Retraction Notice

```
Title of retracted article: Eigenvalues of the p-Laplacian and Evolution under the Ricci-Harmonic
    Map Flowc
Author(s): Paul Bracken
* Corresponding author. Email: paul.bracken@utrgv.edu
Journal: Advances in Pure Mathematics (APM)
Year: }201
Volume: 7
Number: 1
Pages (from - to): 41 - 50
DOI (to PDF): http://dx.doi.org/10.4236/apm.2017.71004
Paper ID at SCIRP: 5301204
Article page: http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=73793
Retraction date: 2017-04-06
```

Retraction initiative (multiple responses allowed; mark with \mathbf{X}):
\square All authorsSome of the authors:
X Editor with hints from

	O Institution:
	X Reader:
Date initiative is launched: \quad	O Other:
$2017-04-01$	

Retraction type (multiple responses allowed):
\square Unreliable findings
O Lab error
O Inconsistent data
O Analytical error
O Biased interpretation
O Other:Irreproducible resultsFailure to disclose a major competing interest likely to influence interpretations or recommendationsUnethical research
X Fraud

	O Data fabrication	O Fake publication	O Other:
X Plagiarism	\square Self plagiarism	\square Overlap	
\square Copyright infringement	\square Other legal concern:		\square Redundant publication *
\square Editorial reasons			
O Handling error	O Unreliable review(s)	O Decision error	O Other:
\square Other:			

Results of publication (only one response allowed):
\square are still valid.
X were found to be overall invalid.

Author's conduct (only one response allowed):

\square honest error
X academic misconduct
\square none (not applicable in this case - e.g. in case of editorial reasons)

* Also called duplicate or repetitive publication. Definition: "Publishing or attempting to publish substantially the same work more than once."

History

Expression of Concern:
\square yes, date: yyyy-mm-dd
X no

Correction:

yes, date: yyyy-mm-ddno
Comment:

Free style text with summary of information from above and more details that can not be expressed by ticking boxes.

This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's Retraction Guidelines. Aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.

Editor guiding this retraction: Prof.Leo Depuydt,Dr. Özgür EGE and Dr. Lucia Marino (Editorial members of APM)

Eigenvalues of the p-Laplacian and Evolution under the Ricci-Harmonic Map Flowc

Paul Bracken

Department of Mathematics, University of Texas, Edinburg, TX, USA
Email: paul.bracken@utrgv.edu

How to cite this paper: Bracken, P. (2017) Eigenvalues of the p-Laplacian and Evolution under the Ricci-Harmonic Map Flowc. Advances in Pure Mathematics, 7, 41-50.
http://dx.doi.org/10.4236/apm.2017.710 $\underline{04}$

Received: October 20, 2016
Accepted: January 21, 2017
Published: January 24, 2017
Copyright © 2017 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/ $4.0 /$

Open Access

Abstract

Properties of eigenvalues of the p-Laplacian operator on a finite dimensional compact Riemannian manifold are studied for the case in which the metric of the manifold evolves under the Ricci-harmonic map flow. It will be shown that the first nonzero eigenvalue is monotonically nondecreasing along the flow and differentiable almost everywhere.

Keywords

Manifold, Operators, p-Laplacian, Eigenvalues

1. Introduction

Let (M, g) and (N, h) be two compact Riemannian manifolds without boun- dary with dimensions m and n, respectively. Let $\varphi: M \rightarrow N$ be a smooth map that is a critical point of the Dirichlet energy integral

$$
E(\varphi)=\int_{M}|\nabla \varphi|^{2} \mathrm{~d} \mu_{g}
$$

where $\mathrm{d} \mu_{g}$ is the integration measure on the manifold. Nash's embedding theorem implies N is isometrically embedded in R^{d} for $d \geq n$. The configuration $(g(x, t), \varphi(x, t))$ for $t \in[0, T]$ of a one-parameter family of Riemannian metrics $g(x, t)$ and a family of smooth maps $\varphi(x, t)$ is defined to be a Ricci-harmonic map flow if it satisfies the coupled system of nonlinear parabolic equations

$$
\begin{align*}
& \frac{\partial}{\partial t} g(x, t)=-2 \operatorname{Ric}(x, t)+2 \alpha \nabla \varphi(x, t) \otimes \nabla \varphi(x, t) \tag{1.1}\\
& \frac{\partial}{\partial t} \varphi(x, t)=\tau_{g} \varphi(x, t)
\end{align*}
$$

where $(x, t) \in M \times[0, T), \otimes$ denotes tensor product, Ric is the Ricci curvature tensor corresponding to g and $\alpha(t)>0$ is a parameter-dependent coupling constant such that $\tau_{g} \varphi$ is the intrinsic Laplacian of φ [1] [2] [3].

