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Abstract 
The present paper is a continuation of [1], where we considered braided infi-
nitesimal Hopf algebras (i.e., infinitesimal Hopf algebras in the Yetter-Drin- 
feld category H

H  for any Hopf algebra H), and constructed their Drinfeld 
double as a generalization of Aguiar’s result. In this paper we mainly investi-
gate the necessary and sufficient condition for a braided infinitesimal bialge-
bra to be a braided Lie bialgebra (i.e., a Lie bialgebra in the category H

H ). 
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1. Introduction 

An infinitesimal bialgebra is a triple ( ), ,A m ∆ , where ( ),A m  is an associative 
algebra (possibly without unit), ( ),A ∆  is a coassociative coalgebra (possibly 
without counit) such that  

( ) 1 2 1 2 , , .xy xy y x x y x y A∆ = ⊗ + ⊗ ∈  

Infinitesimal bialgebras were introduced by Joni and Rota in [2], called infini- 
tesimal coalgebra there, in the context of the calculus of divided differences [3]. 
In combinatorics, they were further studied in [4] [5] [6]. Aguiar established the 
basic theory of infinitesimal bialgebras in [7] [8] by investigating several 
examples and the notions of antipode, Drinfeld double and the associative Yang- 
Baxter equation keeping close to ordinary Hopf algebras. In [9], Yau introduced 
the notion of Hom-infinitesimal bialgebras and extended Aguiar’s main results 
in [7] [8] to Hom-infinitesimal bialgebras. 

One of the motivations of studying infinitesimal bialgebras is that they are 
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closely related to Drinfeld’s Lie bialgebras (see [10]). The cobracket ∆  in a Lie 
bialgebra is a 1-cocycle in Chevalley-Eilenberg cohomology, which is a 1-cocycle 
in Hochschild cohomology (i.e., a derivation) in a infinitesimal bialgebra. So the 
compatible condition in a infinitesimal bialgebra can be seen as an associative 
analog of the cocycle condition in a Lie bialgebra. 

Motivated by [1], in which we considered infinitesimal Hopf algebras in the 
Yetter-Drinfeld categories, called braided infinitesimal Hopf algebras, the 
natural idea is whether we can obtain braided Lie bialgebras (called generalized 
H-Lie bialgebras in [11] [12]) from braided infinitesimal Hopf algebras. This 
becomes our motivation of writing this paper. 

To give a positive answer to the question above, we organize this paper as 
follows. 

In Section 1, we recall some basic definitions about Yetter-Drinfeld modules 
and braided Lie bialgerbas. In Section 2, we introduce the notion of the 
balanceator of a braided infinitesimal bialgerba and show that a braided 
infinitesimal bialgerba gives rise to a braided Lie bialgerba if and only if the 
balanceator is symmetric (see Theorem 2.3). 

2. Preliminaries 

In this paper, k always denotes a fixed field, often omitted from the notation. We 
use Sweedler’s ([13]) notation for the comultiplication: ( ) 1 2h h h∆ = ⊗ , for all 
h H∈ . Let H be a Hopf algebra. We denote the category of left H-modules by 

H . Similarly, we have the category H  of left H-comodules. For a left H- 
comodules ( ),M ρ , we also use Sweedler’s notation: ( ) ( ) 01 ,m m mρ −= ⊗  for all 
m M∈ . 

A left-left Yetter-Drinfeld module M is both a left H-module and a left H- 
comodule satisfying the compatibility condition  

( ) ( )( ) ( )1 2 0 1 2 11 1 0h m h m h m h h m− −
⊗ ⋅ = ⋅ ⊗ ⋅           (2.1) 

for all h H∈  and m M∈ . The equation (1.1) is equivalent to  

( ) ( ) ( ) ( )1 3 2 01 .h m h m S h h mρ −⋅ = ⊗ ⋅              (2.2) 

By [14] [15], the left-left Yetter-Drinfeld category H
H  is a braided monoi- 

dal category whose objects are Yetter-Drinfeld modules, morphisms are both left 
H-linear and H-colinear maps, and its braiding ,C− −  is given by  

