
Advances in Pure Mathematics, 2017, 7, 180-187 
http://www.scirp.org/journal/apm 

ISSN Online: 2160-0384 
ISSN Print: 2160-0368 

DOI: 10.4236/apm.2017.72009  February 9, 2017 

 
 
 

Preconditioned Iterative Method for Regular 
Splitting 

Toshiyuki Kohno 

Department of Information Science, Okayama University of Science, Okayama, Japan 

 
 
 

Abstract 
Several preconditioners are proposed for improving the convergence rate of 
the iterative method derived from splitting. In this paper, the comparison 
theorem of preconditioned iterative method for regular splitting is proved. 
And the convergence and comparison theorem for any preconditioner are in-
dicated. This comparison theorem indicates the possibility of finding new 
preconditioner and splitting. The purpose of this paper is to show that the 
preconditioned iterative method yields a new splitting satisfying the regular or 
weak regular splitting. And new combination preconditioners are proposed. 
In order to denote the validity of the comparison theorem, some numerical 
examples are shown. 
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1. Introduction 

There are many iterative methods for solving a linear system of equations, 

.Ax b=                              (1) 

Here, A  is a n n×  nonsingular M-matrix; x  and b  are n-dimensional 
vectors. Matrix A  which arises from various problems is usually large and 
sparse matrix. Then large amount of computation times and memory are needed 
in order to solve efficiently the problems. Therefore, various preconditioners 
and iterative methods have been proposed. In this paper, Gauss-Seidel iterative 
method is treated as classical iterative method. Basically, the classical iterative 
method can be defined by splitting the coefficient matrix. It is assumed that the 
splitting for original linear equation satisfies the regular splitting. When Gauss- 
Seidel iterative method for preconditioned linear system, its splitting is Gauss- 
Seidel method. However, for the original coefficient matrix A  it means to de-
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fine a new splitting. The new splitting also fulfils the condition of the regular or 
weak regular splitting. We propose new preconditioners by combining precon-
ditioners satisfying the regular splitting. 

The outline of the paper is as follows: In Section 2, we review the precondi-
tioned iterative method and some known results. And the iterative algorithm based 
on the splitting is shown. Section 3 consists of a comparison theorem and some 
numerical examples. Finally, in Section 4, we make some concluding remarks. 

2. Preconditioned Iterative Method and Some Results 

We review some known results [1] [2]. We write A B≤  if ij ija b≤  holds for 
all elements of ( )ijA a=  and ( ) n n

ijB b R ×= ∈ , calling A nonnegative if A O≥ , 
and the vector nx R∈  positive ( writing 0x > ) if all its elements are positive. 
Let n nZ ×  denote that set of all real n n×  matrices which have non-positive 
off-diagonal elements. A nonsingular matrix n nA R ×∈  is called an M-matrix if 

1A O− ≥ . 
Definition 1. Let A  be a real matrix. The representation M N= −A  is 

called splitting of A  if M  is a nonsingular matrix. In addition, the splitting is 
(i) Convergent if ( )1 1.M Nρ − <  
(ii) Regular if 1M O− ≥  and .N O≥  
(iii) Weak regular if 1M O− ≥  and 1 .M N O− ≥  
We can denote a splitting based iterative method as follows, 

( ) ( )1 1 1 .k kx M Nx M b+ − −= +                        (2) 
1M N−  is called the iterative matrix. If the spectral radius of the iterative matrix 

is less than one, the sequence ( ){ }kx  will converge to the solution of the linear 
system (1). We can express the matrix A  as the matrix sum 

D E F= − −A                               (3) 

where { }11 22diag , , , nnD a a a=  , E  and F  are strictly lower and strictly up- 
per triangular n n×  matrices, respectively. For using Diagonal preconditioner 

{ }1
11 22diag 1 ,1 , 1 nnD a a a− =  , we can rewrite 

1 1 1 1 .A D A D D D E D F I L U− − − −′ = = − − = − −              (4) 

In this article, suppose the diagonal part of a coefficient matrix is unit diagon-
al element. So, we consider the matrix sum of a coefficient matrix as follows, 

.I L U= − −A                               (5) 

When setting M I= , we have the point Jacobiiterative method. And if 
M I L= − , then we have the Gauss-Seidel iterative method. 