The problem to be investigated here is the p-eigenvalue problem where $p \in[2, \infty)$ defined by the following nonlinear equation which is constructed from the p-Laplacian

$$
\begin{equation*}
\Delta_{p, g} w(x)=-\lambda_{p}|w(x)|^{p-2} w(x), \tag{1.2}
\end{equation*}
$$

with $w(x) \neq 0$ for $x \in M$ and such that $w(x)=0$ on ∂M. In local coordinates, the p-Laplacian is given by [1] [2]

$$
\begin{equation*}
\Delta_{p, g} w(x)=\frac{1}{\sqrt{|g(x)|}} \sum_{i, j} \frac{\partial}{\partial x^{i}}\left(\sqrt{|g(x)|} g^{i j}(x)|\nabla w(x)|^{p-2} \frac{\partial w}{\partial x^{j}}\right) \tag{1.3}
\end{equation*}
$$

where $|g|=\operatorname{det}\left(g_{i j}\right)$ and inverse metric $g^{i j}$. When $p=2$, the operator $\Delta_{p, g}$ reduces to the usual Laplace-Beltrami operator $\Delta_{2, g} w=\operatorname{div} \operatorname{grad} w$ [4] [5]. It can be verified that the principal symbol of (1.2) is nonnegative everywhere and strictly positive on the neighborhood of a point at which $\nabla w \neq 0$. It is also known that (1.2) has weak solutions with only partial regularity: in general, they are of class $C^{1, \alpha}(0<\alpha<1)$. Notice that the least eigenvalue of a compact manifold without boundary or with Dirichlet boundary condition is zero with corresponding eigenfunction a constant. It is known that the first eigenvalue of $\Delta_{p, \text {, }}$ is obtained by means of the formula [2]

$$
\begin{equation*}
\lambda_{p, 1}(M)=\inf _{0 \neq w \in W_{0}^{f} p(M)}\left\{\left.\frac{\left.\int_{M} \nabla \omega\right|_{g} ^{p} \mathrm{~d} \mu_{g}}{\int_{M}|w|_{g}^{p} \mathrm{~d} \mu_{g}} \right\rvert\, w \neq 0, w \in W_{0}^{1, p}(M)\right\}, \tag{1.4}
\end{equation*}
$$

while satisfying the constraint $\int_{M} \mid w_{g}^{p-2} w \mathrm{~d} \mu_{g}=0$. The infimum does not h
a
n
g
e when $W_{0}^{1, p}(M)$ is replaced by $C_{0}^{\infty}(M)$. The corresponding eigenfunction w_{1} is the energy minimizer of the p-Rayleigh quotient (1.4) such that the infimum runs over all $w \in W_{0}^{1, p}(M)$.
The objective is to present a new concise proof of the general evolution of the first eigenvalue as a function of t under the Ricci flow (1.1). The proof is based on the work of Cao [6] [7] and Abolarinwa [8]. A monotonicity formula without differentiability assumption on the eigenfunction can also be obtained. The differentiability of a p-eigenvalue is a consequence of the monotonicity for- mula.

For the most part, a local coordinate system $\left\{x^{i}\right\}$ on M is adopted. The Riemannian metric $g(x)$ at any point $x \in M$ is a bilinear symmetric positive definite matrix $g_{i j}(x)$ with inverse written $g^{i j}(x)$. This induces a norm, the metric norm

$$
|\nabla w|_{g}^{2}=g^{i j} \nabla_{i} w \nabla_{j} w=\nabla^{i} w \nabla_{i} w
$$

The Riemannian structure on the manifold M allows a Riemannian volume measure $\mathrm{d} \mu_{g}(t)$ to be defined on M by the expression

$$
\begin{equation*}
\mathrm{d} \mu_{g}(t)=\sqrt{|g|} \mathrm{d} x^{1} \wedge \ldots \wedge \mathrm{~d} x^{n} . \tag{1.5}
\end{equation*}
$$

The fact that the Riemannian metric is parallel, $\nabla g=0$, will be used frequently without further mention as well as integration by parts, which for example takes the form,

$$
\begin{aligned}
\int_{M}\langle-\operatorname{div} X, w\rangle_{g} \mathrm{~d} \mu_{g} & =\int_{M}\langle X, \nabla w\rangle_{g} \mathrm{~d} \mu_{g} \\
& =-\int_{M} \frac{1}{\sqrt{\operatorname{det} g}} w \partial_{i}\left(X^{i} \sqrt{|g|}\right) \sqrt{|g|} \mathrm{d} x^{i},
\end{aligned}
$$

and for functions $u, w \in C^{2}(M)$,

$$
\int_{M} u \Delta w \mathrm{~d} \mu_{g}=-\int_{M}\langle\nabla u, \nabla w\rangle_{g} \mathrm{~d} \mu_{g}=\int_{M} \Delta_{g} u w \mathrm{~d} \mu_{g} .
$$

Also the following notations for the Ricci-harmonic map flow [1] will be used in the following form,

$$
\begin{equation*}
S=\operatorname{Ric}_{g}-\alpha \nabla \varphi \otimes \nabla \varphi, S_{i j}=R_{i j}-\alpha \nabla_{i} \varphi \nabla_{j} \varphi_{j} S_{g}=g^{i j} S \tag{1.6}
\end{equation*}
$$

2. The Ricci Flow

All the geometric quantities associated with the manifold M evolve as the Riemannian metric on M evolves along the Ricci-harmonic map flow.

