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Abstract 

In the paper, the martingales and super-martingales relative to a convex set of 
equivalent measures are systematically studied. The notion of local regular su-
per-martingale relative to a convex set of equivalent measures is introduced and 
the necessary and sufficient conditions of the local regularity of it in the discrete 
case are founded. The description of all local regular super-martingales relative 
to a convex set of equivalent measures is presented. The notion of the com-
plete set of equivalent measures is introduced. We prove that every bounded 
in some sense super-martingale relative to the complete set of equivalent 
measures is local regular. A new definition of the fair price of contingent 
claim in an incomplete market is given and the formula for the fair price of 
Standard Option of European type is found. The proved Theorems are the 
generalization of the famous Doob decomposition for super-martingale onto 
the case of super-martingales relative to a convex set of equivalent measures. 
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1. Introduction 

In the paper, a new method of investigation of martingales and super-martingales 
relative to a convex set of equivalent measures is developed. A new proof that 
the essential supremum over the set of regular martingales, generated by a cer-
tain nonnegative random value and a convex set of equivalent measures, is a su-
per-martingale with respect to this set of measures, is given. 

A notion of local regular super-martingale is introduced and the necessary 
and sufficient conditions are found under that the above defined super-martingales 
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are local regular ones. The last fact allowed us to describe the local regular su-
per-martingales. It is proved that the existence of a nontrivial martingale relative 
to a convex set of equivalent measures, generally speaking, does not guarantee 
for a nonnegative super-martingale to be a local regular one. 

An important notion of the complete convex set of equivalent measures is in-
troduced. It is proved that any super-martingale relative to the complete convex 
set of equivalent measures on a measurable space with the finite set of elementa-
ry events is a local regular one. The notion of the complete convex set of equiva-
lent measures is generalized onto an arbitrary space of elementary events. It is 
proved that the nonnegative and the majorized from below super-martingales 
are local regular ones. 

The definition of the fair price of contingent claim is introduced. The suffi-
cient conditions of the existence of the fair price of contingent claim are pre-
sented. The conditions that the introduced notion coincides with classical one 
are given. 

All these notions are used in the case as the convex set of equivalent measures 
is a set of equivalent martingale measures for the evolution of both risk and 
non-risk assets. The formula for the fair price of Standard Contract with Option 
of European type in an incomplete market is found. 

The notion of the complete convex set of equivalent measures permits us to 
give a new proof of the optional decomposition for a nonnegative super-martingale. 
This proof does not use the no-arbitrage arguments and the measurable choice 
[1] [2] [3] [4]. 

First, the optional decomposition for diffusion processes super-martingale 
was opened by El Karoui N. and Quenez M. C. [5]. After that, Kramkov D. O. 
and Follmer H. [1] [2] proved the optional decomposition for the nonnegative 
bounded super-martingales. Folmer H. and Kabanov Yu. M. [3] [4] proved ana-
logous result for an arbitrary super-martingale. Recently, Bouchard B. and Nutz 
M. [6] considered a class of discrete models and proved the necessary and suffi-
cient conditions for the validity of the optional decomposition. 

The optional decomposition for super-martingales plays the fundamental role 
for the risk assessment in incomplete markets [1] [2] [5] [7] [8] [9] [10] [11]. 
Considered in the paper problem is a generalization of the corresponding one 
that appeared in mathematical finance about the optional decomposition for a 
super-martingale and which is related with the construction of the superhedge 
strategy in incomplete financial markets. 

Our statement of the problem unlike the above-mentioned one and it is more 
general: a super-martingale relative to a convex set of equivalent measures is 
given and it is necessary to find the conditions for the super-martingale and the 
set of measures under that the optional decomposition exists. 

The generality of our statement of the problem is that we do not require that 
the considered set of measures was generated by the random process that is a 
local martingale as it is done in the papers [1] [4] [5] [6] and that is important 
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for the proof of the optional decomposition in these papers. 

2. Local Regular Super-Martingales Relative to a Convex Set 
of Equivalent Measures 

We assume that on a measurable space { },Ω   a filtration  

1 , 0,m m m+⊂ ⊂ = ∞   , and a family of convex set of equivalent measures M 

on   are given. Further, we assume that { }0 ,= ∅ Ω  and the σ-algebra  

1
n

n
σ

∞

=

 =  
 

 V  is a minimal σ-algebra generated by the algebra 
1

n
n

∞

=
V . A ran-

dom process { } 0m m
ψ ψ ∞

=
=  is said to be adapted one relative to the filtration 

{ } 0m m

∞

=
  if mψ  is a m  measurable random value, 0,m = ∞ .  

Definition 1. An adapted random process { } 0m m
f f ∞

=
=  is said to be a su-

per-martingale relative to the filtration , 0,m m = ∞ , and the convex family of 

equivalent measures M if , 1, ,P
mE f m P M< ∞ = ∞ ∈ , and the inequalities  

{ }| , 0 , 1, , ,P
m k kE f f k m m P M≤ ≤ ≤ = ∞ ∈             (1) 

are valid.  
Further, for an adapted process f we use both the denotation { } 0

,m m m
f ∞

=
  

and the denotation { } 0m m
f ∞

=
. 

Definition 2. A super-martingale { } 0
,m m m

f ∞

=
  relative to a convex set of 

equivalent measures M is a local regular one if sup , 1,P
m

P M
E f m

∈
< ∞ = ∞ , and 

there exists an adapted nonnegative increasing random process  

{ } 00
, , 0m m m

g g∞

=
= , sup , 1,P

m
P M

E g m
∈

< ∞ = ∞ , such that { } 0
,m m m m

f g ∞

=
+   is a 

martingale relative to every measure from M.  
The next elementary Theorem 1 will be very useful later. 
Theorem 1. Let a super-martingale { } 0

,m m m
f ∞

=
 , relative to a convex set of 

equivalent measures M be such that sup , 1,P
m

P M
E f m

∈
< ∞ = ∞ . The necessary 

and sufficient condition for it to be a local regular one is the existence of an 
adapted nonnegative random process { }0

0
,m m m

g
∞

=
 , 0sup , 1,P

m
P M

E g m
∈

< ∞ = ∞ , 
such that  

{ } { }0
1 1 1| | , 1, , .P P

m m m m mf E f E g m P M− − −− = = ∞ ∈ 
        

(2) 

Proof. Necessity. If { } 0
,m m m

f ∞

=
  is a local regular super-martingale, then 

there exist a martingale { } 0
,m m m

M
∞

=
  and a non-decreasing nonnegative ran-

dom process { } 0
,m m m

g ∞

=
 , 0 0g = , such that  

, 1, .m m mf M g m= − = ∞                      (3) 

From here we obtain the equalities  

{ }
{ } { }

1 1

0
1 1 1

|

| | , 1, , ,

P
m m m

P P
m m m m m

E f f

E g g E g m P M
− −

− − −

−

= − = = ∞ ∈



 
       

(4) 
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where we introduced the denotation 0
1 0m m mg g g −= − ≥ . It is evident that 

0
1sup supP P P

m m m
P M P M

E g E g E g −
∈ ∈

≤ + < ∞ . 
Sufficiency. Suppose that there exists an adapted nonnegative random process 

{ }0 0

0m m
g g

∞

=
= , 0

0 0g = , 0P
mE g < ∞ , 1,m = ∞ , such that the equalities (2) hold. 

Let us consider the random process { } 0
,m m m

M
∞

=
 , where  

0
0 0

1
, , 1, .

m

m m m
i

M f M f g m
=

= = + = ∞∑
                

(5) 

It is evident that P
mE M < ∞  and  

{ } { }0
1 1 1 1| | 0.P P

m m m m m m mE M M E f f g− − − −− = − − = 
         

(6) 

Theorem 1 is proved.                                              
Lemma 1. Any super-martingale { } 0

,m m m
f ∞

=
  relative to a family of meas-

ures M for which there hold equalities 0 , 1, ,P
mE f f m P M= = ∞ ∈  is a mar-

tingale with respect to this family of measures and the filtration , 1,m m = ∞ .  
Proof. The proof of Lemma 1 see [12].                               . 

3. Description of Local Regular Super-Martingales Relative 
to a Convex Set of Equivalent Measures Generated by the 
Finite Set of Equivalent Measures 

Below, we describe the local regular super-martingales relative to a convex set of 
equivalent measures M generated by the finite set of equivalent measures. For 
this we need some auxiliary statements. 

Lemma 2. On a measurable space { },Ω   with filtration m  on it, let G be 
a sub σ-algebra of the σ-algebra   and let ,sf s S∈  be a finite family of 
nonnegative bounded random values. Then for every measure P from M. 

{ } { }max | max | , .P P
s ss S s S

E f G E f G P M
∈ ∈

≥ ∈
             

(7) 

Proof. We have the inequalities  

max , .s ts S
f f t S

∈
≥ ∈

                       
(8) 

Therefore,  

{ } { }max | | , , .P P
s ts S

E f G E f G t S P M
∈

≥ ∈ ∈
             

(9) 

The last implies  

{ } { }max | max | , .P P
s ss S s S

E f G E f G P M
∈ ∈

≥ ∈
             

(10) 

 
In the next Lemma, we present the formula for calculation of the conditional 

expectation relative to another measure from M.  
Lemma 3. On a measurable space { },Ω   with a filtration n  on it, let M 

be a convex set of equivalent measures and let ξ be a bounded random value. 
Then the following formulas  

{ } { }1 2 1| | , 1, ,P P P
n n nE E nξ ξϕ= = ∞ 

              
(11) 
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are valid, where 

1 2

1

1 1
1 2

2 2

d d | , , .
d d

P P
n n

P PE P P M
P P

ϕ
−

  
= ∈  

   


             
(12) 

Proof. The proof of Lemma 3 is evident.                               
Let 1, , kP P  be a family of equivalent measures on a measurable space 

{ },Ω   and let us introduce the denotation M for a convex set of equivalent 
measures  

1 1
, , 0, 1, , 1 .

k k

i i i i
i i

M Q Q P i kα α α
= =

 = = ≥ = = 
 

∑ ∑
           

(13) 

Lemma 4. If ξ is an integrable random value relative to the set of equivalent 
measures 1, , kP P , then the formula  

{ } { }
1

ess sup | max |iPQ
n ni kQ M

E Eξ ξ
≤ ≤∈

= 
               

(14) 

is valid almost everywhere relative to the measure 1P .  
Proof. The definition of esssup for non countable family of random variables 

see [13]. Using the formula  

{ }
{ } { }

{ }

1

1

1

1

| |
| , ,

|

i
k

PP
i i n n

Q i
n k

P
i i n

i

E E
E F Q M

E

α ϕ ξ
ξ

α ϕ

=

=

= ∈
∑

∑

 


         

(15) 

where 
1

d
d

i
i

P
P

ϕ = , 
1

k

i i
i

Q Pα
=

=∑ , we obtain the inequality  

{ } { }
1

| max | , ,iPQ
n ni k

E E Q Mξ ξ
≤ ≤

≤ ∈ 
              

(16) 

or,  

{ } { }
1

ess sup | max | .iPQ
n ni kQ M

E Eξ ξ
≤ ≤∈

≤ 
               

(17) 

On the other side [13],  

{ } { }| ess sup | , 1, .iP Q
n n

Q M
E E i kξ ξ

∈
≤ = 

             
(18) 

