obtain 

( ) ( ) ( ) 31 0
2

N n c K n n n n − ⋅ + − + + < 
 

. 

Hence; we find that 

( ) ( ) ( )( ) 31
2

N n c K n n n c n− ⋅ + − + < ⋅ . 

The value N  from (3) is substituted instead N , we obtain 

( ) ( ) ( )( )1 1.5 1н n кП Т Т К K n c n K n n n+ + + + + < ⋅ + + − + ,  

or 

( )( )1 1.5 1 1н n к н n кП Т Т К c n П Т Т К n+ + + + < ⋅ + + + + + − + .  (15) 

Then we can write that appropriately of the properties of the function of 
Mobius- ( ) 1nµ = ,when 1n = ; ( ) ( )1 knµ = − , where k  is the amount of prime 
factors of the numbers 1 2 kn p p p= ⋅ ⋅ ⋅  and ( ) 0nµ =  when n is multiple 

mp  for 2m ≥ , 

( ) ( ) ( )( )1 1 1 1.5n н n нT П Т c Т П Т n n+ − + < ⋅ + − + − + + .      (16) 

We write that 

( ) ( )1 n нM n T П Т= + − + . 

Then the expression (16) takes the form 

( ) ( )( )( )1 1.5M n c M n n n< ⋅ − + + . 

Therefore  

( ) ( )0.5 1
1

cM n n
c

< ⋅ +
−

.                   (17) 
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The theorem is proved. 
For the Mertens function we can find a more precise estimate. 

Lemma 2. The accurate assessment. ( ) ( )
1k

M n kµ
∞

=

=∑  in a series  

( )
( )

1

1
s

n

n
s n

µ
ς

∞

=

=∑  will be equal 

( ) ( )3 41.25 1.25 1
1

cM n n n n n
c

< ⋅ + − ⋅ − +
−

. 

Proof. In order to finda more accurate estimate than ( ) ( )0.5 1
1

cM n n
c

< +
−

, 

let us find the sum of the finite exponential functional series (5)  

( )
1

3 4
2

2

n
n

k

k
f n n n n n n

 
   

 

=

 = = + + + + 
 

∑  . For that we use the functional 

progression (6) 
1 2

2
1

1

n
k

n n

k
n nϕ

=

 
   = +    

  
 

∑ , then we obtain that 

( ) 3 34 4
2 2.5 2 2.5nf n n n n n n n n= + + + + = + − ⋅ . 

We find from the expression (10) that the quantity of numbers that overlap is 

less than 
( )2

2
f n

 because 
( )2 3 5 2 1

2
kf n

n n n+     > + + +      . Using this 

method, we define what ( ) ( )0.5 1
1

cM n n
c

< ⋅ +
−

 and the expression  

( )2 3 5 2 1

2
kf n

n n n+     > + + +       we obtain that 

( ) ( )3 41.25 1.25 1
1

cM n n n n n
c

< ⋅ + − ⋅ − +
−

. 

Hence, we find that the upper limit of the value functions ( )lim
n

M n
n→∞

 will be 

the value 

( )limsup 0.25
1n

M n c
cn→∞

< ⋅
−

, 

and the lower limit is  

( )lim inf 0.25
1n

M n c
cn→∞

> −
−

. 

Therefore, the evaluation ( ) ( )3 40.25 1.25 1
1

cM n n n n
c

< + − +
−

 is a more 

accurate estimate than ( ) ( )0.5 1
1

cM n n
c

< ⋅ +
−

 when n →∞ . 

Lemma 2 is proved. 

The theorem 2 proves that the upper limit value of the function ( )lim
n

M n
n→∞

 

equals 
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( )limsup 0.5
1n

M n c
cn→∞

< ⋅
−

, 

and the lower limit is 

( )lim inf 0.5
1n

M n c
cn→∞

> − ⋅
−

, 

Proposition 6. ( )
1
20.5 1

1
c n n

c
ε+

⋅ +
−

  when .n →∞  

Proof. According to the theorem 54 ([4], p. 114) we have that ( )
1
2M n O n

ε+ 
=  

 
. 