( ) ( ) ( ), 1 0 ,M NC m n m n m−⊗ = ⋅ ⊗  

for all H
Hm M∈ ∈   and H

Hn N∈ ∈  . 
Let A  be an object in H

H , the braiding τ  is called symmetric on A  if 
the following condition holds:  

( )( )
( ) ( )( )01 11 0

,a b a a b a b− −−

 ⋅ ⋅ ⊗ ⋅ = ⊗ 
 

             (2.3) 

which is equivalent to the following condition:  

( ) ( )( )1
0 01 1 ,a b a b S b a−

− −⋅ ⊗ = ⊗ ⋅                (2.4) 
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for any , .a b A∈  
In the category H

H , we call an (co)algebra simply if it is both a left H- 
module (co)algebra and a left H-comodule (co)algebra. For more details about 
(co)module-(co)algebras, the reader can refer to [16] [17]. 

A braided Lie algebra ([11]) in H
H , called generalized H-Lie algebra there, 

is an object L in H
H  together with a bracket operation [ ], : L L L⊗ → , which 

is a morphism in H
H  satisfying 

(1) H-anti-commutativity: [ ] ( ) 01, , , , ,l l l l l l l L−
 ′ ′ ′= − ⋅ ∈   

(2) H-Jacobi identity:  

{ } ( )( )( ){ } ( )( )( ){ }1 1 1 1 0,l l l l l l l l lτ τ τ τ′ ′′ ′ ′′ ′ ′′⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ =  

for all , ,l l l L′ ′′∈ , where { }l l l′ ′′⊗ ⊗  denotes [ ], ,l l l′ ′′    and τ  the braiding 
for L. 

Let A be an associative algebra in H
H . Assume that the braiding is 

symmetric on A. Define  

[ ] ( )( ) 01, , , .a b ab a b a a b A−= − ⋅ ∈  

Then [ ]( ), ,A  is a braided Lie algebra (see [11]). 
A braided Lie coalgebra ([12]) Γ  is an object in H

H  together with a linear 
map :δ Γ→Γ⊗Γ  (called the cobracket), which is also a morphism in H

H  
subject to the following conditions: 

(1) H-anti-cocommutativity: ,δ τδ= −  
(2) H-coJacobi identity:  

( )( ) ( )( )( )( ) 0,id id id id id idτ τ τ τ δ δ+ ⊗ ⊗ + ⊗ ⊗ ⊗ =  

where τ  denotes the braiding for L. 
Dually, let ( ),C ∆  be a coassociative coalgebra in H

H . Assume that the 
braiding on C is symmetric. Define : ,C C Cδ → ⊗  by  

( )1 2 2 101 1 , .c c c c c c c C−⊗ − ⋅ ⊗ ∈�  

Then ( ),C δ  is a braided Lie coalgebras in H
H  (see [12]). 

A braided Lie bialgebra ([18]) is [ ]( ), , ,L δ  in H
H , where [ ]( ), ,L  is a 

braided Lie algebra, and ( ),L δ  is a braided Lie coalgebra, such that the 
compatibility condition holds:  

[ ] [ ]( )( ) [ ]( )( )( )( )( )( ), , , , , ,x y id id id id id id id x y x y Lδ δ τ δ τ= ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ − ⊗ ∈  

where τ  denotes the braiding for L. 

3. Main Results 

In this section, we will study the relation between braided infinitesimal bialge- 
bras and braided Lie bialgebras as a generalization of Aguiar’s result in [8]. 

