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Abstract 
In this second part, we thoroughly examine the types of higher-order asymptotic 
variation of a function obtained by all possible basic algebraic operations on high-
er-order varying functions. The pertinent proofs are somewhat demanding except 
when all the involved functions are regularly varying. Next, we give an exposition of 
three types of exponential variation with an exhaustive list of various asymptotic 
functional equations satisfied by these functions and detailed results concerning op-
erations on them. Simple applications to integrals of a product and asymptotic beha-
vior of sums are given. The paper concludes with applications of higher-order regu-
lar, rapid or exponential variation to asymptotic expansions for an expression of type 

( )( )f x r x+ . 
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6. Introduction to Part II  

We continue the exposition and the section numbering in Part I [1]. 
-In §7 we thoroughly examine the types of higher-order asymptotic variation of 

functions obtained by all basic algebraic operations on higher-order varying functions. 
For smooth variation the proofs are quite easy using the Balkema-Geluk-de Haan cha-
racterization, but proofs for regular or rapid variation require lenghty calculations and 
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careful use of Leibniz’s, Faà Di Bruno’s or Ostrowski’s formulas for higher derivatives 
of, respectively, a product, a composition or an inversion; these results are not to be 
found in the literature. Unlike the first-order case the results for higher orders are not 
granted a priori and in fact restrictions are necessary for definite results in each single 
case: exhaustive counterexamples are exhibited. 

-In §8 we highlight three concepts related to exponential variation which we label as 
“hypo-exponential” or “exponential” or “hyper-exponential” variation. These classes of 
functions, though classical, are cursorily treated in the literature and we have collected 
together all the basic properties, especially many useful “asymptotic functional equa- 
tions”. Types of higher-order exponentiality are then easily defined. 

-§9 contains a detailed account of operations with the three types of exponential var-
iation; results about composition require careful statements and lengthy calculations as 
in §7. The class of hypoexponentiality is too large and that of hyperexponentiality is too 
vague to obtain definite results but the additional assumption of rapid variation (in our 
restricted sense) turns out to be the right one to obtain useful results. 

-§10 exhibits two simple applications: an elementary result about the value of the 
limit of the two ratios  

( ) ( ) ( ) ( ) ( ) ( ); ;
x x x x x

T T T T T
f g fg fg f x g⋅ ⋅∫ ∫ ∫ ∫ ∫

 
and an improvement of a fundamental classical result about the principal part, as 
n →∞ , of a sum ( )1

n
k f k
=∑  or ( )k n f k∞

=∑ . Results more general than the classical 
ones are obtained by simpler proofs. 

-§11 concludes the paper with a number of asymptotic expansions for an expression 
of type ( )( )f x r x+ , as x → +∞ , under assumptions of higher-order variations on f, 
results which reveal useful in iterative processes to determine the behavior of solutions 
of some functional equations, such as implicit functions. 

For later references we quote some known “Combinatorial formulas for composition 
and inversion”. 

-Faà Di Bruno’s formula for derivatives of a composition, Bourbaki([2]; p. I.47) or 
Comtet ([3]; p. 137):  

( )( )( )( ) ( )( )( )
( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

1 2

1 2

1 21

2

0 1

d !
d ! ! 1! 2! !

,

k

k
j

k
k

k i i ki kk

k i i i
i k k

ii ii i k

kf g x f g x
x i i k

f g x g x g x g x

+ + + =

≤ ≤

+ +

≡ =

′ ′′× ⋅ ⋅

∑




 



   (6.1) 

where the summation is taken over all possible ordered k-tuples of non-negative integ-
ers ji  such that  

( )1 2 1 22 hence 1 .k ki i ki k i i i k+ + + = ≤ + + + ≤             (6.2) 

Notice that in the preceding sum there is only one term containing ( )kf  and only 
one term containing ( )kg , both with coefficient 1, namely:  

( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

1 2

1 2

corresponding to , , , ,0, ,0 ;

corresponding to , , , 0, ,0,1 .

kk
k

k
k

f g x g x i i i k

f g x g x i i i

 ′⋅ =


′ ⋅ =

 

 

     (6.3) 
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-A formula for higher derivatives of an inverse function, Ostrowski ([4]; pp. 20-21, 
290-293). For ( )yφ , the inverse function of a k-time differentiable ( )f x  with 

( ) 0f x′ ≠ , the formula holds true:  

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )

1

2 3

1 2

1
1 2 11

0 1 2 3

1 1 1

1 2 2 !

! ! ! 2! 3! !

,

k
j

k

k i
kk

i i i
i k k

ii i k

k i
y f f y

i i i k

f f y f f y f f y

φ
− −

−
−

≤ ≤ −

− − −

− − − ′= ⋅ 

    ′ ′′× ⋅     

∑


 



      (6.4) 

where the summation is taken over all ordered k-tuples of non-negative integers ji  
such that  

1 1 21; 2 2 2.k ki i k i i ki k+ + = − + + + = −                (6.5) 

Another version of this formula has been proved by Johnson [5] using combinatorial 
reasonings.  

In this paper, the symbol 1f −  always denotes the inverse function of f on a suitable 
neighborhood of +∞ . 

7. Operations with Higher-Order Regular and Rapid Variation 

We examine in this section what can be asserted about the order of variation of the 
product, composition and inverse of regularly-, smoothly- or rapidly-varying functions 
of higher order. The reader may notice that in the theory of Hardy fields the main re-
sults in this section are assumed to hold true whereas we, assuming that the involved 
functions belong to some of the studied classes, show that their product, composition 
and inverse belong to a specified class; and this requires a certain computational effort 
the proofs being based on the above-reported formulas for composition and inversion. 
Let us start from smooth variation. 

7.1. Operations with Higher-Order Smoothly-Varying Functions 

Balkema, Geluk and de Haan, ([6]; p. 412), and Bingham, Goldie and Teugels, ([7]; p. 
46) notice that the properties  

smoothly varying of order ; smoothly varying of orderf n g n“ ”       (7.1) 

imply  

1, , smoothly varying of orderf g f g g n−⋅ “ ”              (7.2) 

with the appropriate indexes specified in Proposition 2.1 and with a restriction on the 
index of g. These inferences require no painful direct proofs because the corresponding 
properties for the associated functions, defined in (3.24), are easily checked. Here is a 
statement completed with a result about linear combination and a few remarks. When-
ever a power f γ  appears, the positivity of f  is tacitly assumed if this is required by 
the exponent γ .  

Proposition 7.1. (Operations with smoothly-varying functions). If  
( ){ }of order nf α∈ +∞  and ( ){ }of order ng β∈ +∞  then:  
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( ){ } { }
{ }

( ){ }
( ){ }
( ){ } ( )

( ){ }1
1

of order constant \ 0 ;

( ) of order , ;

of order , ;

of order , ;

of order , if ;

of order , 0.

cf n c

f n

f g n

f g n

f g n g

g n

α

γ
αγ

α β

α β

αβ

β

α γ

α β

α β

α β

α β

+

−

−

 ∈ +∞ ∀ ∈

 ∈ +∞ ∀ ∈

 ⋅ ∈ +∞ ∀ ∈


∈ +∞ ∀ ∈


∈ +∞ ∀ ∈ +∞ = +∞


∈ +∞ ∀ ∈ >



























       (7.3) 

For a linear combination, we have the results:  

( ) ( ){ }
( ){ }

{ } ( ) ( ){ }

1 2 1 2max ,

1 2

of order , , , , , 0;

of order if and under the restrictions

either 0; , 0 or 0; , .

i

i i

c f c g n c c c

c f c g n

c f g c f x g x x

α β

α

α β α β

α β

 + ∈ +∞ ∀ ∈ ≠ ≠
 + ∈ +∞ =
 > > ≠ → +∞









   (7.4) 

Proof. Without loss of generality suppose , 0f g > . Here is a list of the associated 
functions except for the linear combination:  

( ) ( )
( )( ) ( )( )( )( )

( )1 1 1 1 1

: log exp; : log exp;
;

log e e ; ;

log e log exp log e ;

exp log ) exp log log exp .

def def

x x

x x

f f g g
f

f g f g f g

f g f g f g

g g

γ

φ ψ
γφ

φ ψ φ ψ

φ ψ

ψ ψ ψ− − − − −

 = =


  ⋅ ⋅ = + −  

 ≡ =

 = = =

     



 

  

      

      (7.5) 

The relations in (3.24) being assumed for φ  and the analogous ones for ψ , our 
claims follow from inspecting the structures of the formulas for higher-order deriva-
tives of composition and inverse regardless of the effective coefficients appearing in 
(6.1) and (6.4). To prove (7.4) we need a preliminary  

Lemma 7.2. 

( ){ } ( ){ }0

of order , 0,
of order .

constant 0,

h n
c h n

c
α α ∈ +∞ < ⇒ + ∈ +∞

= ≠


     (7.6) 

( ){ }

( ) ( )
( ){ }

0

0

of order ,

either 0, constant 0, of order .
or 1 , constant 0,

h n

h c c h n
h x o c

 ∈ +∞
 > = > ⇒ + ∈ +∞
 = = ≠



      (7.7) 

( ){ } ( ){ }of order , 0,
of order .

no restrictions on the signs,

h n
c h nα

α

α ∈ +∞ > ⇒ + ∈ +∞



     (7.8) 

Proof of the Lemma. The argument is quite easy if based on relations (3.21). To 
prove (7.7) we use the assumptions “ ( ) ( ) ( )( ) 1k kh x o x h x k−= ∀ ≥ ”, whence  

( )( )( ) ( ) ( ) ( )( ) ( )( )( ) ,k k k kc h x h x o x h x o x c h x− −+ = = = +         (7.9) 

as h c h< +  if all the quantities are positive and ( ) ( )( )h x o c h x= +  in the other 
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case. In the case of (7.6) and (7.8), we have  

( )( )( ) ( ) ( ) ( ) ( )
( )( )( )

( )( ) ( )
1

1

, 0,
1

1 , 0,

k
k k k k

k k

o x c h x
c h x h x x h x o

x c h x o

α
α

α α

−

− −

− −

 + < + = = + =    + + >  

 (7.10) 

as we have “ ( ) ( ) ( ) ( )( )0 1h x o h x o c h xα < ⇒ = ⇒ = + ” and  
“ ( ) ( ) ( )0 ~h x h x c h xα > ⇒ → +∞⇒ + ”. 

We can now prove properties in (7.4) writing  

2
1 2 1

1

1 .
c gc f c g c f
c f

 
+ = ⋅ + 

 
                    (7.11) 

For βα =  we have by (7.3) that ( ){ }2 1 0 of orderc g c f n∈ +∞  hence (7.7) 
implies that also ( ) ( ){ }2 1 01 of orderc g c f n+ ∈ +∞  under any of the stated restric-
tions. Again by (7.3) the product on the right in (7.11) belongs to the class  

( ){ }of order nα +∞ . If α β>  then ( ){ }2 1 of orderc g c f nβ α−∈ +∞  hence 
(7.6) implies that ( ) ( ){ }2 1 01 of orderc g c f n+ ∈ +∞  and the product on the right 
in (7.11) belongs to the class ( ){ }of order nα +∞ . The proof of Proposition 7.1 is 
over.                                                                   

7.2. Operations with Higher-Order Regularly- or  
Rapidly-Varying Functions 

We rewrite here the inclusions in (3.39):  

( ){ } ( ){ }
( ){ } ( ){ } { }

of order of order , ,

of order of order for 1 or 2, 0,1, , 2 ;

n S n n

n S n n n n
α α

α α

α

α

 +∞ ⊆ +∞ ∀ ∈ ∈


+∞ = +∞ = ≥ ≠ − 

 

 

 
 (7.12) 

which imply that the results involving only regular variation follow at once from the 
corresponding ones in Proposition 7.1 adding the restriction that the final index is not 
an integer whereas results involving rapid variation cannot be inferred from properties 
of the associated functions, as remarked in §4 after (4.25), but must be proved by di-
rectly working on formulas (6.1) and (6.4). For rapid variation of higher order we are 
using the strong concept in Definition 4.1.  

Proposition 7.3. (Product of higher-order varying functions). (I) If  

( ){ } ( ) 1of order , 2, 1, , ; 0,1, , 2,
ii pf n n i p nα α α∈ +∞ ≥ = + + ≠ −     (7.13) 

then  

( ){ }
( )

( )

1
1

1

of order with ;

,1 .

p

i p
i

kp

i k
i

f n

f k n

β

β

β α α
=

−
=


∈ +∞ = + +



  ∈ +∞ ≤ ≤  

∏

∏





          (7.14) 

(II)  

( ){ } ( ){ }
1

of order 1 of order ;
p

i i
i

f n i f n+∞ +∞
=

∈ +∞ ≥ ∀ ⇒ ∈ +∞∏      (7.15) 
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( ){ } ( ){ }
1

of order 1 of order .
p

i i
i

f n i f n−∞ −∞
=

∈ +∞ ≥ ∀ ⇒ ∈ +∞∏      (7.16) 

(III)  

( ){ }
( ){ } ( ){ }

of order 1 ,
of order .

of order 1 , ,

f n
f g n

g S nα α
±∞

±∞

 ∈ +∞ ≥ ⇒ ⋅ ∈ +∞
∈ +∞ ≥ ∈




 
 (7.17) 

(Notice the assumption on g, milder than ( ){ }of orderg nα∈ +∞ .)  
Proof. For part (I) we have, by Proposition 7.1, that  

( ){ }
1

of order ,
p

i
i

f nβ
=

∈ +∞∏                    (7.18) 

a class of functions coinciding with ( ){ }of order nβ +∞  if 0,1, , 2nβ ≠ − . For 
part (II), we shall prove relations in (4.10) for the product 1 2:f f f=  assuming their 
validity when f  is replaced by 1f  or 2f .  