The value ( ) ( )0.5 1
1

cM n O n
c

 = ⋅ + − 
 is compared with ( )

1
2M n O n

ε+ 
=  

 
, 

we will write that ( ) 0
1
20.5 1

1
c n n

c
ε+ + = − 

 when n →∞ . Hence we find that 

( )
0

ln 0.5 1
1

ln

c n
c

n
ε

 + − =  when n →∞ , 0 0ε → . Therefore, we can assume 

that 0ε ε> , where ε  is a random small number. And here we find that 

( )
1
20.5 1

1
c n n

c
ε+ 

⋅ + <<  
−  

 when n →∞ . 

Proposition 6 is proved. 
1.2). A determination the values of coefficient c . 
1.2.1). Then we can write that according to the properties of Mobius function-
( ) 1nµ = , then 1n = ; ( ) ( )1 knµ = − , where k the number of prime factors of the 

number 1 2 kn p p p= ⋅ ⋅  and ( ) 0nµ = , when n  is the multiple of mp  for 
2m ≥  that 

( ) ( )( ) ( )( ) ( )1 1 0.5 1n н п нT П Т с Т П Т n+ − + − ⋅ + − + < ⋅ + , 

Then 

( ) ( ) ( ) ( )0.5 1 ;  0.5 1
1 1

c cM n n M n n
c c

< ⋅ ⋅ + < ⋅ ⋅ +
− −

. 

From the expression ( ) ( ) 31 0
2

К n n n n+ − + + ⋅ > , using the properties of 

Möbius function, it can be written that 

( ) 1.5 1M n n< ⋅ − . 

And from the expression 0N n− >  we find that 

( )M n n> . 

This coincides with the results [5]. Then we can find the extent to which the 
coefficient c is located. From the double inequality  

( )0.5 1 1.5
1

cn n n
c

< ⋅ ⋅ + < ⋅
−

, we find that 2 3
1

c
c

< <
−

. And here we find 

that 1.5 2c< < . 
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1.2.2). Using a more precise value ( )М n , we find that 

( )3 40.25 1.25 1 1.25
1

cn n n n n
c

< + − + < ⋅
−

. 

And here we find that 4 5
1

c
c

< <
−

 and from the double inequality we find 

that the coefficient с  will be in the range 1.25 1.33.c< <  

1.3). Theorem 3. The series 
( )

( )
1

1
s

n

n
s n

µ
ς

∞

=

=∑  converges if 1 1
2 2

σ ε= + >  

and ( ) ( )0.5 1
1

cM n n
c

< +
−

 where ε  is a random small number. 

Corollary of Theorem 3 (the Riemann’s hypothesis). All non-trivial zeros 

of the zeta-function have a real partequal to 1
2

σ = . 

Proof. A necessary and sufficient condition for the validity of the Riemann’s 

hypothesis is the convergence of the series 
( )

( )
1

1
s

n

n
s n

µ
ς

∞

=

=∑  when 1
2

σ >  ([4], 

p. 114). We find the convergence of the series, when 

( ) ( ) 10.5 1  and .
1 2

cM n O n
c

σ = + = − 
 

( ) ( ) ( ) ( )
( )

( ) ( )

( )

( )

( ) ( )

1 1 1 1
1 1 12 2 2 2

11
22

1 1
1 12 2

1 1 1

11 1 1
1 1
2

1
21

0,5 1 0,5 11 1
22 2

n n n

n n

n n n

M n M n M n
M n

nn n n

n n M n
M n

n nn n

c cnM n c c
nn n n n

ξ

∞ ∞ ∞

= = =

∞ ∞

= =

∞ ∞ ∞

= = =

 − −  = = = ⋅ −    +    
 

+ − = ≤ 
 ⋅ + 

+
− −= = = →∞

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

 

the series diverges. 