Lemma 1. Let a one-parameter family of smooth metrics $g(t)$ solve the Ricci-harmonic map flow (1.1). Then the following evolutions hold:

$$
\begin{gather*}
\frac{\partial}{\partial t} g^{i j}=2 S^{i j}, \tag{2.1}\\
\left.\frac{\partial}{\partial t} \nabla w\right|^{2}=2 S^{i j} \nabla_{i} w \nabla_{j} w+2 g^{i j} \nabla_{i} w \nabla_{j} w_{t}, \tag{2.2}\\
\frac{\partial}{\partial t} \mathrm{~d} \mu_{g}=-S_{g} \mathrm{~d} \mu_{g} . \tag{2.3}
\end{gather*}
$$

Here w is a smooth function defined on M and S_{g} the metric trace of the symmetric 2-tensor $S_{i j}$ as in (1.6).

Proof: To prove equation (2.1), recall the metric satisfies $g^{i j} g_{j l}=\delta_{l}^{i}$. Differentiating both sides of this with respect to t and using (1.1), we have

$$
\left(\frac{\partial}{\partial t} g^{i j}\right)_{j l}=-g^{i j}\left(-2 R_{j l}+2 \alpha \nabla_{j} \varphi \nabla_{l} \varphi\right) .
$$

To obtain the second result (2.2), differentiate $|\nabla w|^{2}$ with respect to t and substitute the first result,

$$
\begin{aligned}
\frac{\partial}{\partial t}|\nabla w|^{2} & =\frac{\partial}{\partial t}\left(g^{i j} \partial_{i} w \partial_{j} w\right) \\
& =\left(\frac{\partial}{\partial t}\right) \partial_{i} w \partial_{j} w+2 g^{i j} \partial_{i} w \partial_{j} w_{t} \\
& =2 S^{i j} \partial_{i} w \partial_{j} w+2 g^{i j} \partial_{i} w \partial_{j} w_{t} .
\end{aligned}
$$

To obtain (2.3), differentiate both sides of the volume form on M with respect to t to obtain,

$$
\frac{\partial}{\partial t} \mathrm{~d} \mu_{g}(t)=\frac{\partial}{\partial t}\left(\sqrt{g} \mathrm{~d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{n}\right) .
$$

By the chain rule, we get,

$$
\frac{\partial}{\partial t} \sqrt{g}=\frac{1}{2 \sqrt{g}} \frac{\partial|g|}{\partial g_{i j}} \frac{\partial g_{i j}}{\partial t}=\frac{1}{2 \sqrt{g}}\left(-2 S_{i j}\right) \frac{\partial|g|}{\partial g_{i j}}=-\sqrt{g} g^{i j} S_{i j}=-\sqrt{g} S_{g}
$$

Therefore, it follows that

$$
\frac{\partial}{\partial t} \mathrm{~d} \mu_{g}(t)=-S_{g} \mathrm{~d} \mu_{g}(t)
$$

To obtain the results for the p-Laplacian, the following Lemma will be very important.

Lemma 2. Suppose a one-parameter family of smooth metrics $g(t)$ solves Ricci-harmonic map flow (1.1). Then there are the following evolutions
(a) $\frac{\partial}{\partial t}|\nabla w|^{p}=p|\nabla w|^{p-2}\left[S^{i j} \nabla_{i} w \nabla_{j} w+g^{i j} \nabla_{i} w \nabla_{j} w_{t}\right]$
(b) $\frac{\partial}{\partial t}|\nabla w|^{p-2}=(p-2)|\nabla w|^{p-4}\left[S^{i j} \nabla_{i} w \nabla_{j} w+g^{i j} \nabla_{i} w \nabla_{j} w_{\iota}\right]$
(c)

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\Delta_{p, g} w\right) & =2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} w\right)+g^{i j} \nabla_{i}\left(\eta_{t} \nabla_{j} w\right)+g^{i j} \nabla_{i}\left(\eta \nabla_{j} w_{t}\right) \tag{2.6}\\
& +2 \eta\left[g^{k l} g^{i j} \nabla_{i} S_{j l}-\frac{1}{2} g k l \nabla_{l} S_{g}\right] \nabla_{k} w
\end{align*}
$$

where $\eta=|\nabla w|^{p-2}$ and w is a smooth function on M.
Proof: (a) Using (2.1) from Lemma 1,

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(|\nabla w|^{p}\right) & =\frac{\partial}{\partial t}\left(|\nabla w|^{2}\right)^{p / 2}=\frac{p}{2}\left(|\nabla w|^{2}\right)^{p / 2-1} \frac{\partial}{\partial t}|\nabla w|^{2} \\
& =\frac{p}{2}|\nabla w|^{p-2}\left[2 S^{i j} \nabla_{i} w \nabla_{j} w+2 g^{i j} \nabla_{i} w \nabla_{j} w_{t}\right] .
\end{aligned}
$$