First case: ( ){ }1 2, of orderf f n+∞∈ +∞ . In this case, all functions ( )k
if  have ulti-

mately one and the same strict sign so we may suppose ( ) 0k
if >  and this will prove 

vital in the following calculations:  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22 2
1 2 1 2 1 2

0

2 2 1 1
1 1 2 2

0

2
by 4.10 applied to ,

2
1 1 .

kk k i i

i

k k i i k i i

i

k
f f f f f f

i

k
f f f f o

i

+
+ + −

=

+
+ − − − −

=

+ 
= ⋅ = 

 
 +   ′ ′= ⋅ ⋅ ⋅ ⋅ +        

∑

∑

 

   (7.19) 

Here, by the positivity of all the terms in the sum, the expression ( )1 1o+    may be 
factored out of the sum and a suitable grouping of the factors 1 2f f′  and 1 2f f ′  yields:  

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )( ) ( ) ( )

22 1 2
1 2 1 2 1 2 1 2

0

1 2
1 2 1 2 1 2

2
1

1 2 1 2

2
1 1

1 1

1 1 .

kk k k i i

i

k k

k
k

k
f f f f f f f f o

i

f f f f f f o

f f f f o

+
+ − − + −

=

− − +

+
+

 +   ′ ′= ⋅ ⋅ ⋅ +        

′ ′= ⋅ + ⋅ +  

′= ⋅ +  

∑

    (7.20) 

Second case: ( )1 2,f f −∞∈ +∞  of order n. In this case the functions ( )k
if  have ul-

timately alternate signs so we may suppose ( ) ( )1 0k k
if− > . This implies that all the 

terms in the second sum in (7.19) have ultimately the same sign ( ) 21 k+−  and the sub-
sequent calculations are still valid. 

The proof of part (III) requires a different device made clear by the case 2n = . 
Write  

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 2

2
2

2

1 1 2 1 1 1

1 1 2 1 1 1 ,

fg f g f g fg

f f g o f x g o fx g o

xf xfx fg o o o
f f

α α α

α α α

− − −

−

′′ ′′ ′ ′ ′′≡ + +

′ ′= ⋅ + + ⋅ + + ⋅ − +          
 ′ ′    = ⋅ + + + + − +              
     

 (7.21) 

having used relations in (4.9) for ,f f′ ′′  and those in (3.21) for ,g g′ ′′ . Moreover, 
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“ ( ) ( )limx xf x f x→+∞ ′ = ±∞ ”, implies that the first term inside braces has the greatest 
growth-order and we get  

( ) ( ) ( )
2

22~ .xffg x fg f g fg
f

− ′ ′′ ′⋅ = 
 

                 (7.22) 

Now from both assumptions “ ( )1 1 1, , ,g g x o x f f x xα − − −′ ′= + → +∞ ” we get:  

( )~ .f f g g fg f g f g f g fg fg ′′ ′ ′ ′ ′ ′ ′⇒ ⇒ + ≡           (7.23) 

And replacing this last relation into the right-hand side in (7.22), we finally get the 
sought-for relation  

( ) ( ) ( )
2

~ .fg fg fg ′′ ′
  

                      (7.24) 

For 2n ≥ , we start from the first equality in (7.19) using relations in (4.10) for f and 
in (3.21) for g  with suitable constants iγ :  

( )( ) ( ) ( )

( ) ( ) ( )

( ) ( )

22 2

0

2 2 1

0

2 22
2

1

2

2
1 1 1

2
1 1 1 ,

kk k i i

i

k k i i k i
i

i

k k ik
k

i
i

k
fg f g

i

k
f f o x g o

i

kxf xfx fg o o
if f

γ

γ

+
+ + −

=

+
+ − − − −

=

+ + −+
− −

=

+ 
= ⋅ 

 
 +   ′= ⋅ ⋅ + ⋅ ⋅ ⋅ +            

 +′ ′     = ⋅ ⋅ + + ⋅ +           
      

∑

∑

∑

 (7.25) 

where for ( )00, 1 1i oγ= + ≡ . Using the remark preceding (7.22), we get  

( )( ) ( ) ( ) ( ) ( )
2 2by (7.23)2 2 1 12~ ~ .

k k
k k k kk xffg x fg f g fg fg fg

f

+ +
+ + + +− − ′   ′′⋅ =     

  (7.26) 

  
Remarks on the case of regular variation. 1. A direct proof for 2p =  could be done 

but this particular case would imply the claim for 2p >  only with the restrictions  

1 0,1, , 2, for 2, , ,r n r pα α+ + ≠ − =                (7.27) 

instead of the sole condition for r p= , how is apparent for 3p =  writing 
“ ( )1 2 3 1 2 3 3f f f f f f g f⋅ ⋅ = ⋅ ⋅ ≡ ⋅ ”, where the restriction “ 1 2 0,1, , 2nα α+ ≠ − ” is 
needed to grant ( )

1 2
g α α+∈ +∞  and to apply again the case 2p = . 

2. About the restrictions on the indexes notice that, if  

( ){ } { }1of order , 0,1, , 2 ,
i pf n nα α α∈ +∞ + + ∈ −         (7.28) 

then it is not always true that  

( ){ }
1

of order ,
p

i
i

f nβ
=

∈ +∞∏                     (7.29) 

with a well-defined ( )1, , pβ β α α=   depending only on the numbers iα ; β  may 
well depend on the particular functions if . In fact, using functions like those in (3.40) 
it is quite easy to exhibit pair of functions such that  
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( ){ } ( ){ } ( )

( ) ( ) ( )
1 2 1 2 0

1 2

of order , of order with 2; ;

either , or with 1, or it has no index of variation.

f n f n n f f

f f

α α

β β

−

−∞

 ∈ +∞ ∈ +∞ ≥ ⋅ ∈ +∞
 ′⋅ ∈ +∞ ∈ +∞ ≤ −

  

 
 (7.30) 

Example 1:  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

1 2

1 2

2
1 2 0 1 2

: e , : e ;

, 0, , ;

1 e e e ; .

n x n x

k k
n k n k

kn x n x x

f x x f x x n

f f k n

f x f x x x f f k

− − −

− − −

− − − −
−∞

 = + = + ∈
 ∈ +∞ ∈ +∞ =


= + + + ∈ +∞ ⋅ ∈ +∞ ∀ ∈

 

 





 (7.31) 

Example 2:  

( ) ( ) ( )
( ) ( )( ) ( )

1 2

2
1 2 0 1 2

: , : 1, ;

1 ; .

n n

kn n
n k

f x x x f x x x n

f f x x x f f k

α α

α α α
α

α α− − −

− − − −
− −

 = + = + > ≥ ∉


⋅ = + + + ∈ +∞ ⋅ ∈ +∞ ∀ ∈  




  (7.32) 

Example 3:  

( ) ( ) ] )

( ) ( ) ] ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

1

2

1 2

2
1 2

: sin log , 1, ,

: 2 sin log , 1, 0, , 0 1 ;

~ 2 sin log , ,~ , ,
; ;

2 sin log sin log

k kk k
k k

k k

f x x x x

f x x x x

x x xx x
f x f x

k k

f x f x x x

δα

δα

δαα

α α

δ δ

α α δ

αα
α

−

− −−

−
− −

 = + ∈ +∞ 
  = + ∈ +∞ > ∉ < <   

   − + → +∞ → +∞      
∈ +∞ ∀ ≤  ∈ +∞ ∀ ∈

  = + + 

 





( ) ( )

( ) ( )

0

1 2

2 sin log ;

.

nx x

f f

δ−










   + ∈ +∞   
 ′⋅ ∈ +∞ /





 (7.33) 

3. The function 2f  in (7.33) offers an example of a function ( )0L∈ +∞  of order 
1 but not of order 2 such that ( ) ( ){ }of any order 0x L x nα

α α− ∈ +∞ ∀ > . Hence a 
possible factorization  

( ){ } ( ) ( ) ( ){ }0of order with of order ,f n f x x L x L nα
α∈ +∞ ⇔ ≡ ∈ +∞ 

 
which is basic and trivially true for 1n = , see (2.18), is in general false for 2n ≥  
without the restrictions “ 0,1, , 2nα ≠ − ”, a case wherein it follows from Proposition 
7.3-(I).  

Proposition 7.4. (Quotient). (I) If  

( ){ } ( ){ }of order , of order with 2; 0,1, , 2;f n g n n nα β α β∈ +∞ ∈ +∞ ≥ − ≠ −   (7.34) 

then  

( ){ } ( )( ) ( )of order ; , 1 .k
kf g n f g k nα β α β− − −∈ +∞ ∈ +∞ ≤ ≤      (7.35) 

(II)  

( ){ }
( ){ }

( ){ }
of order 1 ,

of order .
of orde 1 ,

f n
f g n

g S r nβ

±∞

±∞

 ∈ +∞ ≥ ⇒ ∈ +∞
∈ +∞ ≥





    (7.36) 

Proof. In both cases (7.3) implies ( ){ }1 of orderg S nβ−∈ +∞ ; in part (I), again by 
(7.3), we have “ ( ) ( ){ }1 of orderf g S nα β−⋅ ∈ +∞ ” hence, by (7.12), the restrictions 
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on α β−  grant the thesis. The claim in part (II) follows from Propositon 7.3-(III). 
This argument avoids the supplementary restrictions “ 0,1, , 2nβ− ≠ − ” to grant 
“ ( ){ }1 of orderg nβ−∈ +∞ ”.                                             

As concerns composition we give some general results with different restrictions on 
the indexes and exhibit counterexamples concerning the restrictions.  

Proposition 7.5. (Composition involving only regular variation). Assumptions for 
all the cases to be treated:  

( ){ } ( ){ } ( )

( ) ( ) ( )

of order ; of order ; lim ;

, : indexes of variation of respectively ,
x

k k
k k

f n g n g x

f g

α β

α β
→+∞

 ∈ +∞ ∈ +∞ = +∞

 =

 
 (7.37)  

for the values of k specified in each statement. We already know that  
( )f g α β⋅∈ +∞   with no restrictions on ,α β  whereas for higher-order variation 

we give three distinct statements. 
(I) (The case 2n = ). If ,f g  are of order 2 then  

( ){ } ( ) ( )
1 1

of order 2 ; ,f g f gα β α β β
′

⋅ ⋅ +∈ +∞ ∈ +∞           (7.38) 

with no restriction on ,α β . Whenever 1 1α α= −  and 1 1β β= − , (which, by Propo-
sition 2.6, is certainly true if 0α ≠  and 0β ≥ , due to ( )g +∞ = +∞ ), then  
“ 1 1 1α β β α β⋅ + = ⋅ − ”. 

(II) (The regular case). If ,f g  are of order 3n ≥  and if  

0,1, , 2,nα β⋅ ≠ −                        (7.39) 

then Proposition 7.1 and (7.12) imply:  

( ){ } ( )( ) ( )of order ; , 1 1.k
kf g n f g k nα β α β⋅ ⋅ −∈ +∞ ∈ +∞ ≤ ≤ −      (7.40) 

(III) (The exceptional case 0α β⋅ = ). If ,f g  are of order 3n ≥  and if  

1 1 0,1, , 3,nα β β⋅ + ≠ −                      (7.41) 

then  

( ){ } ( )( ) ( )
1 1 1of order ; , 1 1.k

kf g n f g k nα β α β β⋅ ⋅ + − +∈ +∞ ∈ +∞ ≤ ≤ −     (7.42) 

The above results apply to the special case of a power ( )( )g x
α

, with 0α ≠  and 
αβ  satisfying (7.39); in particular “ ( ){ }0 of orderg n∈ +∞ ” implies 
“ 10, 1β β= ≤ − ” so that conditions in (7.41) are satisfied and 
“ ( ){ }0 of orderg nα ∈ +∞ ” with “ ( )( ) ( )

1 1 , 1 1k
kD g x k n

α
β − +∈ +∞ ≤ ≤ − ”.  