And when 1 1
2 2

σ ε= + >  we have 

( )

( )

1 1 1
1 1 12

0.5 0.51 1 11 1 d
1 2 2
2

0.5
1 0.25

2 1

n n

c c
M n c c n

n n
n

c
cc
c

ε εες ε

ε ε

∞∞ ∞

+ +
+= =

⋅ ⋅
− −= ≤ ≤

 + 
 

⋅
−= = ⋅

⋅ −

∑ ∑ ∫
 

the series converges, where ε is an arbitrary small number. 

Therefore, the series 
( )

( )
1

1
s

n

n
s n

µ
ς

∞

=

=∑  converges uniformly for 1 1
2 2

σ ε= + > , 

and since it is a function 
( )
1
sς

 if 1σ > , for the theorem of analytic 

continuation, it is also at its 1 1
2

σ< ≤ . Therefore, the Riemann’s hypothesis is 
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true. 
The theorem is proved. 

2. Theorem 4. All Non-Trivial Zeros of Dirichle’s Function 

L(s, χ) Have a Real Part That Is Equal to 
1
2

σ =  

Proof. Let’s consider the Dirichle’s series 

( ) ( )
1

, ,  ,s
n

n
L s s it

n
χ

χ σ
∞

=

= = +∑                   (18) 

where χ  is the character of modulus m . 
There is ( )mϕ  of such series where ϕ  is the Euler’s function. Since 
( ) 1nχ ≤ , the series (18) converges when 1σ > , as can be seen from a  

comparison of this series with the series 1
sn∑ . We denote it by the sum  

through series ( )1,L χ . For various characters χ , we obtain different functions 
( ),L s χ .They are called L is the Dirichle’s functions. In studying the properties 

of these functions it is convenient to distinguish the cases where χ  is the main 
character 1χ  and when 1χ χ≠ . 

2.1) If 1χ χ≠  than the series (18) converges in the half-plane 0σ > . Let us  
show from the beginning, that the partial sums ( )

n x
nχ

<
∑  are limited. We divide  

the integer number from 1 to [ ]x  into classes of deductions by mod m  and 
write [ ]x m q r= ⋅ + , 0 1r m≤ ≤ − . Then 

( ) ( )
( )

[ ]
( ) ( )

2

1 1 1 1 1 1
...

x mq mq rm m

n x n m m n mq
n n n nχ χ χ χ

+

< = + − + +

 
= = + + + ⋅ +  

 
∑ ∑ ∑ ∑ ∑ ∑ . 

Because of the orthogonality relations 

( ) ( )
( )

1

mod 1

,  than 
0,         than n m

m
n

ϕ χ χ
χ

χ χ
=

= 
≠

∑  

we have 

( ) ( )
1

mq r

n x mq
n nχ χ

+

< +

=∑ ∑ , 

hence 

( ) ( )
1

mq r

n x mq
n n r mχ χ

+

< +

≤ ≤ <∑ ∑ . 

Since n σ−  at 0σ >  decreases monotonically and tends to zero when 
n →∞ , then the series ( ) sn nχ∑  converges for real 0s σ= > , and, 
consequently, for all s  in the half-plane 0σ >  when χ χ≠ . If, however, 

0σ < , then this the series obviously diverge. It’s abscissa converges 0 0σ =  and 
the abscissa of absolute convergence 1σ = . By the theorem 4, The Dirichle’s  

series 
1

s
n

n
a n

∞
−

=

⋅∑  in the half-plane of the convergence is a regular analytic  
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function from s , the successive derivatives of which are obtained by the term 
differentiation of this the series ([6], p. 153), the function ( ),L s χ , χ χ≠  is a 
regular analytic function from s  when 0σ > . 