Therefore,  

{ } { }
1
max | ess sup | .iP Q

n ni k Q M
E Eξ ξ

≤ ≤ ∈
≤ 

              
(19) 

Lemma 4 is proved.                                               
Lemma 5. On a measurable space { },Ω   with a filtration n  on it, let ξ 

be a nonnegative bounded random value. If 
d

, , 1,
d

i

l

P
i l k

P
=  are 1  measurable 

and 1
d

0 1, , 1,
d

i

l

P
P i l k

P
 

> = = 
 

, then the inequalities  

{ }{ } { }
1 1
max | | max | , 1, , ,l i iP P P

n m mi k i k
E E E l k n mξ ξ

≤ ≤ ≤ ≤
≤ = >  

      
(20) 
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are valid.  
Proof. From Lemma 3 and Lemma 5 conditions relative to the density of one 

measure with respect to another, we have  

{ } { }
1
max | | , 1, .i lP P

n ni k
E E l kξ ξ

≤ ≤
= = 

              
(21) 

From the equality (21) we obtain the inequality  

{ }{ } { }
1 1
max | | max | , 1, .l i iP P P

n m mi k i k
E E E l kξ ξ

≤ ≤ ≤ ≤
≤ =  

        
(22) 

Lemma 5 is proved.                                               
In this section, we assume that the conditions of Lemma 5 relative to the den-

sity of one measure with respect to another are true. 
Lemma 6. On a measurable space { },Ω   with a filtration n  on it, let ξ 

be a nonnegative random value which is integrable relative to the set of equiva-
lent measures 1, , kP P . Then the inequalities  

{ }{ } { }
1 1
max | | max | , , ,i iP PQ

n m mi k i k
E E E n m Q Mξ ξ

≤ ≤ ≤ ≤
≤ > ∈  

     
(23) 

are valid.  
Proof. Using Lemma 5 inequalities for the nonnegative bounded ξ and the 

formula  

{ }
{ } { }

{ }

1

1

1

1

| |
| , ,

|

i
k

PP
i i m m

Q i
m k

P
i i m

i

E E
E Q M

E

α ϕ

α ϕ

=

=

Φ
Φ = ∈

∑

∑

 



        

(24) 

where { }
1

1

d
max | , , 1,

d
iP i

n ii k

PE i k
P

ξ ϕ
≤ ≤

Φ = = = , we prove Lemma 6 inequalities. 

Let us consider the case, as 
1
max iP

i k
E ξ

≤ ≤
< ∞ . Let , 1,s sξ = ∞  be a sequence of 

bounded random values converging to ξ monotonuosly. Then  

{ }{ } { }
1 1
max | | max | , 1, .iPQ Q

s n m s mi k i k
E E E l kξ ξ

≤ ≤ ≤ ≤
≤ =  

        
(25) 

Due to the monotony convergence of sξ  to ξ, as s →∞ , we can pass to the 
limit under the conditional expectations on the left and right sides in the inequa-
lities (25) that proves Lemma 6.                                  

Lemma 7. On a measurable space { },Ω   with filtration n  on it, for 
every nonnegative integrable random value ξ relative to a set of equivalent 
measures { }1, , kP P

 the inequalities  

{ }{ } { }esssup | | esssup | , , ,Q P P
n m m

P M P M
E E E Q M n mξ ξ

∈ ∈
≤ ∈ >  

    
(26) 

are valid.  
Lemma 7 is a consequence of Lemma 6. 
Lemma 8. On a measurable space { },Ω   with a filtration m  on it, let ξ 

be a nonnegative integrable random value with respect to a set of equivalent 
measures { }1, , kP P

 and such that  
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0 , 1, ,iPE M i kξ = =                       (27) 

then the random process { }{ }
0

esssup | ,P
m m m

P M m
M E ξ

∞

∈ =

=    is a martingale rela-

tive to a convex set of equivalent measures M.  
Proof. Due to Lemma 7, a random process 

{ }{ }
0

esssup | ,P
m m m

P M m
M E ξ

∞

∈ =

=    is a super-martingale, that is,  

{ }1 1| , 1, , .P
m m mE M M m P M− −≤ = ∞ ∈              (28) 

Or, 0
P

mE M M≤ . From the other side, 

{ } { } 01 1
max | max | , 1, .s i s iP P P P

m mi k i k
E E E E M s kξ ξ

≤ ≤ ≤ ≤
  ≥ ≥ =  

 
      

(29) 

The above inequalities imply 0 , 1, , 1,sP
mE M M m s k= = ∞ = . The last equalities 

lead to the equalities 0 , 1, ,P
mE M M m P M= = ∞ ∈ . The fact that Mm is a su-

per-martingale relative to the set of measures M and the above equalities prove 
Lemma 8, since the Lemma 1 conditions are valid.                   

In the next Theorem we denote 
1

i
i

σ
∞

=

 =  
 

 V  the minimal σ-algebra gener-

ated by the algebra 
1

i
i

∞

=
V .  

Theorem 2. Let { },Ω   be a measurable space with a filtration m  on it 
and let ξ be a nonnegative integrable random value with respect to a set of 
equivalent measures 1, , kP P . The necessary and sufficient conditions of the 
local regularity of the super-martingale { } 0

,m m m
f ∞

=
 , where  

{ }
1

esssup | , 1, , max ,iPP
m m i kP M

f E m Eξ ξ
≤ ≤∈

= = ∞ < ∞
          

(30) 

is its uniform integrability relative to the set of measure 1, , kP P  and the ful-
fillment of the equalities  

0 , 1, .iPE f i kξ = =                       (31) 

Proof. The necessity. Let { } 0
,m m m

f ∞

=
  be a local regular super-martingale. 

Then  

0 0, 0, , 0, , 1, .iP
n n n nf M g n g f E M i k= − = ∞ = = =         (32) 

From here we obtain 0 , 1,iP
nE g f i k≤ = . Due to the uniform integrability of 

nf  and ng  we obtain  

( ) 0 , 1, ,iPE f g f i k∞ ∞+ = =                   (33) 

where f ξ∞ = , lim nn
g g∞ →∞

= , since 
1

i
i

σ
∞

=

 =  
 

 V . But 0
0 1

max ii PP

i k
f E Eξ ξ

≤ ≤
= = . 

From (33) we have 0 0iPE g∞ = . The last equality gives 0g∞ = , or  

0 , 1, .ii PPE E i kξ ξ= =                      (34) 

The sufficiency. If the conditions of Theorem 2 are satisfied, then 

{ } 0
,m m m

M
∞

=
  is a martingale, where { }sup |P

m m
P M

M E ξ
∈

=  . The last implies the 
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local regularity of { } 0
,m m m

f ∞

=
 . Theorem 2 is proved.                      

4. Description of Local Regular Super-Martingales Relative 
to an Arbitrary Convex Set of Equivalent Measures 

Below, in the paper we assume that an arbitrary convex set of equivalent meas-
ures M on a measurable space { },Ω   and a filtration n  on it satisfies the 

conditions: the density 
d
d

P
Q

 is 1  measurable one and 0
d 0 1
d

PP
Q

 
> = 

 
 for 

all ,P Q M∈ , where the fixed measure 0P M∈ . Such a class of equivalent 
measures is sufficiently wide. It contains the class of equivalent martingale 
measures generated by a local martingale. 

Introduce into consideration a set A0 of all integrable nonnegative random 
values ξ relative to a convex set of equivalent measures M satisfying conditions  

1, .PE P Mξ = ∈                        (35) 

It is evident that the set A0 is not empty, since contains the random value 
1ξ = . More interesting case is as A0 contains more then one element. 

Lemma 9. On a measurable space { },Ω   and a filtration n  on it, let M 
be an arbitrary convex set of equivalent measures. If the nonnegative random 

value ξ is such that sup P

P M
E ξ

∈
< ∞ , then { }{ }

0
esssup | ,P

m m m
P M m

f E ξ
∞

∈ =

=    is a 

super-martingale relative to the convex set of equivalent measures M.  
Proof. From the definition of esssup [13], for every { }esssup |P

m
P M

E ξ
∈

  there 
exists a countable set Dm such that  

{ } { }esssup | sup | , 0, .
m

P P
m m

P M P D
E E mξ ξ

∈ ∈
= = ∞ 

          
(36) 

The set 
0

m
m

D D
∞

=

=


 is also countable one and the equality  

{ } { }esssup | sup |P P
m m

P M P D
E Eξ ξ

∈ ∈
= 

               
(37) 

is true. Really, since  

{ } { } { }sup | sup | esssup | .
M

P P P
m m m

P D P D P M
E E Eξ ξ ξ

∈ ∈ ∈
≥ =  

        
(38) 

From the other side,  

{ } { }esssup | | , .P Q
m m

P M
E E Q Mξ ξ

∈
≥ ∈ 

             
(39) 

The last gives  

{ } { }esssup | sup | .P P
m m

P M P D
E Eξ ξ

∈ ∈
≥ 

               
(40) 

The inequalities (38), (40) prove the needed statement. So, for all m we can 
choose the common set D. Let { }1, , ,nD P P=   . Due to Lemma 7, for every 

kQ M∈ , we have  
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{ }{ } { }
1 1
max | | max | , , ,i iP PQ

n m m ki k i k
E E E n m Q Mξ ξ

≤ ≤ ≤ ≤
≤ > ∈  

     
(41) 

where  

1 1
, , 0, 1 .

k k

k i i i i
i i

M P M P Pα α α
= =

 = ∈ = ≥ = 
 

∑ ∑
            

(42) 

It is evident that { }
1
max |iP

ni k
E ξ

≤ ≤
  tends to { }sup |P

n
P D

E ξ
∈

  monotonously 
increasing, as k →∞ . Fixing 1k kQ M M +∈ ⊂  and tending k to the infinity in 
the inequalities (41), we obtain  

{ }{ } { }sup | | sup | , , .Q P
n m m k

P D P D
E E E n m Q Mξ ξ

∈ ∈
≤ > ∈  

      
(43) 

The last inequalities implies that for every measure Q, belonging to the 

convex span, constructed on the set D, { }{ }
0

esssup | ,P
m m m

P M m
f E ξ

∞

∈ =

=    is a  

super-martingale relative to the convex set of equivalent measures, generated by 
the set D. Now, if a measure Q0 does not belong to the convex span, constructed 
on the set D, then we can add it to the set D and repeat the proof made above. As  

a result, we proved that { }{ }
0

esssup | ,P
m m m

P M m
f E ξ

∞

∈ =

=    is also a super-martingale  

relative to the measure Q0. Zorn Lemma [14] complete the proof of Lemma 9.  
Theorem 3. On a measurable space { },Ω   and a filtration n  on it, let M 

be an arbitrary convex set of equivalent measures. For a random value 0Aξ ∈ , 
the random process { }{ }

0
| , ,P

m m m
E P Mξ

∞

=
∈   is a local regular martingale 

relative to the convex set of equivalent measures M.  
Proof. Let 1, , nP P  be a certain subset of measures from M. Denote Mn a 

convex set of equivalent measures  

1 1
, , 0, 1, , 1 .

n n

n i i i i
i i

M P M P P i nα α α
= =

 = ∈ = ≥ = = 
 

∑ ∑
         

(44) 

Due to Lemma 8, { } 0
,m m m

M
∞

=
  is a martingale relative to the set of measures 

Mn, where { } 0ess sup | ,
n

P
m m

P M
M E Aξ ξ

∈
= ∈ . Let us consider an arbitrary meas-

ure 0P M∈  and let  

0

0 0
, , 0, 0, , 1 .

n n
P
n i i i i

i i
M P M P P i nα α α

= =

 = ∈ = ≥ = = 
 

∑ ∑
        

(45) 

Then { }0

0
,P

m m m
M

∞

=
 , where { }0

0
ess sup |

P
n

P P
m m

P M
M E ξ

∈

=  , is a martingale rela-

tive to the set of measures 0P
nM . It is evident that  

0 , 0, .P
m mM M m≤ = ∞                      (46) 

Since 0 1, 0, ,PP P
m m nE M E M m P M= = = ∞ ∈ , the inequalities (46) give 

0P
m mM M= . Analogously, { }0 0|P P

m mE Mξ ≤ . From the equalities  
{ }0 0 0 0| 1P P P P

m mE E E Mξ = =  we obtain { }0 0|P P
m m mE M Mξ = = . Since the 
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measure P0 is an arbitrary one it implies that { }{ }
0

| ,P
m m m

E ξ
∞

=
   is a martin-

gale relative to all measures from M. Due to Theorem 1, it is a local regular su-
per-martingale with the random process 0 0, 0, .mg m= = ∞  Theorem 3 is proved. 
 