Proof. Part (I) is easily proved applying the definition of “ ( )
1

f α′∈ +∞ ”, 
( )

1
g β′∈ +∞  i.e. relation in (2.1) with f replaced by either f ′  or g ′ :  

( )( )
( )( )

( )( ) ( )( ) ( )( ) ( )
( )( ) ( )

( )( )
( )( )

( )
( )

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

1 1
1 1

1 1 1 1
1 1 1 1

( )

1 1 as

1 1 1 .

f g x f g x g x f g x g x f g x g x
g x

g xf g x g x f g xf g x

g x g x o x o g

x o o x o x o x

βα β

β α β α β β

− −

− − − −

′′  ′′ ′ ′ ′′ ′′⋅ + ⋅ ′′  ′= = ⋅ +
′′ ′ ′⋅′  

′= + + + = ∈ +∞      

= + + + + = + +          

   (7.43) 
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For part (III) let us notice that, by part (I), we already know that  

( ) ( )
1 1 1 1: , 0,h f g α β β α β β⋅ +

′= ∈ +∞ ⋅ + ≠                (7.44) 

hence we have to prove that h is of order 1n − . Faà Di Bruno’s formula yields for each 
k n≤ :  

( )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )1 2
1 21

1

2

, ,
0

;
k k

k
k

j

i i ki k ii ik i i k
i i

i k
f g x a f g x g x g x g x

+ + + =
+ +

≤ ≤

′ ′′= ⋅ ⋅∑






  (7.45) 

with suitable coefficients 
1 , , ki ia


 whose explicit expressions are not presently needed. 
Using relations in (3.7), we express the quantities ( ) ( )ig x  in terms of ( )g x  and the 
quantities ( ) ( )( ) ( )( ) ( )( )1iif g x f g x−′≡  in terms of ( )( )f g x′ , and this last is the right 
device to obtain the claim in part (III); in so doing we get the following asymptotic 
form for the general term in the preceding sum:  

( )( ) ( )( ) ( )( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( )
( ) ( ) ( )

21 1

1 1

1 11
1 1

1 1 1
1 1

1 2
, , , ,

1 1
, , , ,

1 1
, , , ,

1

1

1 1

kk

k k

k k

k k

i ii i i k
i i i i

i ii k
i i i i

i k i i
i i i i

a g x f g x g x x g x x g x A o

a x g x g x f g x g x A o

a x x h x o A oβ

− − − − −

− −−

− − −

    ′ ′= +     

 ′ ′ ′= + 
  ′= + +   



 

 

 

 

 (7.46) 

with suitable constants 
1 , , ki iA


, and  
( ) ( ) ( ) ( )1 1 1 ,k k

kh x x h x A o− − ′= ⋅ ⋅ +                    (7.47) 

with a new constant kA . To apply Proposition 3.1-(II), we must know that the kA ’s, 
save the last, are nonzero, and this follows from Proposition 2.6 and the restrictions in 
(7.41). In fact, for 3k = , (7.47) yields:  

( ) ( ) ( )1
3 1 ,h x x h x A o−′′ ′= ⋅ ⋅ +                     (7.48) 

which implies 3 1 1 1 0A α β β= ⋅ + − ≠ . For 4k =  we have:  

( ) ( ) ( )2
4 1 ,h x x h x A o−′′′ ′= ⋅ ⋅ +                     (7.49) 

which, together with (7.44) and (7.48), implies 4 1 1 2 0A α β β= ⋅ + − ≠ . And so on.  
Notice that retracing the foregoing steps by expressing the quantities ( ) ( )( )if g x  in 

terms of ( )( )f g x  one obtains a direct proof of part (II) with the restrictions in (7.39). 
Counterexamples showing the non-existence of a definite result in case 1 1 0α β β+ = . 
Two counterexamples with: 1 1 1 1, , , 0;α β α β β α β≠ = − :  

( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )

1 1

1

1

: , : 0; , ;

and of any order ;
of order 2 but not of order 3, because 0.

f x x g x x

f g n
h x f g x x h

α α

α α

α α α − = = > ∉
 ∈ +∞ ∈ +∞ ∈
 ′′≡ = ∈ +∞ ≡



 


 (7.50) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )( ) ( )

1 1

1

1

: 2 sin log , : 0; , ; 0 1 ;

and of any order ;

12 sin log of order 2 but not of order 3,

because is oscillatory.

f x x x g x x

f g n

h x f g x x x

h

δα α

α α

δ

α α α δ

α

−   = + = > ∉ < <    
 ∈ +∞ ∈ +∞ ∈
      ≡ = + ∈ +∞        

′′



 


 (7.51) 
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A similar counterexample with: 1 1 1 1, , , 0; 3nα β α β α β β≠ + = − :  

( ) ( ) ( )
( ) ( )

( )( ) ( )

1 1

1

: , : 0; , ;

and of any order ;
of order 1 but not of order 2.

p

p
p

p

f x x g x x

f g n
f g x x p p

δ δ

δ δ

δ δ δ − = = > ∉
 ∈ +∞ ∈ +∞ ∈
 = ∈ +∞ + +



 


     (7.52) 

Proposition 7.6. (Composition involving rapid variation in the sense of Definition 
4.1). 

(I)  

( ){ }
( ){ } ( ){ }

of order 2 ,
of order .

of order 2 , 0;

f n
f g n

g nα α
±∞

±∞

 ∈ +∞ ≥ ⇒ ∈ +∞
∈ +∞ ≥ >







  (7.53) 

(II)  

( ){ }
( ){ }

( ){ }
( ){ }

of order 2 , 0,

of order 2 ;

of order if 0,

of order if 0.

f n

g n

f g n

f g n

α α

α

α

+∞

+∞

−∞

 ∈ +∞ ≥ ≠


∈ +∞ ≥
 ∈ +∞ >⇒ 

∈ +∞ <













              (7.54) 

In particular, if 0α ≠  then ( )( ) ( ){ }of orderg x n
α

±∞∈ +∞ . 
(III)  

( ){ }
( ){ } ( ){ }

of order 2 ,
of order .

of order 2 ;

f n
f g n

g n
±∞

±∞
±∞

 ∈ +∞ ≥ ⇒ ∈ +∞
∈ +∞ ≥







     (7.55) 

Proof. With the position in (7.44) ( ) ( ),h x h x′  are ultimately 0≠  and we shall 
prove the relations:  

( ) ( ) ( )( ) ( )( ) 1
~ , 2 ,

k kkh x h x h x k n
−′ ≤ ≤                (7.56) 

already knowing, by Proposition 2.2, that f g  belongs to the class specified in each 
statement. For 2n =  various simple proofs are available and we write down only 
those devices for 2n =  which also apply to the general cases. For the claim in (I):  

( )
( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( )
( )( )

( )
( )( )

( )

( )( ) ( )( ) ( )( )
( ) ( )( ) ( )

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

2

2

2

2

1

by (4.10) 22 2

1 by 3.6 applied to

11 1

~ ~ .

o

h x

f g x g x f g x g x

f g x g x
f g x g x g

f g x g x

f g x
f g x g x o

g x f g x

f g x g x f g x g x f g x h x h x

α
α

′′

′′ ′ ′ ′′= ⋅ + ⋅

 ′ ′′
 ′′ ′= ⋅ + ⋅ =

′′ ′ 
 
 ′ −  ′′ ′= ⋅ + ⋅ +  ′′  
 
 

′′ ′ ′ ′ ′⋅ =

 



 (7.57) 

We have used the assumption “ ( ) ( )lim y yf y f y→+∞ ′′ ′ = ±∞ ” which grants that the 
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foregoing quantity within square brackets is “~1”. 
For 3n ≥  we start from equation (7.45) showing that the one term containing 
( )kf , i.e. ( ) ( )( ) ( )( )kkf g x g x′ , is the “asymptotically-leading” term. First we factor out 

this term:  

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( )

1 21
1 , ,

1 ,

k
k

k

ii ii i k
i ikk k

kk

a f g x g x g x g x
h x f g x g x

f g x g x

+ + ′ ′′⋅ ⋅ ′= + ′  

∑










 (7.58) 

where the indexes in the sum are subject to the restrictions specified in (7.45) plus con-
dition 1 1ki i k+ + ≤ − . Now, a bit differently than in (7.46), we use (3.6) expressing 
only the quantities ( ) , 2,jg j ≥  in terms of ,g g ′  so obtaining:  

( )( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )

( )( )
( )( ) ( ) ( )

1 2
1 2

12 3

11

2

, ,2 1

, ,

1

1 ,

k
k

kk

kk

i i ki
ii i k

i ii i k i

k

i ik i i

g x
g x g x g x A o

g x

g x
A o

g x

+ + +

+ + + −

− + +

′
 ′ ′′⋅ = ⋅ + 

′
 = ⋅ + 













   (7.59) 

with suitable constants 
1 , , ki iA


. The general term in the sum in (7.58) assumes the 
form:  

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )
11

1

1

b (4.26)
, ,

, , 11 1 , being ,
kk

k
k

i ii i y
i i

i i kkk

a f g x g x
A o o i i k

f g x g x

+ ++ + ⋅
 ⋅ + = + + < ⋅










 (7.60) 

and  
( ) ( )

( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( )

b (4.10) 1

1

~

,

k

y k kk kk

k k

h x

f g x g x f g x g x f g x

h x h x

−

−

′ ′ ′=

′=

      (7.61) 

and relations in (7.56) are proved for part (I). For the claim in (II) the situation is dif-
ferent as all the terms have the same growth-order. Expressing f ′′  and g ′′  in terms 
of f ′  and g ′  we get:  

( )
( )( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( )
( )

( )( )
( )

( )( )
( ) ( )( )

( )( )
( )

2 1 2 1

2 2 2

1 1 1 1

1~ ~ .

h x

f g x g x g x o f g x g x g x o

f g x g x h x f g x h x
g x h x h xg x f g x

α

α α α
α

− −

′′

′ ′ ′ ′= − + + +      

′ ′ ′ ′
= ⋅

′

 (7.62) 

For 3n ≥  let us examine each term in the sum in (7.45) expressing ( )if  and 
( ) , 2,ig i ≥  in terms of f ′  and g ′ :  

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )

1 1

1

1 1 1 ;

1 1 .

i

i ii i

A

i ii

f g x f g x f g x i o

g x g x g x o

α α α
− −

−

  
  ′= − − + +    
 ′= +  



   (7.63) 
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And so we get  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( )( ) ( )( )( ) ( )( )

( )( )( ) ( ) ( ) ( )

( )( )( ) ( )( )( ) ( )( ) ( )( ) ( )

( )( )
( )( )

( ) ( )( )
( )( )

1 21

1 1 1 2

2 3

1

1 1 1

1

1

1 2

1 2 1 3 1

1

1

1

1

k
k

k k k

k

k

k k k

k

ii ii i k

i i i i i i ki

i i k i
i i

i i i i k i i k
i i

i ik

k

f g x g x g x g x

f g x f g x g x

g x A o

f g x f g x g x g x A o

h x g x f g x
f g xh x

+ +

+ + − − − + + +

− + − + + −

+ +

+ + − − − + + −

+ +

+ +

−

′ ′′⋅ ⋅

′ ′= ⋅ ⋅

 ⋅ ⋅ + 

 ′ ′= ⋅ ⋅ ⋅ ⋅ + 

 ′ ′
= ⋅  

 



 







 









( )

( )( )
( )( )

( ) ( )

( )( )
( )( )

( ) ( ) ( )

1

1
1

1 1

1

1
11

1

1 1

1 with : 1 1 .

k

k

k
k

k k

k

i i

k

i i k
i ik

k

k
i i i i kk

A o

h x
o A o

h x

h x
B o B i i

h x

α

α α α

−

+ +

+ + −
+ +−

−
+ + + +−

 ⋅ + 

′
   = ⋅ + ⋅ +   

′
 ≡ ⋅ + = − − − − + 







 

 

 (7.64) 

From (7.45) we get:  

( ) ( )
( )( )
( )( )

( )
( )( )
( )( )

( )
1 2

1 1

2

, ,1 1
0

1 1 ,
k

k k
j

k k
i i ki k

k
i i i ik k

i k

h x h x
h x a B o A o

h x h x

+ + + =

+ +− −
≤ ≤

 ′ ′ 
= ⋅ + ≡ ⋅ +         

∑


 

 (7.65) 

and it remains the task of proving that 1A = , a fact directly checked for 2,3,4k = . 
We know that ( )h ±∞∈ +∞  and, fortunately enough, the simple remark at the end of 
§4, preceding Proposition 4.2, grants this conclusion avoiding cumbersome calcula-
tions. For the claim in (III):  

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

2 1 2

2

1 1

by (4.26) applied to

1 1 .

h x f g x g x f g x g x g x o

f

f g x g x o

−′′ ′′ ′ ′ ′= ⋅ + +  

= …

′′ ′= ⋅ +  

     (7.66) 

For 3n ≥  the general term in the sum in (7.45), apart from the “leading” term 
( ) ( )( ) ( )( )kkf g x g x′ , now assumes the form:  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )
( )( )( ) ( )( )( ) ( )( )

( )( )( ) ( ) ( ) ( ) ( )

( )( )
( )( )

( ) ( )( )
( )( ) ( )

( )( )
( )( )

( )

1 21

1 1 1 2

2 3

1

1 2

1 2 1 3 1

1

11

1 1 as in 7.64

1 1

1 as .

kk

k k k

k

k

ii ii i k

i i i i i i ki

i i k i

i i kk

k

k

kk

f g x g x g x g x

f g x f g x g x

g x o

h x g x f g x
o

f g xh x

h x
o i i k

h x

+ +

+ + − − − + + +

− + − + + −

+ + −

−

−

′ ′′⋅ ⋅

′ ′= ⋅ ⋅

⋅ ⋅ + =  

 ′ ′
= ⋅ ⋅ +     

 

′
= ⋅ + + <



 









 



       (7.67) 

Replacing into the sum we get  
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( ) ( ) ( ) ( )( ) ( )( ) ( )( )
( )( )

( )
( )( )
( )( )1 1~ as in 7.61 ~ .

k k
kk k

k k

h x h x
h x f g x g x o

h x h x
− −

 ′ ′
 ′= +
 
 

 

 (7.68) 

 
The restriction 0α ≠  in (7.53)-(7.54) is obviously necessary; the composition of a 

slowly-varying and a rapidly-varying function may give any result as shown by 
“ exph k  ” according as “ , ,h k< = > ”. 

It remains to look for some result about inversion. The simple example of 
( ) { }1: , \ 1pf x x p= ∈ , shows that: (i) the inverse of a function regularly varying of 

some order n (of any order n, in this case) is not necessarily regularly varying of the 
same order; (ii) the inverse of a function regularly varying of some order 0n  but not of 
order 0 1n +  may well be regularly varying of any order n. Here again natural restric-
tions on the indexes are to be imposed.  