Let ( ), ,A m ∆  be a braided ε-bialgebra in H
H . For any , ,x y z A∈ , define 

an action of A on A A⊗  by  

( ) ( ) ( )( ) 001 0 1 .x y z xy z x y x z x− −→ ⊗ = ⊗ − ⋅ ⊗ ⋅  
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Then the action → is a morphism in H
H . In fact, for any , ,x y z A∈  and 

h H∈ , we have  
( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( )( )

( )( ) ( ) ( ) ( ) ( )( )( )( )

( )( ) ( ) ( ) ( )( )( )( )

( )( ) ( ) ( ) ( ) ( )

1 2 1 2 3

1 2 3 1 2 1 3 11 0 1 00

1 2 3 11 13 2 12 0 3 12 01 1 0

1 2 3 1 2 0 3 2 01 1 0

1 2 3 1 21 23 31 0 1

h x h y z h x h y h z

h x h y h z h x h y h x h z h x

h x h y h z h x S h h y h x h z h x

h x h y h z h x y h x h z h x

h x h y h z h x y h x S h h

− −

− −

− −

− −

⋅ → ⋅ ⊗ = ⋅ → ⋅ ⊗ ⋅

= ⋅ ⋅ ⊗ ⋅ − ⋅ ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⊗ ⋅ − ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅( )( )

( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )( )
( ) ( )( )( )

22 00

1 2 3 1 2 3 001 0 1

1 2 1 2 001 0 1

001 0 1 .

z h x

h x h y h z h x y h x z h x

h xy h z h x y h x z x

h xy z x y x z x

− −

− −

− −

⋅ ⋅

= ⋅ ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ ⋅

= ⋅ ⊗ ⋅ − ⋅ ⊗ ⋅ ⋅

= ⋅ ⊗ − ⋅ ⊗ ⋅

 

So → is left H-linear. To show the left H-colinearity of the action →, we 
compute  

( )( ) ( ) ( )( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

001 0 1

0 0 0 0001 1 1 1 0 1 00 1 1 0 11 1 0 0

0 0 0 0 0 01 1 1 11 1 13 1 4 1 1 6 1 7 1 2 1 5

0 0 0 0 0 01 1 1 11 1 1 1 2 1 3 ,

x y z xy z x y x z x

x y z x y z x y x z x x y x z x

x y z x y z x y S x x z S x x x y x z x

x y z x y z x y z x y x z x

ρ ρ − −

− − − − − − − −− −

− − − − − − − − − − − −

− − − − − − − −

→ ⊗ = ⊗ − ⋅ ⊗ ⋅

= ⊗ ⊗ − ⋅ ⋅ ⊗ ⋅ ⊗ ⋅

= ⊗ ⊗ − ⊗ ⋅ ⊗ ⋅

= ⊗ ⊗ − ⊗ ⋅ ⊗ ⋅

 

and 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0 0 01 1 1

0 0 0 0 0 0001 1 1 1 1 1 0 1 00 1

0 0 0 0 0 01 1 1 1 1 1 1 1 2 1 3 ,

id x y z id x y z x y z

x y z x y z x y z x y x z x

x y z x y z x y z x y x z x

ρ − − −

− − − − − − − −

− − − − − − − −

⊗→ ⊗ ⊗ = ⊗→ ⊗ ⊗ ⊗

= ⊗ ⊗ − ⊗ ⋅ ⊗ ⋅

= ⊗ ⊗ − ⊗ ⋅ ⊗ ⋅

 

as desired.  
Definition 2.1. Let ( ), ,A m ∆  be a braided infinitesimal bialgebra and τ  the 

braiding of A. The map :B A A A A⊗ → ⊗  defined by  

( ) ( ) ( )( ), , , ,B x y x y y x x y Aτ τ τ= → ∆ + → ∆ ∈          (3.1) 

is called the balanceator of A. The balanceator B is called symmetric if 
B B τ= � . The braided infinitesimal bialgebra A is called balanced if 0B ≡  on 
A. 

Condition (2.1) can be written as follows:  

( ) ( )( ) ( ) ( ) ( )( )
( )( )

( ) ( )( ) ( )( )
( ) ( )( )

2 10 2 10 001 1 1 1 1 0 1

01 02 01 021 1 1 11 0 1 0

,B x y x y y y x y y x y x

x y x x y x x y x x y x

− − − −

− − − −− −

= ⋅ ⊗ − ⋅ ⊗ ⋅

 + ⋅ ⋅ ⊗ ⋅ − ⋅ ⋅ ⋅ ⊗ 
 

 

Obviously,  

( )( ) ( )( ) ( )( ) ( )( ) ( )

( )( )
( ) ( ) ( )( )

( ) ( )( )
0 02 010 1 0 2 1 0 21 1 0 1 1 1

02 0101 01 1 1 11 0 1 00

,

.