Definition 2. We define M I L= −  the Gauss-Seidel regular splitting of 
A M N= − , if 1M O− ≥  and N O≥ . 

For some preconditioner P , we call the following equation the precondi-
tioned iterative system, 

.PAx Pb=                                 (6) 

Many researchers proposed some preconditioner P . The preconditioner us-
ing the first column has been proposed [3] as follows, 
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                   (7) 

cP  works to eliminate the first column of A . Then ( )cA I C A= +  can be 
written, 

,c c cA I L U C CU M N= − − + − = −                 (8) 

where 

,  c c c c cM I D L C E N U F= − − + − = +                (9) 

and cD , cE  and cF  are the diagonal, strictly lower and strictly upper trian-
gular parts of CU , respectively. If cM  is nonsingular, then the iterative matrix 
of the Gauss-Seidel method is defined by 

( ) ( )11 .c c c c c cT M N I D L C E U F−−= = − − + − +           (10) 

In 1991, Gunawardena et al. proposed the preconditioner SP I S= +  [4] to 
eliminates the elements of the first upper co-diagonal of A , 

12

1,

1 0 0
0 1

.

0 0 1

S
n n

a

P I S
a −

− 
 
 = + =
 −
 
 

 

  



                (11) 

In 1997, Kohno et al. proposed the preconditioner ( ) ( )SP I Sα α= +  with pa-
rameter α  to accelerate its convergence for the preconditioned iterative me-
thod [5]. Moreover, Kotakemori et al. proposed the preconditioner by using the 
upper triangular matrix [6], 

1 12 1 2

1 1,

1
0 1

.

0 0 1

n

U
n n n

a a

P I U
a

β β

β
β − −

− − 
 
 = + =
 −
 
 



 

  



           (12) 

Parameters of each preconditioner are changed for each row. 
The preconditioner max maxP I S= +  using the maximum absolute value of the 

element of the upper diagonal part was proposed [7],  

max

1 , 1
0 otherwise,

ikia i n i j n
S

− ≤ < + ≤ ≤
= 


                  (13) 

where { }min ,  :  is maximal for 1i i i ijk I I j a i j n= = + ≤ ≤  for 1 i n≤ < .  

3. Comparison Theorem 

We now consider the comparison theorem for the two regular splitting of normal 
and preconditioned linear system in Equation (1) and (2). By using some precon-
ditioner P , we have preconditioned splitting P PPA M N= − , if PM  and P  
are nonsingular. Rewrite two splitting like following relation, 

1 1
P PA M N P M P N− −= − = −                   (14) 
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because the iterative matrix of PA  transformed as follows, 

( ) 11 1 1 1 1 .P P P P P PM N M PP N P M P N
−− − − − −= =              (15) 

A related lemma and theorems [8] [9] [10] are shown below. 
Lemma 3. Let A M N= −  be a regular splitting of A . If 1A O− ≥ , then 

( )1 1.M Nρ − <                           (16) 

Conversely, if ( )1 1M Nρ − < , then 1A O− ≥ . 
Theorem 4. Let n nA R ×∈  be irreducible. Then each of the following condi-

tions is equivalent to the statement: A  is a nonsingular M-matrix. 
(i) 1 .A O− ≥  
(ii) 0Ax ≥  for some 0x > . 
Corollary 5. If n nA Z ×∈  is a nonnegative diagonally dominant matrix with 

0iia >  for all i , then 1A O− ≥ . 
Theorem 6. Let T  be a nonnegative matrix. If Tx xα≥  for some positive 

vector x , then ( )Tρ α≥ . 
We solve the comparison theorem for any preconditioner P . 
Theorem 7. Let 1 1

P PA M N P M P N− −= − = −  be two regular splitting of A . 
If 1A O− ≥  and ( ) 11 1