Proposition 7.7. (Inversion of a divergent function). (I) If  

( ){ }of order 2 , 0, 1 1,2, , 2,f n nα α α∈ +∞ ≥ > ≠ −         (7.69) 

then the inverse function 1:f f −=  (which is well defined on some neighborhood of 
+∞ ) satisfies  

( ){ }1 of order .f nα∈ +∞                    (7.70) 

(II)  

( ){ }
( ){ }

( ) ( )
0 of order

of order 1
, 1 1.k

k

f n
f n

f k n
+∞

−

 ∈ +∞∈ +∞ ≥ ⇒ 
∈ +∞ ≤ ≤ −









      (7.71) 

(III)  

( ) ( )

( ) ( )

( ){ }0{ of order 2}, ,
of order 1

ultimately strictly increasing,
in the sense of Definition 4.1.

, 1 1,k
k

f n f
f n

f

f k n

+∞

−

 ∈ +∞ ≥ +∞ = +∞
 ∈ +∞ − ⇒ 
 ∈ +∞ ≤ ≤ −








 (7.72) 

Proof. Part (I) follows from Proposition 7.1 and (7.12). In this proof notations 
( ), , kf f′ 

  stand for the derivatives of f . For part (II), we already know that 
( )0f ∈ +∞  , by Proposition 2.2-(iv); and from (4.10) we get  

( ) ( )( ) ( )( )( ) 1~ , .
ii if f y f f y y y−′ → +∞               (7.73) 

For 2k =  we have:  

( )

( )( )( ) ( )( )( ) ( )( )( ) ( )
3 1

1 1~ , ,

f y

f f y f f y f f y y f y y y
− −

− −

′′

′′ ′ ′ ′= − − ≡ − ⋅ → +∞



   

 (7.74) 

i.e. ( )1f −′∈ +∞  . For 3k ≥  it is enough to show that  
( ) ( ) ( ) ( )1lim exists in ,k k

y
yf y f y−

→+∞
                 (7.75) 

its exact value being determined by Proposition 2.6 and the restrictions in (7.69). From 
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formula (6.4):  
( ) ( )

( )( )( ) ( )( )( ) ( )( )( ) ( ) ( )( )( )1 2

1

1 2

, ,
0 1

,
k

k
j

k

k i i ik
i i

i k

f y

f f y c f f y f f y f f y
−

≤ ≤ −

′ ′ ′′= ⋅ ⋅∑






   



 (7.76) 

with suitable coefficients 
1 , , ki ic


 and where the summation is taken over all ordered 
k-tuples of non-negative integers ji  satisfying (6.5). Replacing each quantity  

( ) ( )( ) , 2,if f y i ≥  by its principal part we get:  

( ) ( ) ( )( )( )
( )( )( ) ( ) ( ) ( ) ( ){ }1 2

2 3
1

1 2

2 1 2 1 3 1
, ,

0 1
1 1 ,

k
k

k
j

kk

i i ki i i k i
i i

i k

f y f f y

c f f y y o

−

+ + + − + − + + −

≤ ≤ −

′=

′× ⋅ ⋅ +  ∑








 



(7.77) 

wherein, by (6.5):  

( ) ( ) ( ) ( )
( )

2 3 2 3 2 3

1 1

1 2 1 3 1 2 3

1 2 2 1 .
k k ki i k i i i i i i ki

k i k i k

− + − + + − = + + + − + + +

= − − − − − = −

  

    (7.78) 

Hence we have:  

( ) ( ) ( )( )( ) ( ){ }

( )( )( ) ( )

1

1
1

, ,
0 1

1
1

1 1

1 ,

k
j

k k
i i

i k

k
k

f y f f y y c o

f f y y C o

−
−

≤ ≤ −

−
−

′= ⋅ +  

′= ⋅ +  

∑




 



        (7.79) 

for some constant kC  and (7.75) follows. For part (III) the relations to be used are 
those in (4.36):  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )11 1 1; ~ ; ~ 1 1 ! , 2,ii if x o x f x f x x f x f x i x f x i−− − −′ ′′ ′ ′= − − − ≥  (7.80) 

where x must be replaced by ( )f y . If ( )0f ∈ +∞  we already know that 
( )f +∞∈ +∞  ; but if f  is of order 2 and ( )1f −′∈ +∞  then, instead of (7.74), we have:  

( ) ( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( )31 2 1
~ ,f y f y f f y f f y f y f y

−− −
′′ ′ ′ ′=           (7.81) 

which, by Proposition 4.1, states that ( ){ }of order 1f +∞∈ +∞   in the restricted sense 
of Definition 4.1. For higher derivatives we now get from (7.76) and (7.78):  

( ) ( )

( )( )( )
( )( )( ) ( )( )( ) ( ) ( )

( ){ }
( )( )( ) ( )( ) ( ){ }

( )( ) ( )( ) ( )

1 2 2 3

1

1

1 2

1 2 1 3 1

, ,
0 1

1

, ,
0 1

1

1 1

1 1

1 ,

k k

k
j

k
j

k

k

i i i i i k i

i i
i k

k k

i i
i k

k k

k

f y

f f y

d f f y f y o

f f y f y d o

f y f y C o

−

+ + + − + − + + −

≤ ≤ −

− −

≤ ≤ −

−

′=

′× ⋅ ⋅ +  

′= ⋅ ⋅ +  

′= ⋅ +  

∑

∑

















 

 

 

  (7.82) 

with a suitable constant kC . That 1kC =  can be indirectly proved in the same way as 
after (7.65) and the proof is over.                                            
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Applying the preceding results to 1 f  one gets the following  
Proposition 7.8. (Inversion of an infinitesimal function). If f is a continuous strictly 

decreasing function on [ ),T +∞  such that “ ( ) ( )1 , ,f x o x= → +∞ ” then, trivially, the 
function 1 f  has an inverse g such that:  

( ) ( ) ( ) )1 1 ; strictly increasing on 1 , .g y f y g f T−= +∞       (7.83) 

Moreover the following inferences hold true:  

( ){ } ( )1

of order 2 , 0,
{ of order };

1 1,2, , 2,

f n
g n

n
α

α

α

α

 ∈ +∞ ≥ < ⇒ ∈ +∞
≠ − 


     (7.84) 

( ){ }
( ){ }

( ) ( )
0 of order ,

of order 1
, 1 1;k

k

g n
f n

g k n
−∞

−

 ∈ +∞∈ +∞ ≥ ⇒ 
∈ +∞ ≤ ≤ −





      (7.85) 

( ){ }

( ) ( )
( ){ }

0 of order 2 ,

ultimately strictly decreasing to zero,

, 1 1,

of order 1

in the sense of Definition 4.1.

k
k

f n

f

f k n

g n

−

+∞

 ∈ +∞ ≥




∈ +∞ ≤ ≤ −
 ∈ +∞ −⇒ 








             (7.86) 

8. Concepts Related to Exponential Variation 

Whereas the study of the asymptotic behavior as x → +∞  of integrals  
( ) ( )d , d

x

T x
f t t f t t

+∞

∫ ∫  leads in a natural way to introducing the concepts of regular and 
rapid variation, the study of the asymptotic behavior as n → +∞  of sums  

( ) ( )1 ,n
nf k f k∞∑ ∑  leads to introducing a different classification at +∞  based on the 

limit of the logarithmic derivative f f′ : see Hardy ([8]; Th. 33, p. 48) or Dieudonnè 
([9]; pp. 100-103). 

8.1. The Three Concepts of Exponential Variation and Basic Properties 

Definition 8.1. If [ ) ( ), , 0f AC T f x x∈ +∞ > ∀  large enough, then f is termed “hy-
po(≡sub)-exponentially varying” or “exponentially varying” or “hyper(≡super)-expo- 
nentially varying” at +∞  (in the strong sense) if the following relation, as  

+∞→x , holds true respectively:  

( ) ( ) ( ) ( )
( ) ( )

; ~ with a constant 0;

and strictly one-signed.

f x f x f x cf x c

f x f x f

′ ′ ≠

′ ′





         (8.1) 

For brevity we use the symbol ( )c +∞  to denote the class of the functions such that  

( ) ( ) ( )lim with , : index of exponential variation ,
x

f x f x c c c
→+∞

′ = ∈ =    (8.2) 

studying separately the properties in the four cases: 0, \ 0,c c c= ∈ = ±∞ . The ele-
mentary case justifying the terminology is that of the exponential of a power (refer to 
the notations in Definition 2.1):  
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( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 0

0

0

if 0, ,
if 0 1, 0,
if 0 1, 0,

exp , , , if 1, 0,
if 1, 0,
if 1, 0,
if 1, 0.

c

c

c
c
c

cx c c
c
c
c

α

α
α
α

α α
α
α
α

+∞

−∞

+∞

−∞

+∞ +∞

−∞ −∞

 +∞ ∩ +∞ ≤ ∀ ∈
 +∞ ∩ +∞ < < >
 +∞ ∩ +∞ < < <


∈ ∈ +∞ ∩ +∞ = >
 +∞ ∩ +∞ = <

+∞ ∩ +∞ > >
 +∞ ∩ +∞ > <

 
 
 
 
 
 
 



      (8.3) 

-Typical hypoexponentially-varying functions are:  

( ) ( )exp , 0 1, 0; regularly varying at ;R x cx c Rα α< < ≠ +∞         (8.4) 

and any regularly-varying function obviously belongs to the class ( )0 +∞ .  
-All the exponentially-varying functions have the following structure:  

( ) { } ( ) ( ) ( ), \ 0 exp
where is hypoexponentially varying,

cE c E x H x cx
H

∈ +∞ ∈ ⇔ = ⋅ 
           (8.5) 

as trivially follows from D E c D H= +
 

.  
-Typical hyperexponentially-varying functions are:  

( ) ( ) ( )1
1exp exp

where is hypoexponentially varying; , 0; 1.

n
n

i i

H x cx c x c x

H c c

γγ

γ

⋅ ⋅ + +

≠ >



          (8.6) 

Any exponentially-varying or hyperexponentially-varying function obviously is ra-
pidly varying but there are rapidly-varying functions which are hypoexponentially va-
rying, as in (8.3).  

Proposition 8.1. (Basic properties of hypoexponentially-varying functions). For 
( )0f ∈ +∞ , the following properties hold true: 

(i) An integral representation of type:  

( ) ( )( ) ( )
[ ) ( ) ( )1

loc

exp d , , constant 0 ,

, ; 1 , .

x

T
f x A t t x T A

L T t o tε

 = ≥ = >

 ∈ +∞ = → +∞

∫ 


           (8.7) 

(ii) The asymptotic estimates:  

( ) ( )log , ;f x o x x= → +∞                       (8.8) 

( )
( )
( )

e
, , 0.

e

x

x

o
f x x

η

η
η

−

= → +∞ ∀ >
+∞

                  (8.9) 

(iii) The asymptotic functional equation:  

( ) ( )( ) ( )( ) ( )1 ~ , , : ;f g x O f g x x g g+ → +∞ ∀ +∞ = +∞          (8.10) 

and in particular:  

( )( ) ( ) ( )1 ~ ~ , , .f x o f x f x xλ λ λ+ + + → +∞ ∀ ∈           (8.11) 

(More precise asymptotic functional equations cannot be proved for a generic f  as 
the class ( )0 +∞  contains rapidly-varying functions.) 
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(iv) The asymptotic relations involving anti-derivatives:  

( )
( )
( ) ( )( )

, , if ,

, , if and necessarily 0 ,

x

T

x

o f x f
f x

o f x f f

+∞

+∞ +∞

 → +∞ = +∞
= 
 → +∞ < +∞ +∞ =


∫ ∫

∫ ∫
 (8.12) 

which state that, in the respective cases, either 
x

T
f∫  or 

x
f

+∞

∫  belongs to the same 
class of ( )0,f +∞ ;  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

~ , , , , if ;

~ , , , , if .

g x O g x

T T

g x O g x

f f x g g f

f f x g g f

+ +∞

+∞ +∞ +∞

+

 → +∞ ∀ +∞ = +∞ = +∞


→ +∞ ∀ +∞ = +∞ < +∞


∫ ∫ ∫

∫ ∫ ∫
    (8.13) 

(v) The asymptotic functional equations involving integrals of f :  

( )
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )d ~ , , , : , 1 ;

g x r x

g x
f t t r x f g x x g r g r x O

+
→ +∞ ∀ +∞ = +∞ =∫  (8.14) 

( ) ( )1
~ , , .

x o

x
f f x x

λ
λ λ

+ +
→ +∞ ∀ ∈∫                    (8.15) 

Compare with (5.10) for similar relations where ( ) ( )r x o x= .  
Proof. Representation in (8.7) follows from (2.12) and ( )1f f o′ = ; the estimates in 

(8.8)-(8.9) follow at once from (8.7). To prove (8.10) let )(xr  be such that ( )r x M≤  
for x large enough; we get from (8.7)  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )( )
( )( ) ( )

exp d

exp d exp d

1 1 ,

g x r x

T

g x g x r x

T g x

f g x r x A t t

A t t t t

f g x o

+

+

+ =

= ⋅

= ⋅ +  

∫

∫ ∫



           (8.16) 

because for each 0 0>  there exists 
0

T T≥  such that:  

( )
( ) ( ) ( ) ( )

00 0d ,
g x r x

g x
t t r x M x T

+
≤ ≤ ∀ ≥∫                 (8.17) 

whence  

( )
( ) ( ) ( )lim d 0.

g x r x

g xx
t t

+

→+∞
=∫                      (8.18) 

The two relations in (8.12) are proved by direct application of L’Hospital’s rule with a 
preliminary remark for the second relation. The assumptions are  
“ ( ) ( )( ) ,f x o f x f

+∞
′ = < +∞∫ ” which imply the convergence of the integral f

+∞
′∫ ; 

this in turn implies ( )f +∞ ∈  which, together with the convergence of f
+∞

∫ , imp-
ly ( ) 0f +∞ =  and L’Hospital’s rule may be applied to evaluate the  

( )limx x
f x f

+∞

→+∞ ∫ . Relations in (8.13) follow from (8.10) applied to either 
x

T
f∫  or 

x
f

+∞

∫  or directly by L’Hospital’s rule. For (8.14) apply the mean-value theorem of the 
integral calculus:  

( )
( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )
b (8.10)

d

~ a 1 .

g x r x

g x

y

f t t

r x f g x x r x r x f g x s x r x Oθ θ

+

= + =

∫
    (8.19) 

A proof of the special case of (8.15), “ ( )1
~

x

x
f x

+

∫ ”, is essentially contained in ([9]; p. 
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102) or ([2]; p. V.31) and is based on the mean-value theorem applied to  
( ) ( )( )log f x f y . Our exposition is much more elementary.                     