B x y x x y x x x x y x y x y x y

x y x x x y x x y

− − − − −

− − − −− −

⋅ = ⋅ ⋅ ⊗ − ⋅ ⊗ + ⋅ ⊗

 − ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ 
 
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Lemma 2.2. Let ( ), ,A m ∆  be a braided infinitesimal bialgebra and ,x y A∈ . 
Assume that the braiding τ  on A is symmetric. Then the following equations 
hold: 

(1) ( )( )
( ) ( )( )

( ) ( )( )01 02 1 21 1 11 0 1 00
,x y x x y x x y x x y− − −− −

   ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ = ⊗   
   

 

(2) ( )( )
( ) ( ) ( )( ) ( ) ( )02 010 2 101 01 1 1 1 11 0

,x y x x x y x x x y x− − − −−

 ⋅ ⋅ ⋅ ⊗ = ⋅ ⊗ 
 

 

(3) ( )( )
( ) ( )( )( ) ( )( ) ( ) ( )( )1 2 0 1 2 0 101 1 1 2 1 1 1 1 11 0

.x y x y x x y x y y x y− − − − −−
⋅ ⋅ ⋅ ⊗ ⋅ = ⋅ ⊗  

Proof. (1) Since the braiding τ  on A is symmetric, for all ,x y A∈ , we have 

( )( )
( ) ( )( )01 11 0

x y x x y x y− −−
⋅ ⋅ ⊗ ⋅ = ⊗ , then  

( )( ) ( )( )
( ) ( )( ) ( )( )( )01 11 0

id m id x y x x y id m id x y− −−

 ⊗ ∆⊗ ⋅ ⋅ ⊗ ⋅ = ⊗ ∆⊗ ⊗ 
 

 

that is,  

( )( )
( ) ( )( )

( ) ( )( )01 02 1 21 1 11 0 1 00
.x y x x y x x y x x y− − −− −

 ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ = ⊗ 
 

 

So (1) holds. 
(2) To show the Equation (2.2), we need the following computation:  

( )( )
( ) ( ) ( )( )

( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )( ) ( ) ( )( )
( ) ( )( )

( ) ( )

02 0101 01 1 11 0

20 1001 1 2 1 10 1 1 1 2 11 0

20 0 1001 1 1 2 1 1 1 2 1 3 12 1 3 10 1 1 1 2 2 1 2

20 0 101 1 1 2 1 1 1 2 1 3 1 1 2 2 1 2

201 1 1 2 1 1 11

x y x x x y x

x x y x x x x y x

x x y S x S x x x x x y x

x x y S x x x x y x

x x y x x

− − −−

− − − − −−

− − − − − − − −

− − − − − −

− − −−

 ⋅ ⋅ ⋅ ⊗ 
 
 = ⋅ ⋅ ⋅ ⊗ 
 

= ⋅ ⋅ ⊗

= ⋅ ⋅ ⊗

 = ⋅ ⋅ 
  ( )( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )

102 2 1 0

20 10 2 101 1 2 1 2 1 1 11 0
.

x y x

x x y x x y x x x y x

−

− − − −−

⋅ ⊗

  = ⋅ ⋅ ⋅ ⋅ ⊗ = ⋅ ⊗    

 

The last equality holds since τ  is symmetric on A. Hence (2) holds. 
(3) Finally, we check the Equation (2.3) as follows:  

( )( )
( ) ( )( )( ) ( )( )

( ) ( ) ( )( )( ) ( )( )( ) ( )

( ) ( ) ( )( )( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( )( ) ( )

( ) ( )