Replace p by $p-2$ in (a) and the result in (b) follows immediately. (c)

$$
\begin{aligned}
\frac{\partial}{\partial t} \Delta_{p, g} w= & \frac{\partial}{\partial t}\left(g^{i j} \nabla_{i}\left(\eta \nabla_{j} w\right)\right)=\frac{\partial}{\partial t}\left(g^{i j} \nabla_{i} \eta \nabla_{j} w+\eta g^{i j} \nabla_{i} \nabla_{j} w\right) \\
= & \left(\frac{\partial g^{i j}}{\partial t}\right) \nabla_{i} \eta \nabla_{j} w+g^{i j} \nabla_{i} \eta_{t} \nabla_{j} w+g^{i j} \nabla_{i} \eta \nabla_{j} w_{t}+\eta_{t} \Delta w+\eta(\Delta w)_{t} \\
= & 2 S^{i j} \nabla_{i} \eta \nabla_{j} w+g^{i j} \nabla_{i} \eta_{t} \nabla_{j} w+g^{i j} \nabla_{i} \eta \nabla_{j} w_{t}+\eta_{t} \Delta w \\
& +\eta\left[\Delta w_{t}+2 S^{i j} \nabla_{i} \nabla_{j} w+2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} w-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} w\right] \\
= & 2 S^{i j} \nabla_{i} \eta \nabla_{j} w+2 S^{i j} \eta \nabla_{i} \nabla_{j} w+g^{i j} \nabla_{l} w_{t} \nabla_{j} w+w_{t} \Delta w_{t}+g^{i j} \nabla_{i} \eta \nabla_{j} w_{t} \\
& +\eta \Delta w_{t}+w\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} w-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} w\right] \\
= & 2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} w\right)+g^{i j} \nabla_{i}\left(\eta_{t} \nabla_{j} w\right)+g^{i j}\left(\nabla_{i}\left(\eta \nabla_{j} w_{t}\right)\right) \\
& +2 \eta\left[g^{k l} g^{i j} \nabla_{i} S_{j l}-\frac{1}{2} g^{k l} \nabla_{l} S_{g}\right] \nabla_{k} w .
\end{aligned}
$$

3. Study of the Eigenvalue Problem

A nonlinear eigenvalue problem is introduced which involves the p -Laplacian (1.3) and is defined as

$$
\begin{equation*}
\Delta_{p, g} u=-\lambda_{p}|u|^{p-2} u, \tag{3.1}
\end{equation*}
$$

with $u \neq 0$ and subject to the normalization condition

$$
\begin{equation*}
\int_{M}|u|^{p} \mathrm{~d} \mu_{g}=1 . \tag{3.2}
\end{equation*}
$$

One of the main objectives is to derive a general evolution equation for the p-eigenvalues of the p-Laplacian. Out of this, it can be shown that $\lambda_{p, 1}$ is monotone on those metrics which evolve under the Ricci-harmonic map flow. The continuity and differentiability of $\lambda_{p, 1}$ can be derived from its evolution by using Cao's approach. To study this, begin by multiplying (3.1) by the function u on both sides and then integrating over M using (3.2) to obtain

$$
\begin{equation*}
\lambda_{p}(t)=-\int_{M} u(x, t) \Delta_{p} u(x, t) \mathrm{d} \mu_{g} \tag{3.3}
\end{equation*}
$$

Integrating this by parts once, it follows that

$$
\begin{equation*}
\lambda_{p}(t)=\int_{M}|\nabla u|^{2} \mathrm{~d} \mu_{g} \tag{3.4}
\end{equation*}
$$

Equation (3.4) implies that the eigenvalues from (3.1) are all positive. Suppose now that $u(x, t)$ is the eigenfunction that corresponds to the first p-eigenvalue $\lambda_{p, 1}(t)$ from (3.1). An equation which specifies the evolution of $\lambda_{p, 1}(t)$ can be obtained by differentiating (3.3),

$$
\begin{equation*}
\frac{\partial \lambda_{p, 1}}{\partial t}=-\frac{\partial}{\partial t} \int_{M} u(x, t) \Delta_{p, g} u(x, t) \mathrm{d} \mu_{g} \tag{3.5}
\end{equation*}
$$

The function u will satisfy the following integrability condition

$$
\frac{\partial}{\partial t} \int_{M}|u|^{p} \mathrm{~d} \mu_{g}=0
$$

This can be developed by direct computation,

$$
\frac{\partial}{\partial t}\left(\int_{M}|u|^{p-2} u^{2} \mathrm{~d} \mu_{g}\right)=(p-1) \int_{M}|u|^{p-2} \frac{\partial u}{\partial t} u^{2} \mathrm{~d} \mu_{g}+\int_{M}|u|^{p-1} \frac{\partial}{\partial t}\left(u \mathrm{~d} \mu_{g}\right)
$$

so

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{M}|u|^{p} \mathrm{~d} \mu_{g} & =\int_{M} p|u|^{p-1} \frac{\partial u}{\partial t} \mathrm{~d} \mu_{g}+\int_{M}|u|^{p-1} u \frac{\partial}{\partial t}\left(\mathrm{~d} \mu_{g}\right) \\
& =\int_{M}|u|^{p-1}\left(p \frac{\partial u}{\partial t} \mathrm{~d} \mu_{g}+\mu \frac{\partial}{\partial t}\left(\mathrm{~d} \mu_{g}\right)\right) \\
& =0 .
\end{aligned}
$$

This implies the following constraint holds for $u \neq 0$,

$$
\begin{equation*}
p \frac{\partial u}{\partial t} \mathrm{~d} \mu_{g}+u \frac{\partial}{\partial t}\left(\mathrm{~d} \mu_{g}\right)=0 . \tag{3.6}
\end{equation*}
$$

At this point, it is possible to prove a theorem with regard to the evolution, monotonicity and differentiability of the first eigenvalue of the p-Laplacian under the Ricci-harmonic map flow.