Theorem 4. On a measurable space { },Ω   and a filtration n  on it, let M 
be an arbitrary convex set of equivalent measures. If { } 0

,m m m
f ∞

=
  is an adapted 

random process satisfying conditions  

1 0, , , 1, , ,P
m m mf f E f P M m Aξ ξ−≤ < ∞ ∈ = ∞ ∈          (47) 

then the random process  

{ }{ }
0

| , , ,P
m m m m

f E P Mξ
∞

=
∈ 

                 
(48) 

is a local regular super-martingale relative to the convex set of equivalent meas-
ures M.  

Proof. Due to Theorem 3, the random process { }{ }
0

| ,P
m m m

E ξ
∞

=
   is a mar-

tingale relative to the convex set of equivalent measures M. Therefore,  

{ } { }{ }
( ) { }{ }

1 1 1

1 1

| | |

| | , 1, .

P P P
m m m m m

P P
m m m m

f E E f E

E f f E m

ξ ξ

ξ

− − −

− −

−

= − = ∞

  

 
           

(49) 

So, if to put ( ) { }0
1 | , 1,P

m m m mg f f E mξ−= − = ∞ , then 0 0mg ≥ , it is m - 
measurable and ( )0

1
P P

m m mE g E f fξ −≤ + < ∞ . It proves the needed statement. 
 

Corollary 1. If 1
0, 1, , ,mf m R Aα α ξ= = ∞ ∈ ∈ , then { }{ }

0
| ,P

m m m
Eα ξ

∞

=
   

is a local regular martingale. Assume that 1ξ = , then { } 0
,m m m

f ∞

=
  is a local 

regular super-martingale relative to a convex set of equivalent measures M.  
Denote F0 the set of adapted processes  

{ } ( ){ }0 10
, 1, , .m m m mm

F f f P f P M f f∞
−=

= = < ∞ = ∈ ≤
        

(50) 

For every 0Aξ ∈  let us introduce the set of adapted processes  

{ }{ } { }{ }000
| , , , ,P P

m m m mmm
L f f E f F E f P Mξ ξ ξ

∞ ∞

==
= = ∈ < ∞ ∈

   
(51) 

and  

0

.
A

V Lξ
ξ∈

=


                         
(52) 

Corollary 2. Every random process from the set K, where 

1
, , 0, 1, , 1, ,

m

i i i i
i

K C f f V C i m m
=

 = ∈ ≥ = = ∞ 
 
∑

           
(53) 

is a local regular super-martingale relative to the convex set of equivalent meas-
ures M on a measurable space { },Ω   with filtration m  on it.  

Proof. The proof is evident.                                         
Theorem 5. On a measurable space { },Ω   and a filtration n  on it, let M 

be an arbitrary convex set of equivalent measures. Suppose that { } 0
,m m m

f ∞

=
  is 

a nonnegative uniformly integrable super-martingale relative to a convex set of 
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equivalent measures M, then the necessary and sufficient conditions for it to be a 
local regular one is belonging it to the set K.  

Proof. Necessity. It is evident that if { } 0
,m m m

f ∞

=
  belongs to K, then it is a lo-

cal regular super-martingale. 
Sufficiency. Suppose that { } 0

,m m m
f ∞

=
  is a local regular super-martingale. 

Then there exists nonnegative adapted process { }0 0

1
, , 1,P

m mm
g E g m

∞

=
< ∞ = ∞ , and 

a martingale { } 0m m
M ∞

=
, such that  

0

1
, 0, .

m

m m i
i

f M g m
=

= − = ∞∑
                  

(54) 

Then 0, 0, , ,P
m mM m E M P M≥ = ∞ < ∞ ∈ . Since 00 P

mE M f< = < ∞  we 

have 0
0

1

m
P

i
i

E g f
=

<∑ . Let us put 0

1
lim

m

im i
g g∞ →∞ =

= ∑ . Using the uniform integrability 

of mf , we can pass to the limit in the equality  

0
0

1
, ,

m
P

m i
i

E f g f P M
=

 + = ∈ 
 

∑
                 

(55) 

as m →∞ . Passing to the limit in the last equality, as m →∞ , we obtain  

( ) 0 , .PE f g f P M∞ ∞+ = ∈                   (56) 

Introduce into consideration a random value 
0

f g
f

ξ ∞ ∞+
= . Then 

1,PE P Mξ = ∈ . From here we obtain that 0Aξ ∈  and  

{ }0 | , 0, .P
m mM f E mξ= = ∞                   (57) 

Let us put 2 0

1

m

m i
i

f g
=

= −∑ . It is easy to see that the adapted random process 

{ }2
2 0

,m m m
f f

∞

=
=   belongs to F0. Therefore, for the super-martingale 

{ } 0
,m m m

f f ∞

=
=   the representation  

1 2 ,f f f= +  

is valid, where { }{ }1 0 0
| ,P

m m m
f f E ξ

∞

=
=    belongs to Lξ  with 

0

f g
f

ξ ∞ ∞+
=  

and 1
0 , 0,mf f m= = ∞ . The same is valid for 2f  with 1ξ = . This implies that f 

belongs to the set K. Theorem 5 is proved.                               

Theorem 6. On a measurable space { },Ω   and a filtration n  on it, let M 
be an arbitrary convex set of equivalent measures. Suppose that the super-martingale 
{ } 0

,m m m
f ∞

=
  relative to the convex set of equivalent measures M satisfy condi-

tions  

0 0 0, 1, , , 0 ,mf C m A Cξ ξ≤ = ∞ ∈ < < ∞              (58) 

then the necessary and sufficient conditions for it to be a local regular one is be-
longing it to the set K.  

Proof. The necessity is evident. 
Sufficiency. Suppose that { } 0

,m m m
f ∞

=
  is a local regular super-martingale. 
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Then there exists a nonnegative adapted random process  

{ }0 0

1
, , 1,P

m mm
g E g m

∞

=
< ∞ = ∞ , and a martingale  

{ } 0
, , 1, ,P

m mm
M E M m P M∞

=
< ∞ = ∞ ∈ , such that  

0

1
, 0, .

m

m m i
i

f M g m
=

= − = ∞∑
                   

(59) 

The inequalities 0 0, 1,mf C mξ+ ≥ = ∞ , give the inequalities  

{ }0 | 0, 0, .P
m mf CE mξ+ ≥ = ∞                 (60) 

From the inequalities (58) it follows that the super-martingale { } 0
,m m m

f ∞

=
  is 

a uniformly integrable one relative to the convex set of equivalent measures M. 
The martingale { }{ }0 0

| ,P
m m m

E ξ
∞

=
   relative to the convex set of equivalent 

measures M is also uniformly integrable one. 
Then { }0 | 0, 0,P

m mM CE mξ+ ≥ = ∞ . Since  

{ }0 00 |P P
m mE M CE f Cξ < + = + < ∞   we have 0

0
1

m
P

i
i

E g f C
=

< +∑ . Let us 

put 0

1
lim

m

im i
g g∞ →∞ =

= ∑ . Using the uniform integrability of mf  and 0

1

m

i
i

g
=
∑  we can 

pass to the limit in the equality  

0
0

1
, ,

m
P

m i
i

E f g f P M
=

 + = ∈ 
 

∑
                 

(61) 

as m →∞ . Passing to the limit in the last equality, as m →∞ , we obtain  

( ) 0 , .PE f g f P M∞ ∞+ = ∈                    (62) 

Introduce into consideration a random value 0
1

0

0
f C g

f C
ξ

ξ ∞ ∞+ +
= ≥

+
. Then 

1 1,PE P Mξ = ∈ . From here we obtain that 1 0Aξ ∈  and for the su-

per-martingale { } 0
,m m m

f f ∞

=
=   the representation  

{ } { } { }0 1 2
0 1 2| | | , 0, ,P P P

m m m m m m mf f E f E f E mξ ξ ξ= + + = ∞       (63) 

is valid, where 0 1 2 0
0 2

1
, , , 0, , 1

m

m m m i
i

f C f f C f g m ξ
=

= − = + = − = ∞ =∑ . From the last 

representation it follows that the super-martingale { } 0
,m m m

f f ∞

=
=   belongs to 

the set K. Theorem 6 is proved.                                        
Corollary 3. Let ,Nf N < ∞  be a N -measurable integrable random value, 

sup P
N

P M
E f

∈
< ∞ , and let there exist 1

0 Rα ∈  such that  

0 0, ,N NM fα ω− + ≤ ∈Ω  

where { } { }{ } 00 0
, | , ,P

m m m mm m
M E Aξ ξ

∞∞

= =
= ∈   . Then a super-martingale 

{ }0

0m m m
f f

∞

=
+  is a local regular one relative to the convex set of equivalent 

measures M, where  
0

0 ,m mf Mα=                         (64) 
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0

0, ,
, .m

N N

m N
f

f M m Nα
<

=  − ≥                   
(65) 

Proof. It is evident that 1 0, 0,m mf f m− − ≥ = ∞ . Therefore, the super-martingale  

0
0

0 0

, ,
, ,

,

m

m m N

N N m

M m N
f f f m N

f M M m N

α

α α

<
+ = =
 − + >              

(66) 

is a local regular one relative to the convex set of equivalent measures M. Corol-
lary 3 is proved.                                                

5. Optional Decomposition for Super-Martingales Relative 
to the Complete Convex Set of Equivalent Measures 

In this section we introduce the notion of complete set of equivalent measures 
and prove that non negative super-martingales are local regular ones with re-
spect to this set of measures. For this purpose we are needed the next auxiliary 
statement.  