PP M M O
−− −≥ ≥ , then 

( ) ( )1 1 1.P PM N M Nρ ρ− −≤ <                       (17) 

Proof. Clearly, 1A O− ≥ , ( )1 1M Nρ − <  from Lemma 3. From the assump-
tion ( ) 11 1

PP M M O
−− −≥ ≥  and Theorem 4, we have the following relation 

( ){ }11 1 0.P M M Ax
−− −− ≥                         (18) 

It follows that 

( ){ } ( )

( )( ) ( )

( ) ( )

11 1 1 1

1 1

1 1 1

1 1

1 1 0.

P P

P

P P P

P P

P P

P M M Ax M P M Ax

M PAx M Ax

M P P M N x M M N x

I M N x I M N x

M Nx M N x

−− − − −

− −

− − −

− −

− −

− = −

= −

= − − −

= − − −

= − ≥

   (19) 

Because the iterative matrix 1M N−  is nonnegative, there exists a positive 
vector x  satisfied the following equation 

( )1 1 .P PM N x M N xρ− −≤                        (20) 

From Theorem 6, we have 

( ) ( )1 1 1.P PM N M Nρ ρ− −≤ <                    (21) 

Example 1. We test the following matrix, 

1

1 1 0 0
0 1 1 0

.
0 0 1 1
0.5 0 0 1

− 
 − =
 −
 
− 

A                      (22) 
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This matrix was shown in [10] as a counterexample to the condition of the pa-
rameter of preconditioner ( ) ( )SP I Sα α= + . We check whether or not the con-
dition of Theorem 7 is satisfied. This matrix has two regular splitting 

( )

1

1

1

1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
0.5 0 0 1 0 0 0 0

1 1 0 0 1 0 0 0 0 0 1 0
0 1 1 0 0 1 0 0 0 0 0 1

.
0 0 1 1 0.5 0 1 0 0 0 0 0
0 0 0 1 0.5 0 0 1 0 0 0 0

S S S

M N

P M N

−

−

   
   
   = − = −
   
   
−   

      
      
      = − = −      −
       −      

A

 (23) 

M N−  and S SM N−  are Gauss-Seidel regular splitting, respectively. The as-
sumption of Theorem 7 is satisfied as following inequality, 

( ) 11 1

0 1 0 0
0 0 1 0

.
0.5 0.5 0 1
0 0.5 0 0

S SP M M O
−− −

 
 
 − = ≥
 
 
 

                (24) 

Using the preconditioner SP I S= +  is equivalent to using the following 
splitting, 

1

1 1 1 1 0 0 1 1
0 1 1 1 0 0 0 1

.
0 0 1 1 0 0 0 0
0.5 0 0 1 0 0 0 0

A

− − −   
   −   = −
   −
   
−   

               (25) 

This splitting satisfies the regular splitting. And the following inequality is sa-
tisfied, 

( ) ( )1 11 1 1
max max .S SP M P M M O

− −− − −= ≥ ≥                 (26) 

Therefore, we have the spectral radius of each iterative matrix, 

( ) ( ) ( )1 1 10.500 0.707 0.794 1.S S C CM N M N M Nρ ρ ρ− − −= ≤ = ≤ = <     (27) 

For display, eigenvalues are given in approximate values. When using ( )SP α  
( )I S α= +  with parameter α , the regular splitting is not satisfied for 1α > . 

However, it is well-known that the spectral radius may be smaller than the one 
of SP I S= +  in the range of 1α > . For example, by using 1.1α =  for each  

row, we have the assumption condition ( ) ( )( ) ( )1 11 1
S SS SP M P Mα α

− −− −≥  and the  

spectral radius ( ) ( )( )1 0.328S SM Nα αρ − = . But ( ) ( ) ( )S S SP A M Nα α α= −  does not sa-
tisfy the regular splitting, since ( )SN α  is not nonnegative. And more, compari-
son condition between SP  and CP  is not indicated. Because elements used in 
each preconditioner are different, comparison of matrices is not satisfied. There-
fore, we show following corollary. 