Proposition 8.2. (Basic properties of exponentially-varying functions). For  
( ) { }, \ 0 ,cf c∈ +∞ ∈   the following properties hold true: 

(i) An integral representation of type:  

( ) ( )( ) ( )
[ ) ( ) ( )1

loc

e exp d , , constant 0 ,

, ; 1 , .

xcx
T

f x A t t x T A

L T t o t

 = ≥ = >

 ∈ +∞ = → +∞

∫ 
 

         (8.20) 

(ii) The asymptotic estimates:  

( )log ~ , ;f x cx x → +∞                      (8.21) 

( )
( )( )

( )( )
( )

e 0 if 0,
, , 0 whence

if 0.e

c x

c x

o c
f x x f

c

η

η
η

+

−

 < = → +∞ ∀ > +∞ =  +∞ >+∞  

 (8.22) 

(iii) The asymptotic functional equations:  

( ) ( )( ) ( )( ) ( )1 , , : ;f g x O f g x x g g+ → +∞ ∀ +∞ = +∞        (8.23) 

( ) ( )( ) ( )( ) ( )1 ~ , , : ;f g x o f g x x g g+ → +∞ ∀ +∞ = +∞        (8.24) 

( ) ( )( ) ( )( ) ( )1 ~ e , , : , ;cf g x o f g x x g gλλ λ+ + → +∞ ∀ +∞ = +∞ ∀ ∈  (8.25) 

and in particular:  

( )( ) ( )1 ~ e , , .cf x o f x xλλ λ+ + → +∞ ∀ ∈            (8.26) 

(iv) The asymptotic relations involving antiderivatives:  

( ) ( ) ( )

( ) ( ) ( )

2

2

10 ~ ~ , ;

10 ~ ~ , ;

x

T

x

c f f x f x f x x
c

c f f x f x f x x
c

+∞

 ′> ⇒ → +∞
 − ′< ⇒ → +∞


∫

∫
          (8.27) 

which state that, in the respective cases, either 
x

T
f∫  or 

x
f

+∞

∫  belongs to the same 
class of ( ), cf +∞ , and that, for this special class of functions, the asymptotic relations 
in (2.84)-(2.85) hold true without the additional condition ( ) ( )1f f o′′ = . 

(v) The asymptotic functional equations involving integrals of f :  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

1

~ e , , : , , if > 0;

~ e , , : , , if 0;

g x o g xc
T T

c
g x o g x

f f x g g c

f f x g g c

λ λ

λ
λ

λ

λ

+ +

+∞ +∞

+ +

 ⋅ → +∞ ∀ +∞ = +∞ ∀ ∈


⋅ → +∞ ∀ +∞ = +∞ ∀ ∈ <


∫ ∫

∫ ∫




 (8.28) 

( ) ( ) ( )1 e 1 1 e~ ~ , , 0.
c cx o

x
f f x f x x

c c

λ λ
λ

λ λ
−

+ + − −
+ → +∞ ∀ ≠∫      (8.29) 

It follows from the above relations that the four functions  

( ) ( ) ( ) ( ) ( ), : , : , ,
x x x

T T x
f x I x f I x f I x I x f

λ λ
λ λ

+ +
= = − =∫ ∫ ∫        (8.30) 
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have the same order of growth as x → +∞  for each fixed 0λ ≠ , in the case 
f

+∞
= +∞∫ . Analogous conclusion in the case f

+∞
< +∞∫  for the four functions  

( ) ( ) ( ) ( ) ( ), : , : , .
x

x x x
f x I x f I x f I x I x f

λ
λ λλ

+∞ +∞ +

+
= = − =∫ ∫ ∫           (8.31) 

Proof. Representation in (8.20) follows from (2.12), putting ( ) ( ) ( )( ):t f t f t c′= − ; 
and (8.22) are simple consequences of (8.20). As in (8.16) we now have:  

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )e 1 1 , , if 1 ,cr xf g x r x f g x o x r x O+ = ⋅ ⋅ + → +∞ =       (8.32) 

whence relations in (8.23)-(8.25) follow. Relations in (8.27) are simply proved by 
L’Hospital’s rule and those in (8.28) either by L’Hospital’s rule and (8.25) or, directly, 
by (8.25) applied to a suitable antiderivative of f. To prove (8.29) just notice that either 
( )f +∞ = +∞  for 0c > , or ( ) 0f +∞ =  for 0c < , in which last case the second rela-

tion in (8.27) implies:  

( ) ( ) ( )1
d 1 , .

x o

x
f t t o x

λ
λ

+ +
= → +∞ ∀ ∈∫              (8.33) 

In both cases L’Hospital’s rule may be applied:  

( ) ( )

( )( ) ( )
( )

( )( )
( )

( )
( )

( )( )
( )

1

by (8.26)

lim

1 1
lim lim

1 1 e 1lim .

x o

xx

x x

c

x

f f x

f x o f x f x o f x
f x f x f x

f x o
cf x c c

λ

λ

λ λ

λ

+ +

→+∞

→+∞ →+∞

→+∞

 + + − + +
= = − 

′ ′ ′  
 + + −

= − =  
 

∫

     (8.34) 

 
Proposition 8.3. (Basic properties of hyperexponentially-varying functions). We are 

using the notation ( )f g= ±∞  defined in (1.12). (I) If ( )f +∞∈ +∞  the following 
properties hold true:  

( ) ( )( ) ( )

[ ) ( )1
loc

exp d , , constant 0 ,

, ; ;

x

T
f x A q t t x T A

q L T q

 = ≥ = >

 ∈ +∞ +∞ = +∞

∫          (8.35) 

( ) ( )log , ;f x x x= +∞ → +∞                    (8.36) 

( ) ( )e , , 0;Mxf x x M= +∞ → +∞ ∀ >                 (8.37) 

( ) ( ) ( )
( )

1 , , 0,
1 , , 0;

x
f x f x

o x
λ

λ
λ

+∞ → +∞ ∀ >+ =  → +∞ ∀ <
            (8.38) 

( ) ( ) ( ), , hence ;
x x

T T
f x f x f +∞= +∞ → +∞ ∈ +∞∫ ∫            (8.39) 

( )
( )

, , 0;

x

Tx

T x

T

o f
f x

f

λ

λ
λ

+

−




= → +∞ ∀ >
+∞


∫
∫

∫
               (8.40) 
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( )
( )( )
( )( ) ( )

1
, , 0;

if is convex

x

x
f o f x x

f x f
λ

λ

λ
−

+∞
= → +∞ ∀ >
+∞ −

∫         (8.41) 

( )
( )( )
( )( ) ( )

1
, , 0.

if is convex

x

x
f o f x x

f x f

λ
λ λ

+

+∞
= + → +∞ ∀ >
+∞

∫           (8.42) 

 (II) If ( )f −∞∈ +∞  the following properties hold true:  

( ) ( )( ) ( )

[ ) ( )1
loc

exp d , , constant 0 ,

, ; ;

x

T
f x A q t t x T A

q L T q

 = ≥ = >

 ∈ +∞ +∞ = −∞

∫          (8.43) 

( ) ( )log , ;f x x x= −∞ → +∞                    (8.44) 

( ) ( )e , , 0;Mxf x o x M−= → +∞ ∀ >                 (8.45) 

( ) ( ) ( )
( )

1 , , 0,
1 , , 0;

o x
f x f x

x
λ

λ
λ

 → +∞ ∀ >+ = +∞ → +∞ ∀ <
            (8.46) 

( ) ( ) ( ), , hence ;
x x

f x f x f
+∞ +∞

−∞= +∞ → +∞ ∈ +∞∫ ∫           (8.47) 

( )
( )

, , 0;
x

x

x

f
f x

o f

λ

λ

λ

+∞

++∞

+∞

−

+∞
= → +∞ ∀ >



∫
∫

∫
              (8.48) 

( )( )
( )( ) ( )

, , 0;
if is convex

x

x

o f x
f x

f x fλ

λ
λ

−

 −= → +∞ ∀ >
+∞

∫          (8.49) 

( )( )
( )( ) ( )

, , 0.
if is convex

x

x

o f x
f x

f x f
λ

λ
λ

+ = → +∞ ∀ >
+∞ +

∫       (8.50) 

Proof. (I) Estimate in (8.37) follows from (8.35) by writing  

( ) ( )( )e exp d ;
xMx

T
f x A q t M t− = −  ∫                 (8.51) 

relations in (8.38) follow from the identity “ ( ) ( ) ( )exp
x

x
f x f x q

λ
λ

+
+ = ∫ ”; relation in 

(8.39) follows from L’Hospital’s rule and those in (8.40) follow either from L’Hospital’s 

rule or from (8.38) applied to 
x

T
f∫ . The first relation in (8.41) trivially follows from 

( )x

x
f f x

λ
λ λ

−
> −∫ ; the second one follows, e.g., from (8.39) and (8.38) applied to 

( ) :
x

T
F x f= ∫ :  

( ) ( ) ( ) ( )( ) ( )( )~ ;F x F x F x o F x o f xλ ′− − = ≡          (8.52) 

or also from L’Hospital’s rule:  
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( ) ( ) ( )
( )

( )
( )

( )
( )

( )
( )

lim lim lim

lim 0,

x

xx x x

x

f x f x f x
f f x

f x f x

f x f x
f x f x

λ

λ λ

λ

−→+∞ →+∞ →+∞

→+∞

− − −
= = −

′ ′

−
= − =

′

∫
       (8.53) 

by the second relation in (8.38). Strangely enough any elementary attempt to prove the 
third relation in (8.41) failed and we report a proof under the restriction “f convex”; in 
this case we have at disposal the elementary inequality ([10], p. 15):  

( ) ( )( )1d .
2

x

x
f t t f x f x

λ
λ λ λ

−

 ≥ − = +∞ − 
 ∫               (8.54) 

Analogous procedures for the relations in (8.42) and for the claims in part (II) up to 
(8.48). For those in (8.49), putting ( ) :

x
F x

+∞
= ∫ , we now have:  

( ) ( ) ( ) ( )( ) ( )( )~ ;F x F x F x o F x o f xλ λ λ λ′− − − − = − ≡ −       (8.55) 

( ) ( )( )1d .
2

x

x
f t t f x f x

λ
λ λ

−

 ≥ − = +∞ 
 ∫                (8.56) 

Analogously for (8.50).                                                  
The values of the following limit are contained in the foregoing three propositions:  

( )
( )

( )
( )
( )
( )

0

0 0 if ,
1 if ,

lim
e if ,

0 if ,

cx
c

f
ff x
ff x
f

λ

λ
λλ
λ
λ

−∞

→+∞

+∞

 ∀ > ∈ +∞
 ∀ ∈ ∈ +∞+ =  ∀ ∈ ∈ +∞
+∞ ∀ > ∈ +∞









           (8.57) 

interchanging the values “0” and “ +∞ ” for 0λ < . Special results in §11 give asymp-
totic expansions for the quantity ( ) ( )f x f xλ+ −  under various assumptions on f. 

As a simple but meaningful application of the preceding functional equations con-
sider a function of the type “ ( )f x   ” where x    denotes the “integer part” of the 
real number x. From the trivial relation “ ( )1 , ,x x O x= + → +∞   ” the following facts 
follow:  

( ) { } ( ) ( )
(8.23)

, \ 0 , ;cf c f x f x x∈ +∞ ∈ ⇒ → +∞             (8.58) 

( ) ( ) ( )
(8.10)

0 ~ , ;f f x f x x∈ +∞ ⇒ → +∞                      (8.59) 

( ) ( ) ( ) ( )
(5.25)

, 1, 1 , .f f x f x o xα α∈ +∞ < ⇒ = + → +∞          (8.60) 

8.2. Higher-Order Exponential Variation 

The right concepts of higher-order types of exponential variation are a consequence of 
some simple relationships between the types of exponential variation of f  and f ′ .  