Theorem 7. The necessary and sufficient conditions of the local regularity of 
the nonnegative super-martingale { } 0

,m m m
f ∞

=
  relative to a convex set of equiv-

alent measures M are the existence of m -measurable random values 
0

0 , 1,m A mξ ∈ = ∞ , such that  

{ }0 0
1

1

, | 1, , 1, .Pm
m m m

m

f E P M m
f

ξ ξ −
−

≤ = ∈ = ∞
           

(67) 

Proof. The necessity. Without loss of generality, we assume that mf a≥  for a 
certain real number 0a > . Really, if it is not so, then we can come to the con-

sideration of the super-martingale { } 0
,m m m

f a ∞

=
+   Thus, let { } 0

,m m m
f ∞

=
  be a 

nonnegative local regular super-martingale. Then there exists a nonnegative 
adapted random process { } 00

, 0m m
g g∞

=
= , such that sup P

m
P M

E g
∈

< ∞ ,  

{ } { }1 1 1| | , , 1, .P P
m m m m mf E f E g P M m− − −− = ∈ = ∞          (68) 

Let us put 0

1

, 1,m m
m

m

f g m
f

ξ
−

+
= = ∞ . Then 0

0m Aξ ∈  and from the equalities (68) 

we obtain { }0
1| 1, , 1,P

m mE P M mξ − = ∈ = ∞ . It is evident that the inequalities 

(67) are valid. 
The sufficiency. Suppose that the conditions of Theorem 7 are valid. Then 

( )0
1 1 1m m m mf f f ξ− −≤ + − . Introduce the denotation 0

1m m m mg f f ξ−= − + . Then 

0mg ≥ , 1sup sup sup , 1,P P P
m m m

P M P M P M
E g E f E f m−

∈ ∈ ∈
≤ + < ∞ = ∞ . The last equality and 

inequalities give  

( )0
0 1

1 1
1 , 1, .

m m

m i i i
i i

f f f g mξ−
= =

= + − − = ∞∑ ∑
             

(69) 

Let us consider the random process { } 0
,m m m

M ∞

=
 , where  
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( )0
0 1

1
1

m

m i i
i

M f f ξ−
=

= + −∑ . Then { }1 1| , , 1,P
m m mE M M P M m− −= ∈ = ∞ . Theo-

rem 7 is proved.                                                    

5.1. Space of Finite Set of Elementary Events 

In this subsection we assume that a space of elementary events Ω is finite one, 
that is, 0N = Ω < ∞ , and we give a new proof of the optional decomposition for 
super-martingales relative to the complete convex set of equivalent measures. 
This proof does not use topological arguments as in [15]. 

Let   be a certain algebra of subsets of the set Ω and let 1n n+⊂ ⊂    be 
an increasing set of algebras, where { }0 ,= ∅ Ω , N =  . Denote M a convex 
set of equivalent measures on a measurable space { },Ω  . Further, we assume 
that the set A0 contains an element 0 1ξ ≠ . It is evident that every algebra n  is 
generated by sets , 1,n

i nA i N= , ,n n
i jA A i j=∅ ≠ , nN < ∞ ,  

1
, 1,

nN
n
i

i
A n N

=

= Ω =


. Let { }0 | , , 1,P
n nm E P M n Nξ= ∈ = . Then for mn the re-

presentation  

( )
1

, 1, ,
n

n
i

N
n

n i A
i

m m n Nχ ω
=

= =∑
                  

(70) 

is valid. Consider the difference ( ) 1
n

n nd m mω −= − . Then  

( ) ( ) ( ) ( )
1

,
n

n n n
j j j

n n

N
n n n n

j j jA A A
j j I j I

d d d dω χ ω χ ω χ ω
− += ∈ ∈

= = +∑ ∑ ∑
        

(71) 

( ) ( ) 1,n n
j j

n n
A A

j I j I

χ ω χ ω
− +∈ ∈

+ =∑ ∑
                  

(72) 

where 0n
jd ≤ , as nj I −∈ , and 0n

jd >  for nj I +∈ . From the equalities (71), (72) 
we obtain  

( ) ( ) ( ) 0, ,
n n

P n n n n n
j j j j

j I j I

E d d P A d P A P Mω
− +∈ ∈

= + = ∈∑ ∑
         

(73) 

( ) ( ) 1, .
n n

n n
j j

j I j I

P A P A P M
− +∈ ∈

+ = ∈∑ ∑
                

(74) 

Denote nM  the contraction of the set of measures M on the algebra n . In-
troduce into the set nM  the metrics  

( ) ( ) ( )1 2 1 2 1 2
1

, max , , , 1, ,
k

n n
n s s nB s

P P P B P B P P M n Nρ
=

= − ∈ =∑
      

(75) 

where { }1 , ,n n
kB B B=   is a partition of Ω on k subsets, that is, , 1,n

i nB F i k∈ = , 

,n n
i jB B i j=∅ ≠ , 

1

k
n
i

i
B

=

= Ω


. The maximum in the formula (75) is all over the 

partitions of the set Ω, belonging to the σ-algebra n . 

Definition 3. On a measurable space { },Ω  , a convex set of equivalent 
measure M we call complete if for every 1 n N≤ ≤  the closure of the set of 
measures nM  in the metrics (75) contains the measures  
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( )

0, , ,

, ,

,

n n
i j

n
j n

in nn
i jij

n
ni
jn n

i j

A A A
d

A A
d dP A

d A A
d d

 ≠

 =− += 


− =− +                 

(76) 

for every ni I −∈  and nj I +∈ .  
Lemma 10. Let a convex family of equivalent measures M be a complete one 

and the set 0A  contains an element 0 1ξ ≠ . Then for every non negative n - 
measurable random value 

1

n

n
i

N
n

n i A
i

Cξ χ
=

= ∑  there exists a real number nα  such 
that  

( )
( )1

1

1

1 , 1, .
sup

n

n
i

n

n

N
n
i A

i
n n nN

n n
i i

P M i

C
m m n N

C P A

χ
α=

−

∈ =

≤ + − =
∑

∑
           

(77) 

Proof. On the set nM , the functional ( ) ( )
1

nN
n n
i i

i
P C P Aϕ

=

=∑  is a continuous 

one, where nM  is the closure of the set nM  in the metrics ( )1 2,n P Pρ . From 
this it follows that the equality  

( ) ( )
1 1

sup sup
n n

n n

N N
n n n n
i i i i

P M P Mi i
C P A C P A

∈ ∈= =

=∑ ∑
               

(78) 

is valid. Denote 
( )

1

, 1,
sup

n

n

n
n i

i nN
n n
i i

P M i

Cf i N
C P A

∈ =

= =

∑
. Then  

( )
1

1, .
nN

n n
i i n

i
f P A P M

=

≤ ∈∑
                   

(79) 

For those ni I −∈  for which 0n
id <  and those nj I +∈  for which 0n

jd >  the 
inequality (79) is as follows  

1, 0, , 0, .
n n
jn n n ni

i j i j nn n n n
i j i j

d df f d i I d j I
d d d d

− +−
+ ≤ < ∈ > ∈

− + − +      
(80) 

From (80) we obtain the inequalities  

1
1 , 0, , 0, .

n
n n n ni
j j i n j nn

i

ff d d i I d j I
d

− +−
≤ + < ∈ > ∈

−            
(81) 

Since the inequalities (81) are valid for every 
1 n

i
n
i

f
d
−
−

, as 0n
id < , and since the 

set of such elements is finite, then if to denote  

{ }, 0

1
min ,

n
i

n
i

n ni d i

f
d

α
<

−
=

−                       
(82) 

then we have  

1 , 0, .n n n
j n j j nf d d j Iα +≤ + > ∈                  (83) 
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From the definition of nα  we obtain the inequalities  

1 , 0, .n n n
i n i i nf d d i Iα −≤ + < ∈                   (84) 

Now if 0n
id =  for some ni I −∈ , then in this case 1n

if ≤ . All these inequali-
ties give  

1 , .n n
i n i n nf d i I Iα − +≤ + ∈                     (85) 

Multiplying on n
iA

χ  the inequalities (85) and summing over all n ni I I− +∈ 
 

we obtain the needed inequality. Lemma 10 is proved.                     
Theorem 8. Suppose that the conditions of Lemma 10 are valid. Then every 

non negative super-martingale { } 0
, N

m m m
f

=
  relative to a convex set of equiva-

lent measures M, satisfying conditions  

1

, 1, ,n
n

n

f C n N
f −

≤ < ∞ =
                    

(86) 

is a local regular one, where , 1,nC n N=  are constants.  

Proof. Consider the random value 
1

n
n

n

f
f

ξ
−

= . Due to Lemma 10  

( ) 0
11 , 1, .

sup
n

n n n nP
n

P M

m m n N
E
ξ

α ξ
ξ −

∈

≤ + − = =

            

(87) 

It is evident that { }0
1| 1, , 1,P

n nE P M n Nξ − = ∈ = . Since sup 1P
n

P M
E ξ

∈
≤ , then  

0

1

, 1, .n
n

n

f n N
f

ξ
−

≤ =
                      

(88) 

Theorem 7 and the inequalities (88) prove Theorem 8.                   
Theorem 9. On a finite space of elementary events { },Ω   with a filtration 

n  on it, every super-martingale { } 0
, N

m m m
f

=
  relative to the complete convex 

set of equivalent measures M is a local regular one if the set 0A  contains 

0 1ξ ≠ .  
Proof. It is evident that every super-martingale { } 0

, N
m m m

f
=

  is bounded. 

Therefore, there exists a constant 0 0C >  such that  

0 0
0

3
, , 0,

2 2m
C Cf C m Nω> + > ∈Ω = . From this it follows that the su-

per-martingale { }0 0
, N

m m m
f C

=
+   is a nonnegative one and satisfies the condi-

tions  

0

1 0

3, 1, .n

n

f C n N
f C−

+
≤ =

+                      
(89) 

It implies that the conditions of Theorem 8 are satisfied. Theorem 9 is 
proved.                                                         

Theorem 10. Let M be a complete convex set of equivalent measure on a 
measurable space { },Ω   with a filtration m  on it. Suppose that 

0 0 0, 1Aξ ξ∈ ≠ , and { }0 |P
n nm E ξ=   is a martingale relative to the set of 

measures M. Let 0
aM  be a set of all martingale measures absolutely continuous 
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relative to any measure P M∈ . Then the inclusion 0
aM M⊆  is valid, where 

M  is a closure of the set of measures M in metrics ( )1 2,N P Pρ , defined in (75).  
Proof. Let the sequence sP M∈  be a convergent one to the measure 0P M∈ , 

then for 1nD −∈   

1d d , 1, .n s n s
D D

m P m P s−= = ∞∫ ∫
                   

(90) 

The functionals 1d , dn n
D D

m P m P−∫ ∫  on the set M  for all 1nD −∈  are conti-
nuous ones relative to the metrics ( )1 2,N P Pρ , defined by the formula (75). 
Going to the limit in the equality (90), as s →∞ , we obtain  

0 1 0 1d d , 1, , .n n n
D D

m P m P n N D− −= = ∈∫ ∫ 
              

(91) 

The last implies that 0 0
aP M∈ . Theorem 10 is proved.                   

5.2. Countable Set of Elementary Events 

In this subsection, we generalize the results of the previous subsection onto the 
countable space of elementary events. Let   be a certain σ-algebra of subsets 
of the countable set of elementary events Ω and let 1n n+⊂ ⊂    be a certain 
increasing set of σ-algebras, where { }0 ,= ∅ Ω . Denote M a set of equivalent 
measures on the measurable space { },Ω  . Further, we assume that the set 0A  
contains an element 0 1ξ ≠ . Suppose that the σ-algebra n  is generated by the  

sets , 1,n
iA i = ∞ , ,n n

i jA A i j=∅ ≠ , 
1

, 1,n
i

i
A n

∞

=

= Ω = ∞


. 