1 2 0 11 1 1 2 1 11 0

2 0 101 11 1 1 1 13 1 2 1 12

2 0 101 1 1 1 1 3 1 4 1 2

2 0 101 11 1 1 1 1 32 1 4 1 12 1 1 2 1 31 1 2

2 0 101 11 1 1 1 1 12 1 1 2 1 3 1 2

1 1 1 1

x y x y x x y

x y S x x y x x y

x y S x x y x x y

x y S x x y x y S x x x y

x y y x y S x x x y

x y y

− − −−

− − − − −

− − − − −

− − − − − − − −

− − − − − −

− −

⋅ ⋅ ⊗ ⋅

= ⋅ ⋅ ⊗ ⋅

= ⋅ ⋅ ⊗ ⋅

= ⋅ ⋅ ⊗ ⋅

= ⋅ ⋅ ⊗ ⋅

= ⋅( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 10 0 101 2 1 21 0

2 10 00 10 2 0 101 1 1 0 1 0 1 1 1 11 0
.

x y x x y

x y y x y x x y x y y x y

− −−

− − − − − −−

 ⋅ ⋅ ⊗ ⋅ 
 
 = ⋅ ⋅ ⋅ ⊗ ⋅ = ⋅ ⊗ 
 
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The last equality holds since τ  is symmetric on A. Hence (3) holds as 
required.                                                          

Therem 2.3. Let ( ), ,A m ∆  be a braided infinitesimal bialgebra. Assume that 
the braiding τ  on A is symmetric. Then [ ]( ), , ,A m mτ δ τ= − = ∆ − ∆  is a 
braided Lie bialgebra if and only if B B τ= � . 

Proof. Since ( ),A m  is an associative algebra and ( ),A ∆  is a coassociative 
coalgebra in H

H , [ ]( ), ,A m mτ= −  is a braided Lie algebra and ( , )A δ τ= ∆ − ∆  
is a braided Lie coalgebra. Therefore it remains to check the compatible 
condition:  

[ ] [ ]( )( ) [ ]( )( )( )( )( )( ), , , ,x y id id id id id id id x yδ δ τ δ τ= ⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ − ⊗  

for all ,x y A∈ . In fact, on the one hand, we have  

[ ] ( )( )( )
( ) ( ) ( ) ( )( )( )
( )( )

( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )( )
( )( )

( ) ( )( )( ) ( )( )
( )( )( )

( )

01

01

1 2 1 2

1 2 0 01 021 1 1 2 1

1 2 1 2 2 10 1 2 11 1 1 0

01 02 1 2 01 1 1 1 2

1 2 0 11 1 1 2 1 11 0

011
1

,

1 1

1

1

x y xy x y x

xy x y x

x x y xy y

x y x y x x y x x

x x y xy y x x y x xy y xy

x y x x x y x y x

x y x y x x y

x y x x

δ δ

τ τ

τ

τ

−

−

− − −

− −

− − −

− − −−

−
−

= − ⋅

= − ∆ − − ∆ ⋅

= − ⊗ + ⊗

− − ⋅ ⊗ ⋅ + ⋅ ⊗

= ⊗ + ⊗ − ⋅ ⊗ − ⋅ ⊗

− ⋅ ⊗ − ⋅ ⊗ ⋅

+ ⋅ ⋅ ⋅ ⊗ ⋅

+ ⋅ ⋅ ( )( )( )02 011
0
.x y x−⊗ ⋅

 

On the other hand, we have 

[ ]( )( ) [ ]( )( )( )( )( )( )

[ ]( )( ) [ ]( )( )( )( ) ( )( )
( )( ) ( )( )

( ) ( )( ) ( )( )
( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )( )
( ) ( )