Theorem 1. Let (M, g) be an m-dimensional, closed Riemannian manifold evolving by the Ricci-harmonic map flow. Let $\lambda_{p, 1}(t)$ be the first
eigenvalue of the p-Laplacian on M corresponding to the eigenfunction u at time $t \in[0, T]$. Then the evolution of $\lambda_{p, 1}(t)$ is governed by the expression
$\frac{\partial}{\partial t} \lambda_{p, 1}(t)=\lambda_{p, 1}(t) \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}-\int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g}+p \int_{M}|\nabla u|^{p-2} S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g}$.
Moreover, if it is the case that

$$
S_{i j}-\beta S_{g} g_{i j} \geq 0, \quad \beta \in\left[\frac{1}{p}, \frac{1}{m}\right)
$$

then $\lambda_{p, 1}(t)$ is monotonically nondecreasing along the flow it is differentiable almost everywhere and

$$
\begin{equation*}
\frac{\partial}{\partial t} \lambda_{p, 1}(t) \geq \lambda_{p, 1}(t) \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}+(\beta p-1) \int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g} \geq 0 \tag{3.8}
\end{equation*}
$$

provided that S_{g} is nonnegative, that is, when $R_{g} \geq \alpha|\nabla \varphi|^{2}$.
Proof: Working in local coordinates and denoting $\eta=|\nabla u|^{p-2}$, it is the case that

$$
\begin{align*}
\frac{\partial}{\partial t} \int_{M} u \Delta_{p} u \mathrm{~d} \mu_{g} & \left.=\frac{\partial}{\partial t} \int_{M} g^{i j} \nabla_{i}\left[\eta \nabla_{j} u\right] u \mathrm{~d} \mu_{g}\right) \\
& =\frac{\partial}{\partial t} \int_{M}\left(g^{i j} \nabla_{i} \eta \nabla_{j} u+\eta \Delta_{p} u\right) u \mathrm{~d} \mu_{g} \tag{3.9}\\
& =\int_{M} \frac{\partial}{\partial t}\left(g^{i j} \nabla_{i} \eta \nabla_{j} u+\eta \Delta_{p} u\right) u \mathrm{~d} \mu_{g}+\int_{M} \Delta_{p} u \frac{\partial}{\partial t}\left(u \mathrm{~d} \mu_{g}\right)
\end{align*}
$$

By the third part of Lemma 2, by the evolution of $\Delta_{p, g}$, the first part of this takes the form,

$$
\begin{aligned}
I= & \int_{M}\left\{2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} u\right)+g^{i j} \nabla_{i}\left(\eta_{t} \nabla_{j} u\right)+g^{i j} \nabla_{i}\left(\eta \nabla_{j} u_{t}\right)\right. \\
& \left.+\eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right]\right\} u \mathrm{~d} \mu_{g} .
\end{aligned}
$$

Integrating the second and third terms in I by parts gives

$$
\begin{aligned}
I= & \int_{M}\left\{2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} u\right) u-g^{i j}\left(\eta_{t} \nabla_{j} u\right) \nabla_{i} u-g^{i j}\left(\eta \nabla_{j} u_{t}\right) \nabla_{i} u\right. \\
& \left.+\eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u\right\} \mathrm{d} \mu_{g} .
\end{aligned}
$$

Now, recall the fact that

$$
\frac{\partial}{\partial t} \eta=(p-2)|\nabla u|^{p-4}\left\{S^{i j} \nabla_{i} u \nabla_{j} u+g^{i j} \nabla_{i} u \nabla_{j} u\right\}
$$

so the integral I takes the form,

$$
\begin{aligned}
I= & \int_{M}\left\{2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} u\right) u-(p-2) \eta S^{i j} \nabla_{i} u \nabla_{j} u-(p-2) \eta g^{i j} \nabla_{i} u \nabla_{j} u_{t}-\eta g^{i j} \nabla_{i} u \nabla_{j} u_{t}\right. \\
& \left.+\eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u\right\} \mathrm{d} \mu_{g} \\
= & \int_{M}\left\{2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} u\right) u-(p-2) \eta S^{i j} \nabla_{i} u \nabla_{j} u-(p-1) \eta g^{i j} \nabla_{i} u \nabla_{j} u_{t}\right. \\
& \left.+\eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u\right\} \mathrm{d} \mu_{g} .
\end{aligned}
$$