Proposition 8.4. (Types of exponential variation for a derivative). Let [ )1 ,f AC T∈ +∞  
and  

( ) ( )
0 1 0 1, ; , .c cf f c c′∈ +∞ ∈ +∞ −∞ ≤ ≤ +∞              (8.61) 
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Then: “ 1 0c c=  if 0 0c ≠ ”, and “ 1 0c ≤  if 0 0c = ”. In the case “ 1 0c < ” we have 
that:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

; d ; .cx
f f x f f t t f x f

+∞
′+∞ ∈ = +∞ − − +∞ ∈ +∞∫     (8.62) 

It follows that, whenever “ 1 0c < ”, then: “ ( ) { }0 0 \ 0c f= ⇔ +∞ ∈ ”.  
Proof. If { }0 \ 0c ∈  then “ ( ) ( )0~f x c f x′ ” implies by (8.22) that: either 

“ ( ) ( ) 0f f ′+∞ = +∞ = ” or “ ( ) ( )f f ′+∞ = +∞ = +∞ ”. In any case the following applica-
tion of L’Hospital’s rule is legitimate:  

( ) ( ) ( ) ( )0 1lim lim .H

x x
c f x f x f x f x c

→+∞ →+∞
′ ′′ ′= = =             (8.63) 

If “ 0c = +∞ ” then “ ( )f +∞ = +∞ ” and (8.60) is still valid. Last,  

( ) ( )0 0, ,
x

c f f x f
+∞

′= −∞⇒ +∞ = = −∫                (8.64) 

and we shall show that “ 1c = −∞ ” excluding the other cases: (i) “ 1 0c−∞ < < ” would 
imply “ ( ) 0f ′ +∞ = ” and (8.63) would give a contradiction; (ii) “ 1 0c >  “ would imply 
“ ( )f ′ +∞ = +∞ ” whence “ ( )limx f x→+∞ = +∞ ” against (8.63); (iii) “ 1 0c = ” means 
“ ( )0f ′∈ +∞ ” which, together with the integral representation in (8.64), would imply 
by (8.13) that “ ( )0f ∈ +∞ ”. Let us examine the circumstance “ 0 0c = ”; if it were 
“ 1 0c > ” then, as we have just remarked, “ ( )f +∞ = +∞ ” and (8.63) would give again a 
contradiction. If 1 0c <  then Proposition 8.2 applied to f ′  implies “ ( )

1cx
f

+∞
′∈ +∞∫  ” 

and the relations in (8.62) follow. 
Examples for 0 0c = :  

( ) ( )
( )
( )
( )

0

1 1

if 0 1,
: 1 exp , 0 if 1,

if 1;
cf x cx c fγ

γ
γ
γ

−

−∞

+∞ < <
′= + − > ⇒ ∈ +∞ =
 +∞ >





       (8.65) 

( ) ( )( )
( ) ( )

1 2
2 11

2 0 2 2 1 1

: 1 exp sin d ; 0, 1;

; has no type of exponential variation if 2 1 ,

x
f x cx t t c

f f

γ γ γ

γ γ γ

 = + − + > >

 ′∈ +∞ > − >

∫


 (8.66) 

as, in this last case,  

( ) ( ) ( ) ( )2 1 22
2 2

1

cos 1 is unbounded and oscillatory.f x f x x x o
c

γ γ γγ
γ

−−  ′′ ′ = + 
 

Definition 8.2. If [ )1 ,nf AC T−∈ +∞  then f belongs to one of the classes  

( ){ } ( ){ } { } ( ){ }0 of order ; of order , \ 0 ; of order ;cn n c n±∞+∞ +∞ ∈ +∞    (8.67) 

iff all the functions ( ) , 0 1,kf k n≤ ≤ −  belong to the corresponding classes  
( ) ( ) ( )0 , , .c ±∞+∞ +∞ +∞    This implies that “ ( ) ( ) 0kf x ≠  for all x  large enough 

and 0 1k n≤ ≤ − ”. Equivalently:  

( ){ }
( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0

1

o

0 large enough and 0 1,

, ;

k

n n

f f order n

f x x k n

f x f x f x f x x−

∈ +∞

 ≠ ∀ ≤ ≤ −⇔ 
′ → +∞   



      (8.68) 
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( ){ } { }
( )
( ) ( ) ( )

0 large enough,
of order , \ 0

~ , , 1 ;c k k

f x x
f n c

f x c f x x k n

≠ ∀∈ +∞ ∈ ⇔ 
→ +∞ ≤ ≤

       (8.69) 

( ){ } ( )
( ) ( ) ( ) ( ) ( ) ( )1

0 large enough,
of order

, ,n n

f x x
f n

f x f x f x f x x±∞ −

≠ ∀∈ +∞ ⇔ 
′ → +∞   

  (8.70) 

wherein the correct index “ +∞ ” or “ −∞ ” is determined by the single limit 
“ ( ) ( )limx f x f x→+∞ ′ ”. 

According to our agreements, an ( )cf ∈ +∞  is supposed strictly positive whereas 
an ( ){ }of order 1cf ∈ +∞  is supposed to be of one strict sign. For 0c ≠  also the 
highest-order derivative ( )nf  in (8.69)-(8.70) is ultimately of one strict sign. More 
precisely, if ( ) 0f x >  and ( ){ }of ordercf n∈ +∞  then:  

( ) ( ) ( )
( ) ( )

0 lim 1 , 0 ;

0 lim , 0 .

k k

x

k

x

c f x k n

c f x k n
→+∞

→+∞

−∞ ≤ < ⇒ − = +∞ ≤ ≤


< ≤ +∞⇒ = +∞ ≤ ≤

           (8.71) 

The above definition excludes the circumstance that:  

( ) ( )
( )

0 , 0 ,
, 1 , for some < 0.

i

c

i k
f

k i n c
 +∞ ≤ ≤∈ +∞ + ≤ ≤




             (8.72) 

Using (8.62) it is immediately proved that (8.72) occurs iff there exists a polynomial 
( )kp x  of exact algebraic degree k such that:  

( ) ( )
( ) ( ) ( ) ( ) ( )

1 1
1 2

, 0,

1 d d d .
n

n
c

n n
k n nx t t

f c

f x p x t t f t t
−

+∞ +∞ +∞

 ∈ +∞ <


= + − ∫ ∫ ∫


          (8.73) 

We shall not give this class a special name. 
Proposition 8.5. (Relationships between higher-order exponentiality and high-

er-order rapid variation in the strong restricted sense). If [ )1 ,nf AC T−∈ +∞  then: 
(I) If ( ){ } { }of order , \ 0 ,cf n c∈ +∞ ∈   then its derivatives satisfy the relations  

( ) ( ) ( ) ( )1 ~ , ;1 ,k kf x f x c x k n− → +∞ ≤ ≤                (8.74) 

implying that ( ){ }of order 1 ,f n±∞∈ +∞ −  if 2n ≥ , and where “ ±∞ ” is in accord 
with the sign of c. 

(II) If ( ){ }of order , 2f n n±∞∈ +∞ ≥ , then ( ){ }of orderf n±∞∈ +∞  iff the ad-
ditional conditions are satisfied:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1~ ~ ~ , .n nf x f x f x f x f x f x x−′ ′′ ′ → +∞       (8.75) 

Proof. (I) Relations in (8.74) are stronger that those in (4.6), Definition 4.1, and imp-
ly those in (4.8) with 1 1k n≤ ≤ − ; the assertion follows from Proposition 4.1. (II) In 
this case relations in (8.70) may be read as  

( ) ( ) ( ) ( ) ( )1 1 , ; 0 1,k kf x f x o x k n+ = → +∞ ≤ ≤ −           (8.76) 

which are stronger that those in (4.6) and the assertion again follows from Proposition 
4.1.                                                                    
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9. Operations with Higher-Order  
Exponentially-Varying Functions 

Rules governing multiplication and composition of functions of the above classes can 
be proved; the results are not obvious a priori and restrictions on the indexes may be 
necessary. Some cases would remain completely undecided due to the intrinsic nature 
of two classes: ( )0 +∞  contains both regularly- and rapidly-varying functions whe-
reas the functions in ( )±∞ +∞  are “very” rapidly varying; however the additional as-
sumption of rapid variation (in our restricted sense) turns out to be the right one to 
obtain useful results. 

Proposition 9.1. (Product). (I) Results for variation of order 1. If ( ) ,
ii cf ∈ +∞  

, 1, , ,ic i p∈ =   then their powers, product and quotient belong to the following 
classes:  

( ) ( ) ( ) ( )
1 21 2

11
; , ; ,

i

p p

i c i c i c c
ii

f f c c f fγ
γ −

==

∈ +∞ ∈ +∞ = ∈ +∞∑∏         (9.1) 

provided that the quantities 1 21, ,p
i iic c c cγ

=
−∑  represent well-defined extended real 

numbers, i.e. they do not give rise to some indeterminate form. A trivial counterexam-
ple concerning the product 1 2f f  with “ 1 2,c c= −∞ = +∞ ” is “ ( ) ( )1 2exp expx xγ γ⋅ − ”, 
with 1 2, 1γ γ >  and 1 2, , .γ γ> = <  

(II) Results for variation of order 2≥ . If ( ){ }of order
ii cf n∈ +∞ ,  

, 1, , ,ic i p∈ =   then  
( ){ }1 of orderp

i ci f n
=

∈ +∞∏   with 1
p

iic c
=

= ∑ , provided that this sum unambi-
guously defines an extended real number other than zero, hence there is no definite re-
sult in the case “ 0ic i= ∀ ”. The trouble whenever 0ic =∑  is that a product 1 2f f  
may be a polynomial of algebraic degree 2n≤ −  so that some derivative of its, of or-
der n< , may be 0≡ . (For the result on the power see Proposition 9.4-(I).)  

Proof. It is enough to prove the claims about the product only for 2p = . (I) Quite 
trivially: “ ( ) ( )i iD f D fγ γ=

 

” and  

( )
( )

( ) { } { }

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 if , ,

if , or if .

f f f f f f

f f c c o c c

f f c c c c

′ ′ ′= +

 ⋅ + + ∈   = 
±∞ ∈ = ±∞ = = ±∞




   (9.2) 

For part (II) we separate three cases: “ 1 2 1 2, , 0c c c c∈ + ≠ ”; “ 1 2,c c∈ = ±∞ ”; 
“ 1 2c c= = ±∞ ”. In the first case:  

( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 1 2 1 2
0 0

1 2 1 2 1 2 1 2
0

1 1

1 1 , 1 ,

k k k i ik k i i

i i

k kk i i

i

k k
f f f f f f c o c o

i i

k
f f c c o f f c c o k n

i

−−

= =

−

=

   
= = ⋅ + ⋅ +          

   
      = ⋅ + = ⋅ + + ≤ ≤         

∑ ∑

∑
 (9.3) 

and the thesis follows from (8.69). In case “ 1 2 0c c+ = ” we would have relations  

( )( ) ( )1 2 1 2 , 1 ,kf f o f f k n= ≤ ≤                     (9.4) 
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which do not grant that “ ( ){ }1 2 0 of orderf f n∈ +∞ ”. In the second and third cases 
similar calculations would give relations “ ( )( )

1 2 1 2 , 1 ,kf f f f k n≤ ≤ ” which are not 
enough; we must prove the chain in (8.70) with f replaced by 1 2f f . In the second case 
the claim follows from the remarkable relation:  

( ) ( )( )( ) ( ) ( ) ( )1 2 1 2~ , , 1 ,
k kf x f x f x f x x k n→ +∞ ≤ ≤            (9.5) 

and “ ( ) ( ) ( ) ( )1
2 2lim k k

x f x f x−
→+∞ = ±∞ ”. Relation in (9.5) is proved using (8.69)-(8.70) in 

the Leibniz’s formula:  

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

1 2 1 2 1 2 1 2 1 2
0 0

.
k kk k i i k k k

i i

k
f f f f f f O f o f f f

i

− −
−

= =

 
= + = ⋅ + 

 
∑ ∑       (9.6) 

In the third case, for 2n = , we have:  

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

2 2

,

f f f f f f f f f f f f

f f f f f f f f f f

′′ ′ ′ ′′ ′ ′ ′+ + = ±∞ ⋅ + ⋅ ±∞ + ⋅ ±∞          
 ′′ ′ ′ ′= ±∞ ±∞ = ±∞ + ≡ ±∞   

  (9.7) 

wherein the last but one equality is legitimate by the fact that the two products 1 2f f′  
and 1 2f f ′  have ultimately the same strict sign: it is essential that either “ 1 2c c= = −∞ ” 
or “ 1 2c c= = +∞ ”. For 3n ≥  we write:  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1 2 1 2 1 2
0

1
1 1

1 2 1 2
0

1 1 .

kk k i i k

i

k
k i i k

i

k
f f f f f f

i

k
f f f f

i

−
−

=

−
− − −

=

 
= + 

 
   = ⋅ ±∞ + ⋅ ±∞            

∑

∑
        (9.8) 

If “ 1 2c c= = +∞ ” all the involved quantities (coefficients and functions) are positive 
and we get:  

( )( ) ( ) ( ) ( ) ( ) ( )( )1 11
1 2 1 2 1 2

0

1
1 1 .

kk kk i i

i

k
f f f f f f

i

−
−− −

=

 −   ≥ +∞ ⋅ = +∞ ⋅           
∑     (9.9) 

If “ 1 2c c= = −∞ ” we use (8.71) for the signs of the derivatives and get:  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

1 1 1
1 2 1 2 1 2

0

1
1 2

1 1 1

as above 1 ,

k k i i kk k

i

k

k
f f f f f f

i

f f

−
− − −

=

−

   − = ⋅ +∞ + ⋅ +∞            

= = +∞ ⋅  

∑

 

  (9.10) 

whence:  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )11 1
1 2 1 2 1 21 1 1 ,

kk k kf f f f f f
−− −= −∞ ⋅ − = −∞ ⋅             (9.11) 

having used once again (8.68) and Leibniz’s formula to obtain the last equality.       
For inversion there is no special result: we can only assert that an ( )cf ∈ +∞ , with 

0 ,c< ≤ +∞  has an inverse defined on a suitable neighborhood of +∞  which, by 
Proposition 2.2-(iv), is slowly varying in the strong sense. For composition we face the 
following situation: evaluating the limit of the ratio ( )( )( )( ) ( )( )( )( )1k k

H f x H f x
−

 is 
easy for 1, 2k =  but for 3k ≥  it is necessary to find the exact principal part at +∞  
of each derivative ( )( )( )( )k

H f x . Our restricted notion of rapid variation turns out to 
be the right one to obtain general results. Separate accounts are presented: for order 1 
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under the least possible hypotheses and with counterexamples; for order 2 with some 
restrictions and via elementary calculations; and more complete results for order 

3n ≥  which are also valid for 2n =  but obtained via elaborated calculations requir-
ing a further restriction in a few cases.  