Introduce into consideration the martingale { }0 | , , 1,P
n nm E P M nξ= ∈ = ∞ . 

Then for nm  the representation  

( )
1

, 1, ,n
i

n
n i A

i
m m nχ ω

∞

=

= = ∞∑
                  

(92) 

is valid. Consider the difference ( ) 1
n

n nd m mω −= − . Then 

( ) ( ) ( ) ( )
1

,n n n
j j j

n n n n
j j jA A A

j j I j I

d d d dω χ ω χ ω χ ω
− +

∞

= ∈ ∈

= = +∑ ∑ ∑
        

(93) 

( ) ( ) 1,n n
j jA A

j I j I

χ ω χ ω
− +∈ ∈

+ =∑ ∑
                  

(94) 

where 0n
jd ≤ , as nj I −∈ , and 0n

jd > , nj I +∈ . From the equalities (93), (94) we 
obtain  

( ) ( ) ( ) 0, ,
n n

P n n n n n
j j j j

j I j I

E d d P A d P A P Mω
− +∈ ∈

= + = ∈∑ ∑
         

(95) 

( ) ( ) 1, .
n n

n n
j j

j I j I

P A P A P M
− +∈ ∈

+ = ∈∑ ∑
                

(96) 

Denote nM  the contraction of the set of measures M on the σ-algebra n . 
Introduce into the set nM  the metrics  

( ) ( ) ( )1 2 1 2 1 2
1

, sup , , , 1, ,
k

n n
n s s n

B s
P P P B P B P P M nρ

=

= − ∈ = ∞∑
      

(97) 
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where { }1 , ,n n
kB B B=   is a partition of Ω on k subsets, that is, , 1,n

i nB i k∈ = , 

,n n
i jB B i j=∅ ≠ , 

1

k
n
i

i
B

=

= Ω


. The supremum in the formula (97) is all over the 

partitions of the set Ω, belonging to the σ-algebra n .  

Definition 4. On a measurable space { },Ω   with a filtration n  on it, a 
convex set of equivalent measure M we call complete one if for every 1 n≤ < ∞  
the closure of the set of measures nM  in the metrics (97) contains the measures  

( )

0, , ,

, ,

,

n n
i j

n
j n

in nn
i jij

n
ni
jn n

i j

A A A
d

A A
d dP A

d A A
d d

 ≠

 =− += 


− =− +                

(98) 

for every ni I −∈  and nj I +∈ .  
Lemma 11. Let a family of measures M be complete and the set 0A  contains 

an element 0 1ξ ≠ . Then for every non-negative bounded n -measurable ran-

dom value 
1

n
i

n
n i A

i
Cξ χ

∞

=

= ∑  there exists a real number nα  such that  

( )
( )1

1

1

1 , 1, .
sup

n
i

n

n
i A

i
n n n

n n
i i

P M i

C
m m n

C P A

χ
α

∞

=
−∞

∈ =

≤ + − = ∞
∑

∑
           

(99) 

Proof. On the set nM , the functional ( ) ( )
1

n n
i i

i
P C P Aϕ

∞

=

= ∑  is a continuous 

one relative to the metrics ( )1 2,n P Pρ , where nM  is the closure of the set nM  
in this metrics. From this it follows that the equality  

( ) ( )
1 1

sup sup
n n

n n n n
i i i i

P M P Mi i
C P A C P A

∞ ∞

∈ ∈= =

=∑ ∑
              

(100) 

is valid. Denote 
( )

1

, 1,
sup

n

n
n i

i
n n
i i

P M i

Cf i
C P A

∞

∈ =

= = ∞
∑

. Then  

( )
=1

1, .n n
i i n

i
f P A P M

∞

≤ ∈∑
                  

(101) 

The last inequalities can be written in the form  

( ) ( ) 1, .n n n n
i i i i n

i I i I

f P A f P A P M
− +∈ ∈

+ ≤ ∈∑ ∑
             

(102) 

For those ni I −∈  for which 0n
id <  and those nj I +∈  for which 0n

jd >  the 
inequality (102) is as follows  

1, 0, 0, , .
n n
jn n n ni

i j i j n nn n n n
i j i j

d df f d d i I j I
d d d d

− +−
+ ≤ < > ∈ ∈

− + − +      
(103) 

From (103) we obtain the inequalities  
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1
1 , 0, 0, , .

n
n n n ni
j j i j n nn

i

ff d d d i I j I
d

− +−
≤ + < > ∈ ∈

−           
(104) 

Two cases are possible: 1) for all ni I −∈ , 1n
if ≤ ; 2) there exists ni I −∈  such 

that 1n
if > . First, let us consider the case a). 

Since the inequalities (104) are valid for every 
1 n

i
n
i

f
d
−
−

, as 0n
id < , and 

1,n
i nf i I −≤ ∈ , then if to denote  

{ }, 0

1
inf ,

n
i

n
i

n ni d i

f
d

α
<

−
=

−                      
(105) 

we have 0 nα≤ < ∞  and  

1 , 0, .n n n
j n j j nf d d j Iα +≤ + > ∈                 (106) 

From the definition of nα  we obtain the inequalities  

1 , 0, .n n n
i n i i nf d d i Iα −≤ + < ∈                  (107) 

Now, if 0n
id =  for some ni I −∈ , then in this case 1n

if ≤ . All these inequali-
ties give  

1 , .n n
i n i n nf d i I Iα − +≤ + ∈                    (108) 

Consider the case b). From the inequality (104), we obtain  

1
1 , 0, 0, , .

n
n n n ni
j j i j n nn

i

ff d d d i I j I
d

− +−
≤ − < > ∈ ∈

         
(109) 

The last inequalities give  

{ }, 0

1 1min , 0, .
n
j

n
ni
i nn nj di j

f d i I
d d

−

>

−
≤ < ∞ < ∈

             
(110) 

Let us define 
{ }, 0

1
sup

n
i

n
i

n n
i d i

f
d

α
<

−
= < ∞ . Then from (109) we obtain  

1 , 0, .n n n
j n j j nf d d j Iα +≤ − > ∈                  (111) 

From the definition of nα , we have  

1 , 0, .n n n
i n i i nf d d i Iα −≤ − < ∈                  (112) 

The inequalities (111), (112) give  

1 , .n n
j n j n nf d j I Iα − +≤ − ∈                    (113) 

Multiplying on n
iA

χ  the inequalities (108) and the inequalities (113) on n
jA

χ  
and summing over all , n ni j I I− +∈ 

 we obtain the needed inequality. The 
Lemma 11 is proved.                                                

Theorem 11. Suppose that the conditions of Lemma 11 are valid. Then every 
non negative super-martingale { } 0

,m m m
f ∞

=
  relative to a convex set of equiva-

lent measures M, satisfying the conditions  

1

, 1, ,m
m

m

f C m
f −

≤ < ∞ = ∞
                   

(114) 
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is a local regular one, where mC  are constants.  
Proof. From the conditions (114) it follows that sup P

m
P M

E f
∈

< ∞  Consider the 

random value 
1

n
n

n

f
f

ξ
−

= . Due to Lemma 11 

( ) 0
11 .

sup
n

n n n nP
n

P M

m m
E
ξ

α ξ
ξ −

∈

≤ + − =

               

(115) 

It is evident that { }0
1| 1, , 1,P

n nE P M nξ − = ∈ = ∞ . Since sup 1P
n

P M
E ξ

∈
≤ , then  

0

1

, 1, .n
n

n

f n
f

ξ
−

≤ = ∞
                     

(116) 

Theorem 7 and the inequalities (116) prove Theorem 11.                 

5.3. An arbitrary Space of Elementary Events 

In this subsection, we consider an arbitrary space of elementary events and 
prove the optional decomposition for non negative super-martingales. 

Let   be a certain σ-algebra of subsets of the set of elementary events Ω and 
let 1n n+⊂ ⊂    be an increasing set of the σ-algebras, where { }0 ,= ∅ Ω . 
Denote M a set of equivalent measures on a measurable space { },Ω   We as-
sume that the σ-algebras , 1,n n = ∞ , and   are complete relative to any 
measure P M∈ . Further, we suppose that the set 0A  contains an element 

0 1ξ ≠ . Let { }0 | , , 1,P
n nm E P M nξ= ∈ = ∞ . 

Consider the difference ( ) 1
n

n nd m mω −= − . We assume that every ω∈Ω  
belongs to the σ-algebra , 1,n n = ∞ , and { }( ) 0, ,P P Mω ω= ∈Ω ∈ . 

For the random value ( )nd ω  there exists not more then a countable set of 

the real number n
sd  such that ( ) 0n

sP A > , where ( ){ },n n n
s sA d dω ω= ∈Ω = . It 

is evident that ,n n
i jA A i j=∅ ≠ . Suppose that 

1
\ 0n

i
i

P A
∞

=

 
Ω > 
 


. Introduce 

for every n two subsets ( ){ }, 0n
nI dω ω− = ∈Ω ≤ , ( ){ }, 0n

nI dω ω+ = ∈Ω >  of 

the set ( ){ }, ndω ω∈Ω < ∞ . 

Denote nM  the contraction of the set of measures M on the σ-algebra n . 
Introduce into the set nM  the metrics  

( ) ( ) ( )1 2 1 2 1 2
1

, sup , , , 1, ,
k

n n
n s s n

B s
P P P B P B P P M nρ

=

= − ∈ = ∞∑
     

(117) 

where { }1 , ,n n
kB B B=   is a partition of Ω on k subsets, that is, , 1,n

i nB i k∈ = , 

,n n
i jB B i j=∅ ≠ , 

1

k
n
i

i
B

=

= Ω


. The supremum in the formula (117) is all over 

the partitions of the set Ω, belonging to the σ-algebra n . 

Definition 5. On a measurable space { },Ω   with filtration n  on it, a 
convex set of equivalent measure M we call complete if for every 1 n≤ < ∞  the 
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closure in metrics (117) of the set of measures nM  contains the measures  

( )
( )

( ) ( ) { }

( )
( ) ( ) ( ) { }

1 2

1 2

2
1 2

1 2,

1
2 1

1 2

0, , \ ,

, , ,

, \ , \

n

n nn

n

n n

A
d

A A
d dP A

d
A A

d d

ω ω

ω ω

ω
ω ω

ω ω

ω
ω ω

ω ω

∈Ω

 ∈ =∅− += 
 − ∈Ω Ω =∅
− +





   

(118) 

for 1 nIω −∈  and 2 nIω +∈ .  
Lemma 12. Let a convex family of equivalent measures M be a complete one 

and the set 0A  contains an element 0 1ξ ≠ . Then for every non negative 
bounded n -measurable random value nξ  there exists a real number nα  
such that  

( )11 , 1, .
sup

n
n n nP

n
P M

m m n
E
ξ

α
ξ −

∈

≤ + − = ∞

             

(119) 

Proof. On the set nM , the functional ( ) dnP Pϕ ξ
Ω

= ∫  is a continuous one rel-
ative to the metrics ( )1 2,n P Pρ , where nM  is the closure of the set nM  in this 
metrics. From this it follows that the equality  

sup d sup d
n n

n n
P M P M

P Pξ ξ
∈ ∈Ω Ω

=∫ ∫
                   

(120) 

is valid. Denote ( ) ( )
( )sup

n

nn
P

n
P M

f
E
ξ ω

ω
ξ ω

∈

= . Then  

( ) 1, .P n
nE f P Mω ≤ ∈                    (121) 

The last inequalities can be written in the form  

( ) ( )d d 1, .n n n
I I

f P f P P Mω ω
− +

+ ≤ ∈∫ ∫
              

(122) 

The inequality (122) for the measures (118) is as follows  

( ) ( )
( ) ( )

( )
( ) ( ) ( )2 1

1 2 1 2
1 2 1 2

1, , .
n n

n n
n nn n n n

d d
f f I I

d d d d
ω ω

ω ω ω ω
ω ω ω ω

− +−
+ ≤ ∈ ∈

− + − +
(123) 

From (123) we obtain the inequalities  

( ) ( )
( ) ( )1

2 2
1

1
1 ,

n
n n

n

f
f d

d
ω

ω ω
ω

−
≤ +

−                
(124) 

( ) ( )1 2 1 20, 0, , .n n
n nd d I Iω ω ω ω− +< > ∈ ∈             (125) 

Two cases are possible: 1) for all 1 nIω −∈ , ( )1 1nf ω ≤ ; 2) there exists 1 nIω −∈  
such that ( )1 1nf ω > . First, let us consider the case a). 