Computing the first term in I, we get

$$
\begin{aligned}
\int_{M} 2 S^{i j} \nabla_{i}\left(\eta \nabla_{j} u\right) u \mathrm{~d} \mu_{g} & =-2 \int_{M} \nabla_{i}\left(S^{i j} u\right) \eta \nabla_{j} u \mathrm{~d} \mu_{g} \\
& =-2 \int_{M} \eta \nabla_{i} S^{i j} \nabla_{j} u u d \mu_{g}-2 \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g} \\
& =-2 \int_{M} \eta\langle\operatorname{div} S, \nabla u\rangle u d \mu_{g}-2 \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g} .
\end{aligned}
$$

Computing the third term in I,

$$
\begin{aligned}
-(p-1) \int_{M} g^{i j}|\nabla u|^{p-1} \nabla_{i} u \nabla_{j} u_{t} \mathrm{~d} \mu_{g} & =(p-1) \int_{M} g^{i j} \nabla_{j}\left(\eta \nabla_{i} u\right) u_{t} \mathrm{~d} \mu_{g} \\
& =(p-1) \int_{M} \Delta_{p} u \cdot u_{t} \mathrm{~d} \mu_{g} .
\end{aligned}
$$

Therefore, putting all of these into (3.9) for the time derivative, it has been found that

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{M} u \Delta_{p} u \mathrm{~d} \mu_{g}= & -2 \int_{M} \eta \nabla_{i} S^{i j} \nabla_{j} u \cdot u \mathrm{~d} \mu_{g}-2 \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g} \\
& -p \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u d \mu_{g}+2 \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u d \mu_{g}+(p-1) \int_{M} \Delta_{p} u u_{t} \mathrm{~d} \mu_{g} \\
& +\int_{M} \eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u \mathrm{~d} \mu_{g}+\int_{M} \Delta_{p} u \frac{\partial}{\partial t}\left(u \mathrm{~d} \mu_{g}\right) .
\end{aligned}
$$

Using integrability condition (3.5),

$$
\begin{aligned}
& (p-1) \int_{M} \Delta_{p} u \cdot u_{t} \mathrm{~d} \mu_{g}+\int_{M} \Delta_{p} u \cdot u_{t} \mathrm{~d} \mu_{g}+\int_{M} \Delta_{p} u \cdot u \frac{\partial}{\partial t} \mathrm{~d} \mu_{g} \\
= & \int_{M}\left\{p \Delta_{p} u u_{t} \mathrm{~d} \mu_{g}+\Delta_{p} u u \frac{\partial}{\partial t} \mathrm{~d} \mu_{g}\right\} \\
= & \int_{M} \Delta_{p} u\left\{p \frac{\partial u}{\partial t} \mathrm{~d} \mu_{g}+u \frac{\partial}{\partial t} \mathrm{~d} \mu_{g}\right\} \\
= & 0 .
\end{aligned}
$$

Therefore, the result simplifies considerably to the form,

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{M} u \Delta_{p} u \mathrm{~d} \mu_{g}= & -p \int_{M} \eta S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g}-2 \int_{M} \eta \nabla_{i} S^{i j} \nabla_{j} u \cdot u \mathrm{~d} \mu_{g} \\
& +\int_{M} \eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u \mathrm{~d} \mu_{g} .
\end{aligned}
$$

The last pair of integrals can be simplified in the following way,

$$
\begin{aligned}
& -2 \int_{M} \eta \nabla_{i} S^{i j} \nabla_{j} u u \mathrm{~d} \mu_{g}+\int_{M} \eta\left[2 g^{k l} g^{i j} \nabla_{i} S_{j l} \nabla_{k} u-g^{k l} g^{i j} \nabla_{l} S_{i j} \nabla_{k} u\right] u \mathrm{~d} \mu_{g} \\
= & -2 \int_{M} \nabla_{i} S^{i j} \nabla_{j} u \cdot u \mathrm{~d} \mu_{g}+2 \int_{M} \eta \nabla_{i} S^{i j} \nabla_{j} u \cdot u \mathrm{~d} \mu_{g}-\int_{M} g^{k l} \nabla_{l} S_{g} \eta \nabla_{k} u \cdot u \mathrm{~d} \mu_{g}
\end{aligned}
$$

The first two terms cancel out and so integrating the last term by parts using the definition $\Delta_{p} u=g^{k l} \nabla_{l}\left[\eta \nabla_{k} u\right]$,

$$
\begin{aligned}
\int_{M} g^{k l} S_{g} \nabla_{l}\left[\eta \nabla_{k} u \cdot u\right] \mathrm{d} \mu_{g} & =\int_{M} g^{k l} S_{g} \nabla_{l}\left[\eta \nabla_{k} u\right] u \mathrm{~d} \mu_{g}+\int_{M} g^{k l} S_{g} \eta \nabla_{k} u \nabla_{l} u \mathrm{~d} \mu_{g} \\
& =\int_{M} S_{g} \Delta_{p} u \cdot u \mathrm{~d} \mu_{g}+\int_{M} S_{g}|\nabla u|^{p-2} g^{k l} \nabla_{k} u \nabla_{l} u \mathrm{~d} \mu_{g} .
\end{aligned}
$$