Proposition 9.2. (Composition: order 1). Let the functions ,f H  be either regularly 
or exponentially varying as specified in each statement, hence they are ultimately 
strictly positive; and let ( )f +∞ = +∞  so that we may classify the type of variation at 
+∞ , if any, of the composite function ( ) ( )( ):E x H f x= . 

(I) If  

( ) ( ), ; , 0 ,cH f cα α∈ +∞ −∞ ≤ ≤ +∞ ∈ +∞ ≤ ≤ +∞           (9.12) 

then ( )cE α∈ +∞  provided that the product cα ⋅  is not the indeterminate form 
“ ( )0 ⋅ ±∞ ” in which case any conclusion may hold true as shown by the simple counte-
rexamples:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )
( )
( )

( )

2

0

: , 1, 2,3; : , 0; 0, ;exp

if 1,
: exp , 0, 0; : ; if 1, , 0 .

if 1,

k

a

H x x k f x x c

H x ax a f x x E H c

γ

γ

γ α

γ
γ γ α

γ
±

±∞

 = = = > = = +∞

 +∞ <
 = ± > > = ≡ ∈ +∞ = = ±∞ = 
  +∞ >







 (9.13) 

The positive part of the statement is examplified by:  

( )( ) ( )exp exp , 0, 0ax a x a
αγ γα γ≡ ≠ > . 

(II) If  

( ) ( ), ; , 0 ,cH c f α α∈ +∞ −∞ ≤ ≤ +∞ ∈ +∞ ≤ ≤ +∞           (9.14) 

then  

( )
( ) ( )

0 if , 0 1,
according as 0 or 0 if 0, 1 .

c
E

c c c
α

α±∞

 +∞ ≠ ±∞ ≤ <∈ +∞ > < ≠ < ≤ +∞




      (9.15) 

If 1α =  and if the quantity  

( )( )1: lim
x

c x f xγ −

→+∞
= ⋅                       (9.16) 

defines an extended real number, then ( )E γ∈ +∞ . 
There is no definite result for the excluded cases. A counterexample for “ c = ±∞  

and 0 1α< < ” is “ ( )( )exp , 1x
γα γ± > ” and a counterexample for “ 0c =  and 

1 α< ≤ +∞ ” is “ ( )( )exp , 0 1x
γα γ± < < ”: in both cases the indexes of exponential vari-

ation depend on the value of “ 1αγ  ”. A counterexample for “ 0c =  and 1α = ” is  

( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

1 2

1
2 2

1
2 2 1 2

1 2: exp log , 0; : log , ;

exp log log log ;

~ log log log ~ log , ,

H x x x f x x x

E x x x x x

E x E x x x x x x

β β

ββ β

ββ β β β

β β

+


= ± < = ∈


   = ± ⋅     
  ′ ± ⋅ ± → +∞   



   (9.17) 
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the index of exponential variation depending on the value of “ 1 2 0β β+  ”. For 

1 0β >  this is a counterexample for “ c = ±∞  and 1α = ”. 
(III) If both functions are exponentially varying with various indexes, namely  

( ) ( ), , 0; , 0 ,cH c c f α α∈ +∞ −∞ ≤ ≤ +∞ ≠ ∈ +∞ < ≤ +∞         (9.18) 

then ( )E ±∞∈ +∞  according as 0c >  or 0c < . Simple counterexamples for the 
cases “ 0c =  or 0α = ” are provided by the pair  

( ) ( )1 0e , 2 sin ,x x x∈ +∞ + ∈ +∞                   (9.19) 

each of them in the role either of H or f. In both cases: ( ) ( )limx E x E x→+∞ ′  does not 
exist though ( ) ( )E x E x′  . Some results for the cases “ { }\ 0 , 0c α∈ = ” are re-
ported in Proposition 9.4-(III).  

Proof. For part (I) write  

( )
( )

( )( ) ( )
( )( )

( )

( )
( )

,

I x

H f x f xE x f x
E x f xH f x

′ ⋅′ ′
= ⋅


                 (9.20) 

and use “ ( ) ( ) ( )lim limx yI x yH y H y→+∞ →+∞ ′= ”. For the non-ambiguous cases in part 
(II) just write  

( ) ( ) ( )( ) ( )( )( ) ( ) ( ) ( ) ( )11 1 ,E x E x H f x H f x f x c o x f x oα−′ ′ ′= ⋅ = + ⋅ ⋅ +        (9.21) 

recalling that “ ( )1lim 0x x f x−
→+∞ =  or +∞ ” according as 1α <  or 1α > . For part 

(III) we have  

( ) ( ) ( )( ) ( )( )( ) ( )( )lim lim lim ,
x x x

E x E x H f x H f x f x
→+∞ →+∞ →+∞

′ ′ ′= ⋅ = ±∞       (9.22) 

because the first limit is 0c ≠  and the second limit is +∞  as either “ ( ) ( )~f x f xα′ ” 
or “ ( ) ( )( )f x f x′ = +∞ ” and ( )f +∞ = +∞ .                                   

Proposition 9.3. (Composition: order 2). Let the functions ,f H  be either regularly 
or exponentially varying of order 2 as specified in each statement and ultimately strictly 
positive, ( )f +∞ = +∞  and ( ) ( )( ):E x H f x= . 

(I) Let  

( ) ( )
( )

( ){ }

1 if ,
, ;

if = ;

of order 2 }, 0 ,c

H H

f c

α
α

α

α
α

α
−  +∞ ∈′∈ +∞ ∈ ∈  +∞ ±∞ 

 ∈ +∞ ≤ ≤ +∞











         (9.23) 

and both the products “ ( ), 1c cα α⋅ − ⋅ ” be not the indeterminate form “ 0 ⋅∞ ”. Then 
( ){ }of order 2cE α∈ +∞  provided that in the case “ 1, cα−∞ ≤ < = +∞ ” the restric-

tion be added (see Proposition 8.5):  

( ){ }of order 2 .f +∞∈ +∞                     (9.24) 

For the special case  

( ) ( )0 , , for some , 1,H H β β β′∈ +∞ ∈ +∞ −∞ < ≤ −          (9.25) 

and f as in (9.23) we have that:  
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( ) ( ) ( )
( ) ( )

0 1

0

, if 0 ,

, if .
cE E c

E E c
β +

−∞

′∈ +∞ ∈ +∞ ≤ < +∞


′∈ +∞ ∈ +∞ = +∞

 

 
            (9.26) 

In particular: ( ){ }0 of order 2E∈ +∞  if ( )1 0cβ + = . Notice that in case 
“α = ±∞ ” we are not assuming “ ( ){ }of order 2H ±∞∈ +∞ ” in the strong restricted 
sense of our Definition 4.1. 

(II) If  

( ){ }
( ){ }

of order 2 , ;

of order 2 , 0 ,
cH c

f α α

 ∈ +∞ ∈


∈ +∞ ≤ ≤ +∞






             (9.27) 

then:  

( ){ }
( ){ } ( )

0 of order 2 if , 0 1,

of order 2 according as 0 or 0 if 0, 1 .

c
E

c c c

α

α±∞

 +∞ ≠ ±∞ ≤ <∈
+∞ > < ≠ < ≤ +∞




 (9.28) 

If 1α =  and if the expression  

( )( )1: lim
x

c x f xγ −

→+∞
= ⋅                       (9.29) 

defines an extended real number, then ( ){ }of order 2E γ∈ +∞ . 
(III) If both functions are exponentially varying, namely  

( ){ } { } ( ){ }of order 2 , \ 0 ; of order 2 , 0 ,cH c f α α∈ +∞ ∈ ∈ +∞ < ≤ +∞   (9.30) 

then ( ){ }of order 2E ±∞∈ +∞  according as 0c >  or 0c < , provided that in the 
case “ 0c−∞ ≤ <  and α = +∞ ” the restriction (9.24) is added.  

Proof. By Proposition 9.2 we need to estimate the behavior of the sole ratio  

( )
( )

( )( ) ( )
( )( )

( )
( )

( )( ) ( )
( )( )

( )
( )

( )
( )

.
H f x f x H f x f xE x f x f x f x

E x f x f x f xH f x H f x

′ ′ ′′⋅ ⋅′′ ′′ ′ ′′
= + = ⋅ +

′ ′ ′′ ′
  (9.31) 

For part (I) we use the last expression in (9.31) trivially checking that:  

( ) ( )
( ) ( )1 in the case 9.25 and ,

lim if , ,
if 1 , 0 ;

x

c c
E x E x c c

c

β
α α

α
→+∞

+ < +∞
′′ ′ = ∈
+∞ < ≤ +∞ < ≤ +∞

       (9.32) 

whereas for the remaining cases wherein “ c = +∞ ” the assumption in (9.24) implies by 
Proposition 8.5-(II) that ( )( )~ 1f f f f′′ ′ ′ = +∞  so that:  

( )
( )

( )
( )

( )( ) ( )
( )( ) ( ) ( )1 1 1 ,

H f x f xE x f x
o

E x f x H f x

 ′′ ⋅′′ ′
= ⋅ + + = −∞ 

′ ′  
        (9.33) 

taking account that: ( ) ( ) { }lim either 1 < 0 or 1 ory yH x H y α β→+∞ ′′ ′ = − ≤ − −∞ . For 
part (II) we use the first equality in (9.31); for c∈  and 1α <  the index of f ′  is 

1α −  due to condition ( )f +∞ = +∞ , and we get:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 11 1 1 1 ,E x E x c o x f x o x o x oα α− − −′′ ′ = + ⋅ ⋅ + + − + =        (9.34) 

as well as the corresponding results for 1α >  and for 1α = . The same equality is 
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used for part (III) wherein the assumptions imply “ ( ) ( )f f ′+∞ = +∞ = +∞ ”; for 
0 c< ≤ +∞  and 0 α< ≤ +∞ , and according to the various circumstances, we have:  

( )
( )

( )( ) ( )
( )( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
1 1 1

1 .
11 1

c o oH f x f xE x f x
E x f xH f x

α + ⋅ +∞   ′′ ′ +⋅′′ ′′     = + = + = +∞ ′ ′′ +∞+∞ ⋅ +∞        
 (9.35) 

Now let 0c−∞ ≤ < ; if α ∈  the very same calculations give  
“ ( ) ( ) ( )1E x E x′′ ′ = −∞ ” whereas, for α = +∞  and to avoid the indeterminate form 
“ ( ) ( )1 1−∞ +∞ ”, we need (9.24) namely relation ~f f f f′′ ′ ′ , so getting:  

( )
( ) ( )

( )( )
( )( ) ( ) ( ) ( )

( )
( )

( )
11 1 1 1 1 .

1

c oH f xE x
f x o

E x f xH f x

 ′′ + ′′  ′= ⋅ + + = +∞ ⋅ = −∞        ′ ′ −∞    
 (9.36) 

 
Proposition 9.4. (Composition: order 3n ≥ ). Let the functions ,f H  be either 

regularly or exponentially varying of order 3n ≥  as specified in each statement; ,f H  
ultimately strictly positive, ( )f +∞ = +∞  and ( ) ( )( ):E x H f x= . 

(I) (H regularly or rapidly varying). If  

( ){ } { }
( ){ } ( )
( ){ }
0

either of order , \ 0 ,

or of order , with 1;

and of order , 0 ,c

H n

H n H

f n c

α

β

α

β

 ∈ +∞ ∈
 ′∈ +∞ ∈ +∞ −∞ < < −
 ∈ +∞ < < +∞



 




   (9.37) 

then:  

( ) ( )
( ) ( )( )

( )( ) ( ) ( ) 1

, , 1 , if 0,
~

1 , , 2 , if 0;

k

k
kk

c H f x x k n
E x

H f x f x c x k n

α α

β α−

 → +∞ ≤ ≤ ≠


′ ⋅ ⋅ + → +∞ ≤ ≤ =

   (9.38) 

and these relations imply: ( ){ }of ordercE nα∈ +∞  if 0α ≠ , and  

( ) ( ) ( ){ }0 1, of order 2 if 0.cE E nβ α+′∈ +∞ ∈ +∞ − =           (9.39) 

If  

( ){ } { }
( ){ } ( )0

either of order , \ 0 ,

or of order , with 1;

H n

H n H
α

β

α

β

 ∈ +∞ ∈
 ′∈ +∞ ∈ +∞ −∞ < < −



 


   (9.40) 

and  

( ){ } ( ){ }
( ){ } ( ){ }

0either of order of order 1

or of order of order 1 ,

f n n

f n n
+∞

+∞ +∞

 ∈ +∞ ∩ +∞ −


∈ +∞ ∩ +∞ −

 

 
     (9.41) 

then in each of the four cases we have:  

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )1

, , 1 , if 0;
~

1 , , 2 , if 0;

kk
k

kk

E x f x f x x k n
E x

E x f x f x x k n

α α

β α−

 ′ → +∞ ≤ ≤ ≠


′ ′ + ⋅ → +∞ ≤ ≤ =

  (9.42) 

and these relations imply: either ( ){ } ( ){ }0 of order of order 1E n n+∞∈ +∞ ∩ +∞ −   if 

( )f o f′ = , or ( ){ } ( ){ }of order of order 1E n n+∞ +∞∈ +∞ ∩ +∞ −   if ( )f f′ = +∞ .  
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For the special choice ( ) : , 0,H y yα α= ≠  we get the inference:  