Since the inequalities (124) are valid for every 
( )
( )

1

1

1 n

n

f
d

ω
ω

−
−

, as ( )1 0nd ω < , 

and ( )1 11,n
nf Iω ω −≤ ∈ , then if to denote  
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( ){ }
( )
( )1 1

1

, 0 1

1
inf ,
n

n

n nd

f
dω ω

ω
α

ω<

−
=

−                   
(126) 

we have 0 nα≤ < ∞  and  

( ) ( )2 2 2 21 , ( ) 0, .n n n
n nf d d Iω α ω ω ω +≤ + > ∈           (127) 

From the definition of nα  we obtain the inequalities  

( ) ( ) ( )1 1 1 11 , 0, .n n n
n nf d d Iω α ω ω ω −≤ + < ∈           (128) 

Now, if ( )1 0nd ω =  for some 1 nIω −∈ , then in this case ( )1 1nf ω ≤ . All these 
inequalities give  

( ) ( )1 , .n n
n n nf d I Iω α ω ω − +≤ + ∈                (129) 

Consider the case b). From the inequality (124), we obtain  

( ) ( )
( ) ( )1

2 2
1

1
1 ,

n
n n

n

f
f d

d
ω

ω ω
ω

−
≤ −

               
(130) 

( ) ( )1 2 1 20, 0, , .n n
n nd d I Iω ω ω ω− +< > ∈ ∈            (131) 

The last inequalities give  

( )
( ) ( ){ } ( ) ( )

2 2

1
1 1

, 01 2

1 1inf , 0, .
n

n
n

nn nd

f
d I

d dω ω

ω
ω ω

ω ω
−

>

−
≤ < ∞ < ∈

      
(132) 

Let us define 
( ){ }

( )
( )1 1

1

, 0 1

1
sup

n

n

n n
d

f
dω ω

ω
α

ω<

−
= < ∞ . Then from (130) we obtain  

( ) ( ) ( )2 2 2 21 , 0, .n n n
n nf d d Iω α ω ω ω +≤ − > ∈           (133) 

From the definition of nα  we have  

( ) ( ) ( )1 1 1 11 , 0, .n n n
n nf d d Iω α ω ω ω −≤ − < ∈            (134) 

The inequalities (133), (134) give  

( ) ( )1 , .n n
n n nf d I Iω α ω ω − +≤ − ∈                (135) 

Since the set n nI I− +


 has probability one, Lemma 12 is proved.           
Theorem 12. Suppose a convex set of equivalent measures M is a complete 

one and the conditions of Lemma 12 are valid. Then every non negative su-
per-martingale { } 0

,m m m
f ∞

=
  relative to a convex set of equivalent measures M, 

satisfying conditions  

1

, 1, ,m
m

m

f C m
f −

≤ < ∞ = ∞
                   

(136) 

is a local regular one, where , 1,mC m = ∞  are constants.  
Proof. From the inequalities (136) it follows that sup , 1,P

m
P M

E f m
∈

< ∞ = ∞ . 

Consider the random value 
1

n
n

n

f
f

ξ
−

= . Due to Lemma 12  

https://doi.org/10.4236/apm.2018.84025


N. S. Gonchar 
 

 

DOI: 10.4236/apm.2018.84025 450 Advances in Pure Mathematics 

 

( ) 0
11 .

sup
n

n n n nP
n

P M

m m
E
ξ

α ξ
ξ −

∈

≤ + − =

               

(137) 

It is evident that { }0
1| 1, , 1,P

n nE P M nξ − = ∈ = ∞ . Since sup 1P
n

P M
E ξ

∈
≤ , then  

0

1

, 1, .n
n

n

f n
f

ξ
−

≤ = ∞
                     

(138) 

Theorem 7 and the inequalities (138) prove Theorem 12.                 
Consequence 1. If a super-martingale { } 0

,m m m
f ∞

=
  relative to a complete 

convex set of equivalent measures M satisfy conditions 0 , 1,m mf D m≤ ≤ = ∞ , 
where mD < ∞  are constant, then it is local regular.  

Proof. The super-martingale { } 0
, , 0m m m

f ε ε∞

=
+ >  is a nonnegative one and 

satisfies the conditions  

1

, 1, .m m
m

m

f D C m
f

ε ε
ε ε−

+ +
≤ = < ∞ = ∞

+              
(139) 

From Theorem 11 it follows the validity of the local regularity for the su-
per-martingale { } 0

,m m m
f ε ∞

=
+  ,  therefore,  for the super-martingale 

{ } 0
,m m m

f ∞

=
  the local regularity is also true.                             

6. Local Regularity of Majorized Super-Martingales 

In this section, we give the elementary proof that a majorized super-martingale 
relative to the complete set of equivalent measures is local regular one. 

Theorem 13. On a measurable space { },Ω   with a filtration m  on it, let 
the set M be a complete convex set of equivalent measures on   and the set 

0A  contains an element 0 1ξ ≠ . Then every bounded super-martingale 
{ } 0

,m m m
f ∞

=
  relative to the complete convex set of equivalent measures M is a 

local regular one.  
Proof. From Theorem 13 conditions, there exists a constant 0 C< < ∞  such 

that , 1,mf C m≤ = ∞ . Consider the super-martingale { } 0
,m m m

f C ∞

=
+  . Then 

0 2mf C C≤ + ≤ . Due to Consequence 1, for the super-martingale { } 0
,m m m

f C ∞

=
+   

the local regularity is true. So, the same statement is valid for the su-
per-martingale { } 0

,m m m
f ∞

=
  Theorem 13 is proved.                       

The next Theorem is analogously proved as Theorem 13.  
Theorem 14. On a measurable space { },Ω   with filtration m  on it, let 

the set M be a complete convex set of equivalent measures on   and the set 

0A  contains an element 0 1ξ ≠ . Then a super-martingale { } 0
,m m m

f ∞

=
  relative 

to the complete convex set of equivalent measures M satisfying the conditions  

1 0 1 0 2 0 0, , 1, , ,m mf C f C C m Aξ ξ ξ≤ + ≤ = ∞ ∈           (140) 

for certain constants 1 20 ,C C< < ∞  is a local regular one.  

7. Application to Mathematical Finance 

Due to Corollary 3, we can give the following definition of the fair price of con-
tingent claim Nf  relative to a convex set of equivalent measures M.  
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Definition 6. Let ,Nf N < ∞  be a N -measurable integrable random value 
relative to a convex set of equivalent measures M such that for some 00 α≤ < ∞  
and 0 0Aξ ∈   

{ }( )0 0 | 0 1.P
N NP f Eα ξ− ≤ =

                
(141) 

Denote [ ] { }( ){ }0 0 00, , , | 0 1P
N NG A P f Eα α αα α ξ α ξ= ∈ ∃ ∈ − ≤ = . We call  

0
0 inf

G
f

αα
α

∈
=

                        
(142) 

the fair price of the contingent claim Nf  relative to a convex set of equivalent 
measures M, if there exists 0 0Aζ ∈  and a sequences [ ]00,nα α∈ , 0n

Aαξ ∈ , sa-
tisfying the conditions: 0n fα → , 0nα

ξ ζ→  by probability, as n →∞ , and 
such that  

{ }( )| 0 1, 1, .
n

P
N n NP f E nαα ξ− ≤ = = ∞

            
(143) 

Theorem 15. Let the set 0A  be uniformly integrable one relative to every 
measure P M∈ . Suppose that for a nonnegative N -measurable integrable 
contingent claim ,Nf N < ∞  relative to every measure P M∈  there exist 

0α < ∞  and 0 0Aξ ∈  such that  

{ }( )0 0 | 0 1,P
N NP f Eα ξ− ≤ =

                
(144) 

then the fair price 0f  of contingent claim Nf  exists. For 0f  the inequality  

0sup P
N

P M
E f f

∈
≤

                       
(145) 

is valid. If 0Nf ≥  and a super-martingale { }{ }
0

esssup | ,P
m N m m

P M m
f E f

∞

∈ =

=    is 

a local regular one, then 0 sup P
N

P M
f E f

∈
= .  

Proof. If 0 0f α= , then Theorem 15 is proved. Suppose that 0 0f α< . Then 
there exists a sequence 0n fα → , and 0 ,

n
A nαξ ∈ →∞ , such that  

{ }( )| 0 1, .
n

P
N n NP f E P Mαα ξ− ≤ = ∈

            
(146) 

Due to the uniform integrability 0A  we obtain  

01 lim d d , .
nn

P P P Mαξ ζ
→∞

Ω Ω

= = ∈∫ ∫
                

(147) 

Using again the uniform integrability of 0A  and going to the limit in (146) 
we obtain  

{ }( )0 0 | 0 1, .P
N NP f f E P Mζ− ≤ = ∈

             
(148) 

From the inequality { }0 0 | 0P
N Nf f E ζ− ≤  it follows the inequality (145). If 

0Nf ≥  and { }{ }
0

esssup | ,
N

P
m N m m

P M m
f E f

∈ =

=    is a local regular  

super-martingale, then  

0, 0, , 0,m m mf M g m N g= − = =                (149) 
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where a martingale { } 0
, N

m m m
M

=
  is a nonnegative one and supP P

m N
P M

E M E f
∈

=  

Introduce into consideration a random value 0
0̂

NM
f

ξ = , where 0̂ sup P
N

P M
f E f

∈
= . 

Then 0ξ  belongs to the set 0A  and  

{ }( )0 0
ˆ | 0 1.P

N NP f f E ξ− ≤ =
                

(150) 

From this it follows that 0 sup P
N

P M
f E f

∈
= . 