Making use of eigenvalue Equation (3.1), this integral simplifies to the form,

$$
-\lambda_{p} \int_{M} S_{g}|u|^{p} d \mu_{g}+\int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g} .
$$

Substituting this result into Equation (3.9) for the derivative, the final result becomes
$\frac{\partial}{\partial t} \int_{M} u \Delta_{p} u \mathrm{~d} \mu_{g}=-p \int_{M}|\nabla u|^{p-2} S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g}-\lambda_{p} \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}+\int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g}$.
However, the eigenvalue Equation (3.1) using (3.2) implies that

$$
\frac{\partial}{\partial t} \lambda_{p}(t)=p \int_{M}|\nabla u|^{p-2} S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g}+\lambda_{p}(t) \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}-\int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g},
$$

for all $t \in[0, T]$.
Suppose the constraint with regard to $S_{i j}$ is satisfied, then from the first and third terms,

$$
\begin{aligned}
& \int_{M} p|\nabla u|^{p-2} S^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g}-\int_{M} S_{g}|\nabla u|^{p-2} g^{i{ }_{j}} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g} \\
& =\int_{M}|\nabla u|^{p-2} \nabla_{i} u \nabla_{j} u\left(p S^{i j}-S_{g} g^{i j}\right) \mathrm{d} \mu_{g} \\
& \geq \int_{M}|\nabla u|^{p-2} \nabla_{i} u \nabla_{j} u\left(p S_{g} g^{i j}-S_{g} g^{i j}\right) \mathrm{d} \mu_{g} \\
& =(p \beta-1) \int_{M}|\nabla u|^{p} S_{g} \mathrm{~d} \mu_{g} .
\end{aligned}
$$

Hence, $\lambda_{p, 1}(t)$ is monotonically nondecreasing along the flow and differentiable almost everywhere, thus

$$
\frac{\partial}{\partial t} \lambda_{p, 1}(t) \geq \lambda_{p, 1}(t) \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}+(p \beta-1) \int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g} \geq 0
$$

provided that S_{g} is nonnegative, or when $R_{g} \geq \alpha|\nabla \varphi|^{2}$.
In the case where $p=2, \Delta_{2, g} \equiv \Delta$, which is the usual Laplace-Beltrami operator. Thus this theorem implies that the first eigenvalue of Δ and the corresponding eigenfunction are smoothly differentiable for this operator as well.

4. Evolution of the First Eigenvalue

There are some important consequences of Theorem 1 with regard to the evolution of the first eigenvalue that will be discussed now.

Corollary 1. Under the conditions of Theorem 1, it is the case that

$$
\begin{equation*}
\lambda_{p, 1}\left(t_{2}\right) \geq \lambda_{p, 1}\left(t_{1}\right)+\int_{t_{1}}^{t_{2}} \Psi(g(t), u(x, t)) \mathrm{d} t \tag{4.1}
\end{equation*}
$$

where Ψ is defined to as

$$
\begin{equation*}
\Psi(g(t), u(x, t))=\lambda_{p, 1}(t) \int_{M} S_{g}|u|^{p} \mathrm{~d} \mu_{g}+(p \beta-1) \int_{M} S_{g}|\nabla u|^{p} \mathrm{~d} \mu_{g} \tag{4.2}
\end{equation*}
$$

Furthermore, if $S_{g} \geq S_{\text {min }}>0$ and satisfies the governing inequality

$$
\begin{equation*}
S_{g(t)} \geq \theta(t)=\frac{S_{\min }(0)}{1-\frac{2}{m} S_{\min }(0) t}, \tag{4.3}
\end{equation*}
$$

then it holds for all $t_{1}<t_{2}$ that

$$
\begin{equation*}
\lambda_{p, 1}\left(t_{2}\right) \geq \lambda_{p, 1}\left(t_{1}\right) \exp \left(p \beta \int_{t_{1}}^{t_{2}} \theta(s) \mathrm{d} s\right) . \tag{4.4}
\end{equation*}
$$

Proof: Integrating both sides of the inequality

$$
\frac{\partial}{\partial t} \lambda_{p, 1}(t) \geq \Psi(g(t), u(x, t))
$$

from t_{1} to t_{2} on a sufficiently small time interval, it follows that

$$
\lambda_{p, 1}\left(t_{2}\right)-\lambda_{p, 1}\left(t_{1}\right) \geq \int_{t_{1}}^{t_{2}} \Psi(g(t), u) \mathrm{d} t
$$

as required. Now suppose that $S_{g(t)} \geq \theta(t)$ where $\theta(t)$ is independent of the manifold coordinates

$$
\begin{aligned}
\frac{\partial}{\partial t} \lambda_{p, 1}(t) & \geq \lambda_{p, 1}(t) \theta(t) \int_{M}|u|^{p} \mathrm{~d} \mu_{g}+(p \beta-1) \theta(t) \int_{M}|\nabla u|^{p} \mathrm{~d} \mu_{g} \\
& =\lambda_{p, 1}(t) \theta(t) \int_{M}|u|^{p} d \mu_{g}+(p \beta-1) \theta(t) \int_{M}|\nabla u|^{p-2} g^{i j} \nabla_{i} u \nabla_{j} u \mathrm{~d} \mu_{g} \\
& =\lambda_{p, 1}(t) \theta(t) \int_{M}|u|^{p} \mathrm{~d} \mu_{g}-(p \beta-1) \theta(t) \int_{M} \Delta_{p} u \cdot u \mathrm{~d} \mu_{g}
\end{aligned}
$$