( 1) 0

1 2 1 0 2 2 101 1 1

2 0 10 01 021 1 1 1

01 02 02 0101 1 1 01 11 0

1 0 21 1 01 11

, ,

, ,

id id id id id id id x y

id id id id id xy x y x

xy y x y x y x y y y

x y y x y x y x x

x y x x y x x y x x x

x y x y x y x

δ τ δ τ

δ τ δ −

− −

− − −

− − − −−

− − −−

⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ − ⊗

= ⊗ ⊗ + ⊗ ⊗ ⊗ − ⋅

= ⊗ − ⋅ ⊗ − ⋅ ⊗

+ ⋅ ⊗ − ⋅ ⊗

 + ⋅ ⋅ ⋅ ⊗ + ⋅ ⋅ ⊗ 
 

+ ⋅ ⊗ − ⋅ ( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( )
( ) ( )( )

( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( ) ( )( )

( )( )
( ) ( ) ( )( )

( )

02 0101 0

1 2 00 2 0 101 0 1 1 1 1

2 10 00 01 021 1 1 0 1 1 11 0

01 021 1 11 0 1 00

02 0101 01 1 11 0

02 0101 01 1 11 0 1

x x y x

x y x y x x y y x y

x y y x y x x y x x y x

x y x x y x x y

x y x x x y x

x y x x x y x

−

− − − −

− − − − −−

− − −− −

− − −−

− − −− −

 ⋅ ⋅ ⊗ 
 

− ⋅ ⊗ ⋅ − ⋅ ⊗

+ ⋅ ⊗ ⋅ − ⋅ ⋅ ⊗ ⋅

 + ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ 
 

+ ⋅ ⋅ ⊗ ⋅

− ⋅ ⋅ ⊗ ⋅ ⋅
 ( )( )1 00

.x y−
 ⋅ 

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According to Lemma 2.2, we have  

( ) ( )( ) ( )( )
( )( )

( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( )( )
( ) ( )( )

( ) ( )( )
( )( )

( ) ( ) ( )( )
( )( )

( ) ( )( )( )

1 2 2 0 10 01 021 1 1 1

02 0101 01 1 11 0

1 2 00 2 0 101 0 1 1 1 1

01 021 1 11 0 1 00

02 0101 01 1 11 0

1 2 1 2 01 1 1 21

xy y x y y x y x y x x

x y x x x y x

x y x y x x y y x y

x y x x y x x y

x y x x x y x

xy y x y x y x x

− − −

− − −−

− − − −

− − −− −

− − −−

− −−

⊗ + ⋅ ⊗ − ⋅ ⊗

 − ⋅ ⋅ ⋅ ⊗ 
 

− ⋅ ⊗ ⋅ − ⋅ ⊗

 + ⋅ ⋅ ⊗ ⋅ ⋅ ⋅ 
 

+ ⋅ ⋅ ⊗ ⋅

= ⊗ + ⋅ ⋅ ⋅ ⊗ ( )( )
( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

( )( )( )
( ) ( )( )( )

[ ]

11 1 0

01 02 2 101 1 1

1 2 0 1 2 11 1 1 2 1 0

1 2 01 02 011 1
1 0

, .

y

x y x x x x y x

x y x y x xy y xy

x x y x y x x x y x

x yδ

−

− −

− − −

− −
−

⋅

− ⋅ ⊗ − ⋅ ⊗

− ⋅ ⊗ ⋅ − ⋅ ⊗

+ ⊗ + ⋅ ⋅ ⊗ ⋅

=

 

Therefore,  

[ ]( )( ) [ ]( )( )( )( )( )( )

[ ] ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( )( )

( )( ) ( )( ) ( )( ) ( )

( )( )
( ) ( ) ( )( )

( )

1( 1) 2 10 01 021 11 0

2 10 00 01 021 1 1 0 1 1 11 0

02 010 1 0 2 1 0 21 01 1 1 1

02 0101 01 1 11 0 1

, ,

,

id id id id id id id x y

x y x y y y x y x x y x

x y y x y x x y x x y x

x y x x x x y x y x y x y

x y x x x y x

δ τ δ τ

δ − − −−

− − − − −−

− − − −

− − −− −

⊗ ⊗ + ⊗ ⊗ ⊗ ⊗ − ⊗

 = − ⋅ ⊗ + ⋅ ⋅ ⋅ ⊗ 
 

+ ⋅ ⊗ ⋅ − ⋅ ⋅ ⊗ ⋅

+ ⋅ ⋅ ⊗ − ⋅ ⊗ + ⋅ ⊗

− ⋅ ⋅ ⊗ ⋅ ⋅ ( )( )
[ ] ( ) ( )( )
[ ] ( ) ( )