Let us prove that 0f  is a fair price for certain evolutions of risk and non risk 
assets. Suppose that the evolution of risk asset is given by the law 

{ }0 0 | , 0,P
m mS f M m Nζ= = , and the evolution of non risk asset is given by the 

formula 1, 0,mB m N= = . 
As proved above, for 

0
0 inf

G
f

αα
α

∈
=  there exists 0 0Aζ ∈  such that the inequa-

lity  

{ }0 0 | 0P
N Nf f E ζ− ≤                    (151) 

is valid. Let us put  

{ }0
0 0 | , ,P

m mf f E P Mζ= ∈                  (152) 

{ }0 0

0, ,
| , .m P

N m

m N
f

f f E m Nζ
<

=  − = 
              

(153) 

It is evident that 1 0, 0,m mf f m N− − ≥ = . Therefore, the super-martingale  

{ }0 0 0 | , ,
, ,

P
m

m m
N

f E m N
f f

f m N
ζ <+ = 

=



              
(154) 

is a local regular one. It is evident that  
0 , 0, ,m m m mf f M g m N+ = − =                  (155) 

where  

{ }0 0 | , 0, ,P
m mM f E m Nζ= =                 (156) 

0, 0, 1,mg m N= = −                      (157) 

{ }0 0 | .P
N N Ng f E fζ= −                   (158) 

For the martingale { } 0
, N

m m m
M

=
  the representation  

0
1

, 0, ,
m

m i i
i

M f H S m N
=

= + ∆ =∑
                

(159) 

is valid, where 1, 1,iH i N= = . Let us consider the trading strategy 

{ }0

0
,

N

m m m
H Hπ

=
= , where  

0 0
0 0 , , 1, ,m m m mH f H M H S m N= = − =              (160) 

0 0, , 1, .m mH H H m N= = =                  (161) 

It is evident that 0 ,m mH H  are 1m−  measurable and the trading strategy π 
satisfy self-financed condition  

0
1 0.m m mH H S −∆ + ∆ =                     (162) 
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Moreover, the capital corresponding to the self-financed trading strategy π is 
given by the formula  

0 .m m m m mX H H S Mπ = + =                    (163) 

Here from, 0 0X fπ = . Further,  

.N N N NX f g fπ = + ≥                      (164) 

The last proves Theorem 15.                                        
From (148) and Corollary 3 the Theorem 16 follows. 
Theorem 16. Suppose that the set 0A  contains only 1 k≤ < ∞  linear inde-

pendent elements 1, , kξ ξ . If there exist 0 Tξ ∈  and 0 0α ≥  such that  

{ }( )0 0 | 0 1, ,P
N NP f E F P Mα ξ− ≤ = ∈

             
(165) 

where  

1 1
0, , 0, 1, , 1 ,

k k

i i i i
i i

T i kξ ξ α ξ α α
= =

 = ≥ = ≥ = = 
 

∑ ∑
         

(166) 

then the fair price 0f  of the contingent claim 0Nf ≥  exists, where Nf  is 

NF  measurable and integrable relative to every measure P M∈ , N < ∞ .  
Proof. The proof is evident, as the set T is a uniformly integrable one relative 

to every measure from M.                                            
Corollary 4. On a measurable space { },Ω   with filtration m  on it, let 

{ } 0
, N

m m m
f

=
  be a non negative local regular super-martingale relative to a con-

vex set of equivalent measures M. If the set 0A  is uniformly integrable relative 
to every measure P M∈ , then the fair price of contingent claim Nf  exists.  

Proof. From the local regularity of super-martingale { } 0
, N

m m m
f

=
  we have 

, 0,m m mf M g m N= − = . Therefore, ( )0 0 0 1NP f α ξ− ≤ = , where  

0 0, ,P N
N P

N

ME M P M
E M

α ξ= ∈ = . From the last it follows that the conditions of 

Theorem 15 are satisfied. Corollary 4 is proved.                          
On a probability space { }, , PΩ  , let us consider an evolution of one risk as-

set given by the law { } 0

N
m m

S
=

, where mS  is a random value taking values in  
1R+ . Suppose that m  is a filtration on { }, , PΩ   and mS  is m -measurable 

random value. We assume that the non risk asset evolve by the law 
0 1, 1,mB m N= = . Denote ( )eM S  the set of all martingale measures being 

equivalent to the measure P. We assume that the set ( )eM S  of such martin-
gale measures is not empty and the effective market is non complete, see, for 
example, [16] [17] [18] [19]. So, we have that  

{ } ( )1 1| , 1, , .Q e
m m mE S S m N Q M S− −= = ∈            (167) 

The next Theorem justifies the Definition 6. 
Theorem 17. Let a contingent claim Nf  be a N -measurable integrable 

random value with respect to every measure from ( )eM S  and the conditions 
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of the Theorem 16 are satisfied with 
0

, 0,i
i

S i N
S

ξ = = . Then there exists 

self-financed trading strategy π the capital evolution { }
0

N

m m
X π

=
 of which is a 

martingale relative to every measure from ( )eM S  satisfying conditions 

0 0 , N NX f X fπ π= ≥ , where 0f  is a fair price of contingent claim Nf .  

Proof. Due to Theorems 15, 16, for 
0

0 inf
G

f
αα
α

∈
=  there exists 0 0Aζ ∈  such 

that the inequality  

{ }0 0 | 0P
N Nf f E ζ− ≤                    (168) 

is valid. Let us put  

{ } ( )0
0 0 | , ,P e

m mf f E P M Sζ= ∈                (169) 

{ }0 0

0, ,
| , .m P

N m

m N
f

f f E m Nζ
<

=  − = 
              

(170) 

It is evident that 1 0, 0,m mf f m N− − ≥ = . Therefore, the super-martingale  

{ }0 0 0 | , ,
,

P
m

m m
N

f E m N
f f

f m N
ζ <+ = 

=



              
(171) 

is a local regular one. It is evident that  
0 , 0, ,m m m mf f M g m N+ = − =                  (172) 

where  

{ }0 0 | , 0, ,P
m mM f E m Nζ= =                 (173) 

0, 0, 1,mg m N= = −                     (174) 

{ }0 0 | .P
N N Ng f E fζ= −                    (175) 

Due to Theorem 20, for the martingale { } 0

N
m m

M
=

 the representation  

0
1

, 0, ,
m

m i i
i

M f H S m N
=

= + ∆ =∑
                

(176) 

is valid. Let us consider the trading strategy { }0

0
,

N

m m m
H Hπ

=
= , where  

0 0
0 0 , , 1, ,m m m mH f H M H S m N= = − =              (177) 

0 0, , 1, .m mH H H m N= = =                  (178) 

It is evident that 0 ,m mH H  are 1m− -measurable ones and the trading strategy 
π satisfy the self-financed condition  

0
1 0.m m mH H S −∆ + ∆ =                     (179) 

Moreover, a capital corresponding to the self-financed trading strategy π is 
given by the formula  

0 .m m m m mX H H S Mπ = + =                    (180) 

Herefrom, 0 0X fπ = . Further,  

.N N NX f gπ = +                        (181) 
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Therefore N NX fπ ≥ . Theorem 17 is proved.                           
In the next Theorem we assume that the evolutions of risk and non risk assets 

generate incomplete market [16] [17] [18] [19] [20], that is, the set of martingale 
measures contains more that one element. 

Theorem 18. Let an evolution { } 0

N
m m

S
=

 of the risk asset satisfy the conditions 

( )1 2 1m m mP D S D≤ ≤ = , where the constants i
mD  satisfy the inequalities 

1 1
1 0m mD D− ≥ > , 2 2

1 , 1,m mD D m N− ≤ < ∞ = , and let the non risk asset evolution be 
deterministic one given by the law { } 0

, 1, 0,N
m mm

B B m N
=

= = . The fair price of 
Standard European Call Option with the payment function ( )N Nf S K += −  is 
given by the formula  

2
0 2

0
2

1 , ,

0, .

N
N

N

KS K D
f D

K D

  
− ≤  =   

 >                  

(182) 

The fair price of Standard European Put Option with the payment function 
( )N Nf K S += −  is given by the formula  

1 1

0 1

, ,
0, .

N N

N

K D K D
f

K D
 − ≥= 

<                    
(183) 

Proof. In Theorem 18 conditions, the set of equations 1, 0PE ζ ζ= ≥  has the 

solutions 
0

, 0,i
i

S i N
S

ζ = = . It is evident that 0 0Sα =  and 
0

N
N

S
S

ζ = , since  

( )
0

0

0, .N N

N

S K S
B S

α ω
+−
− ≤ ∈Ω

                
(184) 

Let us prove the needed formula. Consider the inequality  

( ) 0
0 0

0, ,
N

i
N i

i

SS K V
S

α γ γ
=

− − ≤ ∈∑
               

(185) 

where { }0 0
0

, 0, 1
NN

i i ii
i

V γ γ γ γ
=

=

 = = ≥ = 
 

∑ . Or,  

1

00 0

1 0.
N

N i
N i

i

SS K
S S
αγ

α γ
−

=

 
− − − ≤ 

 
∑

               
(186) 

Suppose that α satisfies the inequality  

0

1 0.
S
α

− >
                         

(187) 

If α satisfies additionally the equality  
11

2

00 0

1 0,
N

N i
N i

i

DD K
S S
αγ

α γ
−

=

 
− − − = 

 
∑

               
(188) 

then for all ω∈Ω  (186) is valid. From (188) we obtain for α  

( )2
0

1
2 1

0

.N

N

N N i i
i

S D K

D D
α

γ γ
−

=

−
=
 + 
 

∑
                   

(189) 
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If 2 0ND K− > , then  

( ) ( )
0

2 2
0 0

21
2 1

0

inf ,N N

NV
N

N N i i
i

S D K S D K

DD D
γ

γ γ
−∈

=

− −
=

 + 
 

∑
             

(190) 

since 2 1
N iD D≥ . From here we obtain  

0 0 21 .
N

Kf S
D

 
= − 

                        
(191) 

It is evident that 0fα =  satisfies the inequality (187). 
If 2 0ND K− ≤ , then 0NS K− ≤  and from (185) we can put 0α = . Then, 

the formula (186) is valid for all ω∈Ω . 
Let us prove the formula (183) for Standard European Put Option. If NS K≤  

it is evident that 0 Kα = , and 0 1ζ = , since  

( ) 0 0, .NK S α ω− − ≤ ∈Ω                   (192) 

Let us prove the needed formula. Consider the inequality  

( ) 0
0 0

0, .
N

i
N i

i

SK S V
S

α γ γ+

=

− − ≤ ∈∑
               

(193) 

Or, for NS K≤   
1

00 0

1 0.
N

N i
N i

i

SS K
S S
αγ

α γ
−

=

 
− + + − ≤ 

 
∑

               
(194) 

If α is a solution of the equality  
11

1

00 0

1 0,
N

N i
N i

i

DD K
S S
αγ

α γ
−

=

 
− + + − = 

 
∑

              
(195) 

then for all ω∈Ω  (194) is valid. From (195) we obtain for α  

( )1
0

1

0

.N
N

i i
i

S K D

D
α

γ
=

−
=

∑
                      

(196) 

Therefore,  

( )
0

1
0 1

1

0

inf ,N
NNV

i i
i

S K D
K D

D
γ

γ
∈

=

−
= −

∑
                  

(197) 

since 1 1
0 0 0, 1, ,iD S i N D S≤ = = . From here we obtain  

1
0 .Nf K D= −                         (198) 

If 1 0ND K− > , then 0NS K− >  and from (193) we can put 0α = . Then, 
(194) is valid for all ω∈Ω . The Theorem 18 is proved.                    