Corollary 8. Let 1 1
P PA M N P M P N− −= − = −  be two splitting of A . If  
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( ){ }11 1 0P M M Ax
−− −− ≥                      (28) 

then  

( ) ( )1 1 1.P PM N M Nρ ρ− −≤ <                    (29) 

In Theorem 7 and Corollary 8, notice that the vector x is positive vector. When 
setting ( )T1,1, ,1x =  , Ax  indicates the sum of each row and 0Ax ≥ . There- 
fore, n nA Z ×∈  is a diagonally dominant matrix. For example 1, if ( )T1,1,1,1x =  
is chosen, it is ( )0,0,0,0.5 0Ax = ≥ . We set ( )T1.2,1.1,1.1,0.8x =  in order to 
make it a vector without zero. As a result, we can confirm  

( )0.1,0.0,0.3,0.2 0Ax = ≥  and comparison condition  

( ) ( ){ }1 11 1 0S S C CP M P M Ax
− −− −− ≥  between SP  and CP . 

Example 2. Let 

2

1 0.3 0.1 0.1 0.1
0.1 1 0.1 0.3 0.1

.0.1 0.1 1 0.1 0.3
0.1 0.1 0.1 1 0.3
0.1 0.1 0.1 0.1 1

− − − − 
 − − − − 
 = − − − −
 
− − − − 
 − − − − 

A                 (30) 

When using the Gauss-Seidel splitting for each preconditioned linear system, 
we have the following relations 

( ) 11 1
S SP M M O

−− −≥ ≥                         (31) 

( ) 11 1
max maxP M M O

−− −≥ ≥                       (32) 

and 

( ) ( ){ } ( )
1 11 1

max max 0,0.104,0.191,0.040,0.033 0S SP M P M Ax
− −− −− = ≥     (33) 

where ( )T1,1,1,1,1x = . The relation of each spectral radius is 

( ) ( ) ( )1 1 1
max max 0.166 0.197 0.348.S SM N M N M Nρ ρ ρ− − −= < = < =     (34) 

We test the following preconditioner combining two preconditioners, 

12

21

1,

1

1 0 0
1

.

0 1

S C
n n

n

a
a

P I S C
a

a

+
−

− 
 − = + + =
 −
 
− 

 

  



             (35) 

In this case, the condition of Theorem 7 satisfies, we have the spectral radius 
of preconditioned Gauss-Seidel iterative matrix is 0.156. And more, by setting 
the combination preconditioner U CP I U C+ = + + , weak regular splitting is sa-
tisfied, the spectral radius is 0.078. 

We show spectral radii of some preconditioners in Table 1 for examples 1 and 
2. 
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Table 1. The spectral radius of each example. 

Example ( )1 .M Nρ −  ( )1 .C CM Nρ −  ( )1 .S SM Nρ −  
( ) ( )( )1 .S SM Nα αρ −  ( )1

max max .M Nρ −  

1 0.794 0.707 0.500 0.328* 0.500 

2 0.348 0.266 0.197 0.082* 0.166 

*Denote that it does not satisfy Corollary 8. In Example 2, ( )1.0,1.6,1.6,1.6α = . 

4. Conclusion 

In order to consider effective preconditioner and splitting with small calculation, 
we proved their comparison theorem. The splitting formula in Equation (15) 
obtained by preconditioned Gauss-Seidel iterative method with SP I S= +  is 
the regular splitting. This splitting has a strange shape, but this iterative method 
converges. This result means that there is splitting what reduces the spectral ra-
dius of iterative matrix. Using preconditioner ( ) ( )SP I Sα α= + , smaller spectral 
radii are obtained for two examples, but their splitting does not satisfy both the 
regular and weak regular splitting. And, we were able to test the combination 
preconditioner and show a smaller spectral radius. However, there are many 
preconditioners to reduce the spectral radius even if the weak regular splitting is 
satisfied. Finding a new effective splitting and preconditioner is a future work. 
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