Therefore, it follows that

$$
\frac{\partial}{\partial t} \lambda_{p, 1}(t) \geq \beta p \theta(t) \lambda_{p, 1}(t)
$$

which is equivalent to

$$
\int_{t_{1}}^{t_{2}} \mathrm{~d} \log \left(\lambda_{p, 1}(t)\right) \geq \beta p \int_{t_{1}}^{t_{2}} \theta(s) \mathrm{d} s
$$

Completing the integral on the left, this immediately gives (4.3).
Note that both $\lambda_{p, 1}(t)$ and $\theta(t)$ depend only on the parameter t, therefore, denoting

$$
\theta(0)=S_{\min }(0)=\theta_{0},
$$

the following integral can be evaluated

$$
\int_{t_{1}}^{t_{2}} \theta(t) \mathrm{d} t=\int_{t_{1}}^{t_{2}}\left(\frac{\theta_{0}}{1-\frac{2}{m} \theta_{0} t}\right) \mathrm{d} t=\int_{t_{1}}^{t_{2}}\left(\frac{\mathrm{~d} t}{\theta_{0}^{-1}-\frac{2}{m} t}\right)=\log \left(\frac{\theta_{0}^{-1}-\frac{2}{m} t_{1}}{\theta_{0}^{-1}-\frac{2}{m} t_{2}}\right)
$$

Substituting this result into (4.3), it is found that

$$
\log \left(\frac{\lambda_{p, 1}\left(t_{2}\right)}{\lambda_{p, 1}\left(t_{1}\right)}\right)=\log \left(\frac{\theta_{0}^{-1}-\frac{2}{m} t_{1}}{\theta_{0}^{-1}-\frac{2}{m} t_{2}}\right)^{\frac{m}{2} p \beta}
$$

for $t_{1}<t_{2}$ and t_{1} sufficiently close to t_{2}. However, this implies that

$$
\lambda_{p, 1}\left(t_{2}\right)\left(\theta_{0}^{-1}-\frac{2}{m} t_{2}\right)^{\frac{m}{2} p \beta}=\lambda_{p, 1}\left(t_{1}\right)\left(\theta_{0}^{-1}-\frac{2}{m} t_{1}\right)^{\frac{m}{2} p \beta}
$$

This has the implication that the function $\lambda_{p, 1}(t)\left(\theta_{0}^{-1}-\frac{2}{m} t\right)^{\frac{m}{2} p \beta}$ is nondecreasing along the Ricci-harmonic map flow, and this is important enough to be summarized in the form of Theorem 2.

Theorem 2. Under the assumptions of Theorem 1, the function

$$
\begin{equation*}
\lambda_{p, 1}(t) \cdot\left(\theta_{0}^{-1}-\frac{2}{m} t\right)^{\frac{m}{2} \beta p} \tag{4.5}
\end{equation*}
$$

is nondecreasing and $\lambda_{p, 1}(t)$ is differentiable almost everywhere along the flow.

References

[1] Chow, B., Lu, P. and Ni, L. (2006) Hamilton's Ricci Flow, AMS Graduate Studies in Mathematics, 77, Providence, RI.
[2] Wu, J. (2011) First Eigenvalue Monotonicity for the p-Laplacian Operator under the Ricci Flow. Acta Mathematica Sinica, 27, 1591-1598.
[3] Perelman, G. (2002) The Entropy Formula for the Ricci Flow and Its Geometric Application. arXiv: math.DG/0211159v1
[4] Lee, J.M. (2009) Manifolds and Differential Geometry, AMS Graduate Studies in Mathematics, Volume 107, Providence, RI. https://doi.org/10.1090/gsm/107
[5] Chow, B. (1991) The Ricci flow on the 2-Sphere. Journal of Differential Geometry, 33, 325-334.
[6] Cao, X. (2007) Eigenvalues of $\left(-\Delta+\frac{R}{2}\right)$ on Manifolds with Nonnegative Curvature Operator. Mathematische Annalen, 337, 435-441. https://doi.org/10.1007/s00208-006-0043-5
[7] Cao, X. (2008) First Eigenvalues of Geometric Operators under the Ricci Flow. Proceedings of American Mathematical Society, 136, 4075-4078. https://doi.org/10.1090/S0002-9939-08-09533-6
[8] Abolarinwa, A. (2015) Evolution and Monotonicity of the First Eigenvalue of p-Laplacian under the Ricci-Harmonic Flow. Journal of Applied Analysis, 21, 147174. https://doi.org/10.1515/jaa-2015-0013

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles

Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/ Or contact apm@scirp.org