1 00

01, , ,

, , , ,

x y

x y B x y B x y x

x y B x y B x y

δ

δ τ

−

−

 ⋅ 
 

= − + ⋅

= − + �

 

as desired. We complete the proof.                                     
Corollary 2.4. Let ( ), ,A m ∆  be a braided infinitesimal bialgebra. Assume 

that the braiding τ  on A is symmetric and the balanceator 0B = . Then 
[ ]( ), , ,A m mτ δ τ= − = ∆ − ∆  is a braided Lie bialgebra. 

Proof. Straightforward from Theorem 2.3.                             
Example 2.5. Let q be an 2th root of unit of k and G the cyclic group of order 

2 generated by g, H kG=  be the group algebra in the usual way. We consider 
the algebra [ ] ( )4

4A k x x= . By [8], 4A  is a infinitesimal bialgebra equipped 
with the comultiplication:  

( ) ( ) ( ) ( )2 3 2 2 2 3 3 21 0, 1 , , .x x x x x x x x x x∆ = ∆ = ⊗ − ⊗ ∆ = ⊗ ∆ = ⊗  

Define the left-H-module action and the left-H-comodule coaction of A by  

( ), , 0,1,  0,1, 2,3.i j ij j j j jg x q x x g x i jρ⋅ = = ⊗ = =  

It is not hard to check that the multiplication and the comultiplicaition are 
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both H-linear and H-colinear, therefore 4A  is a braided infinitesimal bialgebra. 
Since ( ) 2 2 2 2 3 3, 2B x x x x qx x qx x qx x x x= ⊗ − ⊗ − ⊗ − ⊗ − ⊗  and  
( ) ( )( ) ( )01 ,x x x x x g x x qx xτ −⊗ = ⋅ = ⋅ = ⊗  it is clear that ( ) ( ), ,B x x B x xτ=  if 

and only if 1q = . If 1q = , it is not hard to check that the balanceator is 
symmetric on 4A . By Theorem 2.3, [ ]( )4 , , ,A m mτ δ τ= − = ∆ − ∆  is a braided 
Lie bialgebra. 

Example 2.6. Let q be a 4th root of unit of k. Consider the Hopf algebra 
H kG= , where G is a cyclic group of order 4 generated by g. Recall from [1] 
that ( )2A M k=  is a braided infinitesimal bialgebra in H

H  equipped with 
the comultiplication:  

0 0 1 0 1
0 0 0 0 0 0 0

a b a c d
c d c
         

∆ = ⊗ − ⊗         
         

 

and the H-module action, the H-comodule coaction:  
( ) ( )2 2, ( ) , 0,1, 2,3, , 1, 2.k i j i jk

ij ij ij ijg E q E E g E k i jρ+ +⋅ = = ⊗ = =  

Since  

( ) ( )11 21 12 22 11 12, 2 ,B E E E E E E= ⊗ − ⊗  

( )( ) ( ) ( )
0111 21 11 21 11 22 12 11 11, , 2 ,B E E E B E E E E E E

−
⋅ = = ⊗ − ⊗  

we claim that the balanceator is not symmetric. By Theorem 2.3,  
( ) [ ]( )2 , , ,M k m mτ δ τ= − = ∆ − ∆  is not a braided Lie bialgebra, where m is the 

multiplication of A. 

Let ( )1 2| ,
0
a b

A a b k M k
a

   = ∈ ⊂  
   

. It is clear that 1A  is both H-stable and  

H-costable, hence 1A  is also a braided infinitesimal bialgebra contained in A. 
One can check easily that the balanceator 0B =  on 1A . By Corollary 2.4, 

[ ]( )1, , ,A m mτ δ τ= − = ∆ − ∆  is a braided Lie bialgebra. 
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