8. Some Auxiliary Results 

On a measurable space { },Ω   with filtration n  on it, let us consider a con-
vex set of equivalent measures M. Suppose that 1, , dξ ξ  is a set of random 
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values belonging to the set 0A . Introduce d martingales relative to a set of  

measures M { }
0

, , 1,i
n n n

S i d
∞

=
= , where { }| , 1, ,i P

n i nS E i d P Mξ= = ∈ . De-

note by ( )eM S  a set of all martingale measures equivalent to a measure 

P M∈ , that is, ( )eQ M S∈  if  

{ } ( )1 1| , , , 1, .Q Q e
n n n nE S S E S Q M S n− −= < ∞ ∈ = ∞       (199) 

It is evident that ( )eM M S⊆  and ( )eM S  is a convex set. Denote 0P  a 
certain fixed measure from ( )eM S  and let ( )0 dL R  be a set of finite valued 
random values on a probability space { }0, , PΩ  , taking values in dR . 

Let 0H  be a set of finite valued predictable processes { } 1

N
n n

H H
=

= , where 

{ }
1

di
n n i

H H
=

=  takes values in dR  and nH  is 1n− -measurable random vector. 
Introduce into consideration a set of random values  

( )1 0 1 0

1
, , , , , ,

N

N k k
k

K L R H S H H Nξ ξ
=

 = ∈ = ∆ ∈ < ∞ 
 

∑
       

(200) 

( )1 1
1

, , .
d

s s s
k k k k k k k k

s
S S S H S H S S− −

=

∆ = − ∆ = −∑
          

(201) 

Lemma 13. The set of random values 1
NK  is a closed subset in the set of fi-

nite valued random values ( )0 1L R  relative to the convergence by measure 
P M∈ .  

The proof of the Lemma 13 see, for example, [17]. 
Introduce into consideration a subset  

{ }0 0 , , 1,nV H H H n N= ∈ < ∞ =
               

(202) 

of the set 0H , where 
1

sup
d

i
n n

i
H H

ω∈Ω =

= ∑ . Let NK  be a subset of the set 1
NK   

( )0 1 0

1
, , , .

N

N k k
k

K L R H S H Vξ ξ
=

 = ∈ = ∆ ∈ 
 

∑
          

(203) 

Denote also a set  

( ){ }0, , , , ,NC k f k K f L P∞
+= − ∈ ∈ Ω 

             
(204) 

where ( )0, ,L P∞
+ Ω   is a set of bounded nonnegative random values. Let C  be 

the closure of C in ( )1
0, ,L PΩ   metrics.  

Lemma 14. If Cζ ∈  and such that 0 0PE ζ = , then for ζ the representation  

1
,

N

k k
k

H Sζ
=

= ∆∑
                      

(205) 

is valid for a certain finite valued predictable process { } 1

N
n n

H H
=

= .  
Proof. If NKζ ∈ , then Lemma 14 is proved. Suppose that Cζ ∈ , then there 

exists a sequence ( )0, , , ,n n n N nk f k K f L P∞
+− ∈ ∈ Ω   such that  

0
0,n n Pk f nζ− − → →∞ , where 0

0

P
Pg E g= . Since  

( )0

0

P
n n n n PE k f k fζ ζ− − ≤ − − , we have 0

0

P
n n n PE f k f ζ≤ − − . From here 
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we obtain 
0 0

2n n nP Pk k fζ ζ− ≤ − − . Therefore, nk ζ→  by measure 0P . On 

the basis of Lemma 13, a set  

( )1 0 1 0

1
, , , ,

N

N k k
k

K L R H S H Hξ ξ
=

 = ∈ = ∆ ∈ 
 

∑
          

(206) 

( )1
1

,
d

i i i
k k k k k

i
H S H S S −

=

∆ = −∑
                 

(207) 

is a closed subset of ( )0 1L R  relative to the convergence by measure 0P . From 
this fact, we obtain the proof of Lemma 14, since there exists the finite valued 
predictable process 0H H∈  such that for ζ the representation  

1
,

N

k k
k

H Sζ
=

= ∆∑
                      

(208) 

is valid.                                                           
Theorem 19 Let ( ),Q eE Q M Sζ < ∞ ∈ . If for every ( ) , 0e QQ M S E ζ∈ = , 

then there exists finite valued predictable process H such that for ζ the repre-
sentation  

1
,

N

k k
k

H Sζ
=

= ∆∑
                      

(209) 

is valid.  
Proof. If Cζ ∈ , then (209) follows from Lemma 14. So, let ζ does not belong 

to C . As in Lemma 14, C  is a closure of C in ( )1
0, ,L PΩ   metrics for the 

fixed measure 0P . The set C  is a closed convex set in ( )1
0, ,L PΩ  . Consider 

the other convex closed set that consists from one element ζ. Due to Han-Banach 
Theorem, there exists a linear continuous functional 1l , which belongs to 

( )0, ,L P∞ Ω  , and real numbers α β>  such that  

( ) ( ) ( ) ( ) ( )1 0 0d , , , ,l q P q L Pξ ξ ω ω ω ∞

Ω

= ∈ Ω∫ 
          

(210) 

and the inequalities ( ) ( )1 1, ,l l Cζ α ξ β ξ> ≤ ∈  are valid. Since C  is a convex 
cone we can put 0β = . From the condition ( )1 0,l Cξ ξ≤ ∈  we have 
( ) ( )1 1

1 00, , ,Nl K L Pξ ξ= ∈ Ω  . From (210) and the inclusions  
( )0, ,C C L P∞⊃ ⊃ − Ω   we have ( ) 0q ω ≥ . Introduce a measure  

( ) ( ) ( )
1

*
0 0d d .

A

Q A q P q Pω ω
−

Ω

 
=  

 
∫ ∫

               
(211) 

Then, we have  

( ) ( )* 1 1
0d 0, , , .NQ K L Pξ ω ξ

Ω

= ∈ Ω∫  
             

(212) 

Let us choose ( )( )1 1,j j
A i i iS S Aξ χ ω − −= − ∈ , where ( )Aχ ω  is an indicator 

of a set A. We obtain  

( ) *
1 1d 0, .j j

i i i
A

S S Q A− −− = ∈∫ 
                 

(213) 

So, *Q  is a martingale measure that belongs to the set ( )aM S , which is a 
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set of absolutely continuous martingale measures. Let us choose ( )eQ M S∈  
and consider a measure ( ) *

1 1 , 0 1Q Q Qγ γ γ= − + < < . A measure ( )1
eQ M S∈  

and, moreover, 
*

1 0Q QE Eζ γ ζ= > . We come to the contradiction with the con-
ditions of Theorem 19, since for ( ) , 0e QQ M S E ζ∈ = . So, Cζ ∈ , and in ac-
cordance with Lemma 14, for ζ the declared representation in Theorem 19 is va-
lid.                                                             

Theorem 20. For every martingale { } 0
,n n n

M ∞

=
  relative to the set of meas-

ures ( )eM S , there exists a predictable random process H such that for 
, 0,nM n = ∞ , the representation  

0
1

, , 1, ,
n

n i i
i

M M H S n
=

= + ∆ = ∞∑
               

(214) 

is valid.  
Proof. For fixed natural 1N ≥ , let us consider the random value 

0NM M ζ− = . Since  

( ), 0, ,Q Q eE E Q M Sζ ζ< ∞ = ∈                (215) 

then ζ satisfies the conditions of Theorem 19 and, therefore, belongs to C , so, 

there exists a sequence 
1

,
N

n
n i i N

i
k H S K

=

= ∆ ∈∑  such that  

0d 0, .nk P nζ
Ω

− → →∞∫
                   

(216) 

From here, we obtain  

( ){ }0
0 0| d d 0, .P

n m nE k P k P nζ ζ
Ω Ω

− ≤ − → →∞∫ ∫
        

(217) 

But { }0

1
| ,

m
P n

n m i i
i

E k H S
=

= ∆∑ . Hence, we obtain that both 
1

,
m

n
i i

i
H S

=

∆∑  

and 
1

,
N

n
i i

i
H S

=

∆∑  converges by measure 0P  to { }0 |P
mE ζ   and ζ, corres-

pondingly. There exists a subsequence kn  such that knH  converges every-

where to predictable process H. From here, we have 
1

,
N

i i
i

H Sζ
=

= ∆∑  and 

{ }0

1
| ,

m
P

m i i
i

E H Sζ
=

= ∆∑ . It proves that for all m N<   

0
1

, .
m

m i i
i

M M H S
=

= + ∆∑
                   

(218) 

Theorem 20 is proved.                                             

9. Conclusions 

In the paper, we generalize Doob decomposition for super-martingales relative 
to one measure onto the case of super-martingales relative to a convex set of 
equivalent measures. For super-martingales relative to one measure for conti-
nuous time Doob’s result was generalized in papers [21] [22]. Section 2 contains 
the definition of local regular super-martingales. Theorem 1 gives the necessary 
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and sufficient conditions of the local regularity of super-martingale. In spite of 
its simplicity, the Theorem 1 appeared very useful for the description of the local 
regular super-martingales. 

For this purpose we investigate the structure of super-martingales of special 
types relative to the convex set of equivalent measures, generated by a certain fi-
nite set of equivalent measures. The main result of Section 3 is Lemma 6, which 
allowed proving Lemma 8, giving the sufficient conditions of the existence of a 
martingale with respect to a convex set of equivalent measures generated by fi-
nite set of equivalent measures. 

Theorem 2 describes all local regular non-negative super-martingales of the 
special type (30) relative to the convex set of equivalent measures, generated by 
the finite set of equivalent measures. 

In the Theorem 3, we give the sufficient conditions of the existence of the lo-
cal regular martingale relative to an arbitrary set of equivalent measures and ar-
bitrary filtration. After that, we present in Theorem 4 the important construc-
tion of the local regular super-martingales which we sum up in Corollary 2. 
Theorem 6 proves that every majorized super-martingale belongs to the de-
scribed class (53) of the local regular super-martingales. 

Theorem 7 gives a variant of the necessary and sufficient conditions of local 
regularity of non-negative super-martingale relative to a convex set of equivalent 
measures. Definition 3 determines a class of the complete set of equivalent 
measures. Lemma 10 guarantees a bound (77) for all non-negative random val-
ues allowing us to prove Theorem 8, stating that for every super-martingale the 
optional decomposition is valid. We extend the results obtained from the finite 
space of elementary events onto the case as a space of elementary events is a 
countable one. At last, the subsection 5.3 contains the generalization of the result 
obtained in subsection 5.2 onto the case of arbitrary space of elementary events. 
In Section 6, we prove Theorems 13 and 14, stating that for every majorized su-
per-martingale the optional decomposition is valid. 

Corollary 3 contains the important construction of the local regular su-
per-martingales playing the important role in the definition of the fair price of 
contingent claim relative to a convex set of equivalent measures. The Definition 
6 is a fundamental one for the evaluation of risks in incomplete markets. Theo-
rem 15 gives the sufficient conditions of the existence of the fair price of contin-
gent claim relative to a convex set of equivalent measures. It also gives the suffi-
cient conditions, when the defined fair price coincides with the classical value. In 
Theorem 16 the simple conditions of the existence of the fair price of contingent 
claim are given. In Theorem 17 we prove the existence of the self-financed trad-
ing strategy confirming the Definition 6 of the fair price as the parity between 
the long and short positions in contracts. As an application of the results ob-
tained we prove Theorem 18, where the formulas for the Standard European Call 
and Put Options in an incomplete market we present. Section 8 contains aux-
iliary results needed for previous sections. 
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