2.2) If 1χ χ=  we use 

( ) ( ) ( )
1

1, ,  Re .
2s

n

n n
L s s

n
µ χ

χ
∞

=

⋅
= ≥∑                     (19) 

From the theorem 3 it follows that ( ), 0L s χ ≠  when 1
2

σ ≥ . If 1χ  is the 

main character by mod m , then 

( ) ( )
( )1

1,  then , 1
.

0,  then , 1
a m

a
a m

χ
 ==  >

 

Using the condition ( ) s sn n nχ − −⋅ ≤  the function (19) can be written as 

( ) ( ) ( ) ( )
1 1

, s s
n n

n n n
L s

n n
µ χ µ

χ
∞ ∞

= =

= =∑ ∑ , when ( ) 1nχ =  and 1
2

σ ≥ . 

Using the results of the theorem 3, it can be argued that the generalized 
Riemann’s hypothesis is true, and accordingly to it: “All non-trivial zeros of the 

Dirichle’s functions have a real part equal to 1
2

σ = ”. 

The theorem 4 is proved. 

3. Appendix. Disproof of the Mertens Hypothesis 

The refutation of the Mertens hypothesis can be found on the basis of the proof 
of the Riemann hypothesis given in this paper. Take the series 

( ) ( ) ( )
1

3 3
1 1 nn nf n n n n n n n n n

 
= + + + < ⋅ − + + + + +  

 
 

 

and it can be written in the form 

( ) ( )
1

3

32 4

3 4

1

2.5 2 2.5 1

1.5 2 2.5 1,

nnn n n n n n

n n n n n

n n n n

 
⋅ − + + + + +  

 

< + ⋅ + ⋅ − ⋅ − +

= + ⋅ + ⋅ − ⋅ +



 

where 

( ) 3 3 4
2 2.5 2 2.5nf n n n n n n n= + + + < + ⋅ − ⋅ . 

Then we can write 

3 42.5 2 2.5 1 0N n n n n+ ⋅ + ⋅ − ⋅ − + >  

or 

3 41.5 2 2.5 1N n n n> − ⋅ − ⋅ + ⋅ −                 (20) 

The value N  from the expression 3 is substituted instead of N , we obtain 

( )1 п н кN П Т Т К К п= + + + + +  
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From the expression (20) we obtain 

( ) 3 41 1.5 2 2.5 1п н кП Т Т К К п n n n+ + + + + > − ⋅ − ⋅ + ⋅ − .      (21) 

The properties of Mobius function ([5], p. 3) will be applied to the expression 
(21) and we obtain that 

( ) 3 41.5 2 2.5 1M n n n n> − ⋅ − ⋅ + ⋅ −  

or 

( ) 3 41.5 2 2.5 1M n n n n< ⋅ + ⋅ − ⋅ + . 

It will be the smallest value of the function of Mertens ( )M n  and the biggest 
value for the function of Mertens ( )M n . From the expression 6 

1 1 1
2

1 1n nn n nφ
 

= + + +  
 

  

we find that 

0N n− > ,                          (22) 

When ( ) 21n n
n

− ≈  and n →∞  ([3], p. 67).  

We write the expression 22 in the form 

( )1 п н кП Т Т К К п n+ + + + + > .                (23) 

Let us apply the properties of Mobius function to the expression (23) and we 
obtain 

( )M n n>  . 

Then we can state that the function of Mertens ( )M n  is within 

( ) 3 41.5 2 2.5 1n M n n n n< < ⋅ + ⋅ − ⋅ +  

And it rejects the hypothesis of Mertens.  

4. Conclusion 

In the article, based on the finite exponential functional series and the finite 
exponential functional progressions, we prove the generalized Riemann’s 
hypothesis, as well as the Riemann hypothesis. It is shown that in the Riemann’s  

hypothesis 1
2

σ = . In the annex to the article, the Mertens hypothesis is refuted.  

In the refuted Mertens hypothesis it is shown that the Mertens function is within 
( ) 3 41.5 2 2.5 1n M n n n n< < ⋅ + ⋅ − ⋅ + . 
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