( ){ } ( ){ }of order , 0 of order ;c cf n c f nα
α∈ +∞ < < +∞⇒ ∈ +∞      (9.43) 

and if f  belongs to one of the classes in (9.41) then f α  belongs to the same class. 
If  

( ){ }
( ){ }

1 ;

of order , 0 ,c

H of order n

f n c
±∞ ∈ +∞ −


∈ +∞ < < +∞




               (9.44) 

then:  

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) 1
~ ~ ~ , 1 ;

k k k kk k kkE x c H f x f x H f x f x E x E x k n
−′ ′⋅ ⋅ ≤ ≤  (9.45) 

whence: ( ){ } ( ){ }of order of order 1E n n±∞ ±∞∈ +∞ ∩ +∞ −  . 
If  

( ){ }
( ){ } ( ){ }

of order 1 ;

of order of order 1 ,

H n

f n n
±∞

+∞ +∞

 ∈ +∞ −


∈ +∞ ∩ +∞ −



 
         (9.46) 

then:  

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) 1
~ ~ , , 1 ;

k k kk kE x H f x f x E x E x x k n
−′ ′⋅ → +∞ ≤ ≤  (9.47) 

whence: ( ){ } ( ){ }of order of order 1E n n±∞ ±∞∈ +∞ ∩ +∞ −  . 
(II) (H exponentially varying, f smoothly varying of positive index). Assume 

( ){ } { }of order , \ 0 .cH n c∈ +∞ ∈                  (9.48) 

If  

( ){ }of order , 0 ,f nα α∈ +∞ < < +∞                (9.49) 

then:  

( ) ( ) ( ) ( )( ) ( ) ( )( )1~ ~ , , 1 ,
k kkE x E x c x f x E x cf x x k nα − ′⋅ ⋅ → +∞ ≤ ≤    (9.50) 

which implies  

( ){ } ( ){ }
( ){ } ( ){ }

0 of order of order 1 if 0 1,

of order of order 1 if 1 ,

n n
E

n n

α

α
+∞

±∞ +∞

 +∞ ∩ +∞ − < <∈
+∞ ∩ +∞ − < < +∞

 

 
   (9.51) 

wherein ±∞  agrees with the sign of c. 
If  

( ){ }of order 1 ,f n+∞∈ +∞ −                    (9.52) 

then:  
( ) ( ) ( ) ( )( )~ , , 1 ,

kkE x E x cf x x k n′⋅ → +∞ ≤ ≤              (9.53) 

which implies: ( ){ } ( ){ }of order of order 1E n n±∞ ±∞∈ +∞ ∩ +∞ −  , with the sign of 
±∞  agreeing with the sign of c.  

If ( ){ }0 of orderH n∈ +∞  then quite different circumstances occur according as 
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H is regularly or rapidly varying and the pertinent results are contained in Propositions 
7.1, 7.5, 7.6.  

(III) (H exponentially varying, f slowly varying). Notwithstanding the counterexam-
ple in (9.19) some positive results can be given for 0α =  and they depend on the be-
havior of ( )xf x′ . To be precise assume:  

( ){ } { } ( ){ }0of order , \ 0 ; of order .cH n c f n∈ +∞ ∈ ∈ +∞       (9.54) 

Condition ( )f +∞ = +∞  implies that the index of variation of f ′  is −1 so that 
( ) ( )k

kf −∈ +∞  1k n∀ ≤ −  and we have three different inferences. First:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11 1

1 1

~ 1 1 !

~ 1 1 ! , 1 ,

kk k

k k

f x o x E x k x c E x f x

k x E x k n

−− −

− −

′ ′= ⇒ − − ⋅ ⋅ ⋅

′− − ⋅ ≤ ≤
    (9.55) 

wherein the last relation follows from  
“ ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )~E x H f x f x cH f x f x cE x f x′ ′ ′ ′ ′= ⋅ ⋅ = ”. This implies:  

( ){ }0 of orderE n∈ +∞  and ( ) ( ) , 1 1.k
kE k n−∈ +∞ ≤ ≤ −  Second:  

( )
( ) ( )

( ) ( ) ( ) ( )

1
1

~ ,
~ , 0

~ 1 , 2 ,k k
k

E x cax E x
f x ax a

E x x E x A o k n

−
−

−

 ′′ ≠ ⇒ 
⋅ + ≤ ≤   

    (9.56) 

with some constants kA  and this implies by Proposition 3.4 that:  
( ){ }of ordercaE n∈ +∞ . Third:  

( ) ( ) ( ) ( ) ( ) ( )( )1 ~ , , 1 ,
kk kf x x E x E x c f x x k n−′ ′= +∞ ⇒ ⋅ ⋅ → +∞ ≤ ≤    (9.57) 

wherein “ ( ) ( )1f x o′ = ”. This implies:  
( ){ } ( ){ }0 of order of order 1E n n+∞∈ +∞ ∩ +∞ −  . A trivial example to visualize these 

results is the following:  

( ) ( ) ( )

( ){ }
( )

( )

( ) ( )( ) ( ) ( ) ( )

( )
( )

( )

0

1
1 1

1

1

: e , 0; : log , 0, 0, 1;

1 if 1,
of any order ; ( ) if 1,

1 if 1;

1 0,

if 1,
exp log ; log

if 1,

if 1.

cxH x c f x a x a

o
f n xf x a

o

o x
E x ca x E x E x ca x x

cax

x

δ

δ δ

δ δ

δ
δ
δ

δ

δ
δ

δ

δ

−
− −

−

−

 = ≠ = > > ≠

 <
 ′∈ +∞ = =

 +∞ >
 ∀ >  < ′= = =  =  +∞ >



 (9.58) 

This example also shows that, if 1δ =  and ca  is a natural number, then it is not 
granted that  

( ){ }of ordercaE n∈ +∞ . 

(IV) (Both ,H f  exponentially varying). Let  

( ){ } { }
( ){ }

of order , \ 0 ;

of order , 0 ,
cH n c

f nα α

 ∈ +∞ ∈


∈ +∞ < ≤ +∞






             (9.59) 
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Case: α ∈ . The following relations hold true:  

( ) ( ) ( ) ( )( ) ( ) ( )( )
{ }

~ ~ , , 1 ,

if \ 0 ;

k kk k k kE x c E x f x c E x f x x k n

c

α ′⋅ ⋅ ⋅ ⋅ → +∞ ≤ ≤

∈
  (9.60) 

( ) ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )~ ~ ,

, 1 , if .

k kk k kkE x H f x f x H f x f x

x k n c

α ′⋅ ⋅ ⋅

→ +∞ ≤ ≤ = ±∞
            (9.61) 

Case: α = +∞ . If f  satisfies the additional condition in (9.52) then:  

( ) ( ) ( ) ( )( ) { }~ , , 1 , if \ 0 ;
kk kE x c E x f x x k n c′⋅ ⋅ → +∞ ≤ ≤ ∈      (9.62) 

( ) ( ) ( ) ( )( ) ( )( )~ , , 1 , if .
kk kE x H f x f x x k n c′⋅ → +∞ ≤ ≤ = ±∞       (9.63) 

Relations in (9.63) coincide with the first group of relations in (9.47) obtained under 
the assumption for H in (9.46) which is independent of the present assumption 
“ ( ){ }of orderH n±∞∈ +∞ ”.  

In each case it is checked that “ ( ) ( ) ( ) ( ) ( )1 1k kE x E x− = ±∞ ” that is  
“ ( ){ }of orderE n±∞∈ +∞ ” according as 0c >  or 0c < . Moreover, (9.60) and (9.62) 
grant the additional property  

( ) ( ) ( ) ( ) ( ) ( )1 ~ , , 2 ,k kE x E x E x E x x k n− ′ → +∞ ≤ ≤          (9.64) 

that is “ ( ){ }of order 1E n±∞∈ +∞ − ”, whereas this last property follows from either 
(9.61) or (9.63) under the additional condition for H in (9.46) which implies that both 
relations in (9.61) and (9.63) can be rewritten as:  

( ) ( ) ( )( )( ) ( )( )( ) ( )( ) ( )( ) ( )( )1 1
~ ,

, 1 .

k k k k kkE x H f x H f x f x E x E x

x k n

− −′ ′ ′⋅ ⋅ = ⋅

→ +∞ ≤ ≤
  (9.65) 

For “ 0c =  or 0α = ” there is no general result as shown in Proposition 9.2-(III).  
Proof. Remember that all the claims are already known for order 1 and that, in each 

single case, one has to replace the appropriate asymptotic relations into the Faà Di 
Bruno’s formula for ( ) , 2,kE k ≥  which, with the present notations, we write in the 
more succinct form:  

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( )1 21
1 2, , ,

0
,

kk
k

j

ii ii ik k
i i i

i k
E x a H f x f x f x f x+ +

≤ ≤

′ ′′= ⋅ ⋅ ⋅∑






   (9.66) 

always taking into account restrictions in (6.2) and that all the coefficients 
1 2, , , ki i ia



 are 
positive numbers. 

Part (I). Under conditions in (9.37), 0α ≠ , we have relations  

( ) ( )( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )

1

1 , 1 ;

ii i

i i

H f x H f x f x o

E x f x o i n

α

α

−

−

 = ⋅ ⋅ + 

 ≡ ⋅ ⋅ + ≤ ≤ 

          (9.67) 

( ) ( ) ( ) ( )1 , 1 ;i if x f x c o i n = + ≤ ≤                  (9.68) 
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whence  

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 2
1 2

1

1 2

2
, , ,

0

, , ,
0

1 1

1 .

k k
k

j

k

k
j

i ik i i ki
i i i

i k

i ik
i i i

i k

E x a E x o c o

E x c a o

α

α

+ + + + +

≤ ≤

+ +

≤ ≤

   = ⋅ ⋅ + ⋅ +  

  
= ⋅ ⋅ ⋅ +      

∑

∑















    (9.69) 

Let us now consider the family of polynomials:  

( ) 1

1 2, , ,
0

: , , ,k

k
j

i i
k i i i

i k
p a kα α α+ +

≤ ≤

= ⋅ ∈ ∈∑






                (9.70) 

where, by (6.2), kp  has algebraic degree k, and let us try to find a closed form of kp . 
For fixed k let ,H f  be two C∞ -functions on some interval [ ),T +∞  satisfying con-
ditions in (9.37) with 1kα > − , e.g., ( ) : , 1, non integer,H x x kα α α= > −  and 
( ) : e ;cxf x =  then ( ) 0kp α >  and ( ) ( ) ( ) ( )~ , 1 .k k

kE x c p E x k nα ≤ ≤ . By Proposition 
9.2-(I) we get:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

. 1

1

lim lim

.

H k k

x x

k k

c E x E x E x E x

cp p

α

α α

−

→+∞ →+∞

−

′= =

=
            (9.71) 

This, together with the value ( )1 1p α = , implies ( ) k
kp α α=  which our reasoning 

has shown true for each 1kα > − ; kp  being a polynomial this must be an identity on 
 ; hence we have given an indirect proof of the useful equality:  

1

1 2, , ,
0

, ,k

k
j

i i k
i i i

i k
a kα α α+ +

≤ ≤

⋅ = ∀ ∈ ∀ ∈∑






               (9.72) 

wherein the coefficients 
1 2, , , ki i ia



 and the indexes ji  are specified in (6.1)-(6.2). The 
relation in (9.37) for 0α ≠  follows. For 0α =  the pertinent assumption on H in 
(9.37) implies relations  

( ) ( )( ) ( )( ) ( )( ) ( )1 1 1 , 2 ;
ii iH f x H f x f x o i nβ

− − ′= ⋅ ⋅ + ≤ ≤         (9.73) 

and quite similar calculations as above yield:  

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

1 2

1

1 2

1
, , ,

0

, , ,
0

1

1

1 1
1

1 1 , 2 ,

k

k
j

k

k
j

i ik k
i i i

i k

k
i i

i i i
i k

kk

E x H f x f x c a o

cE x a o

E x c o k n

β

β
β

β

+ + −

≤ ≤

+ +

≤ ≤

−

  
′= ⋅ ⋅ ⋅ ⋅ +      

  
′= ⋅ ⋅ ⋅ + +   +    

′= ⋅ + + ≤ ≤

∑

∑













     (9.74) 

having used the obvious equality: ( ) ( )1 1 1 ,iiβ β β− = + +  whenever 1 0.β + ≠  Under 
the assumptions in (9.40)-(9.41) we use relations in (9.67) or in (9.73) for ( )iH , and 
relations  

( ) ( ) ( ) ( )( ) ( )~ , , 2 ;
iif x f x f x f x x i n′ ⋅ → +∞ ≤ ≤           (9.75) 
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and we get:  

( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )

1

1

1 2

1

1 2

, , ,
0

, , ,
0

1

1 ~ ,

k

k

k
j

k

k
j

ii k
i ik

i i i
i k

k k
i i k

i i i
i k

f x f x
E x E x a o

f x f x

f x f x
E x a o E x

f x f x

α

α α

+ +

≤ ≤

+ +

≤ ≤

 ′  = ⋅ ⋅ + ⋅          

  ′ ′   
= ⋅ ⋅ ⋅ + ⋅ ⋅               

∑

∑















 (9.76) 

and the analogous relation in case 0, 1α β= < − . Hence for 0α ≠  we have:  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( )

1 1 if 0,
~

1 if , 2 ;
k k o c

E x E x f x f x
c k n

α−  =′ = +∞ = +∞ ≤ ≤
   (9.77) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )~ ~ , 2 .
k kkE x E x f x f x E x E x k nα ′ ′ ≤ ≤       (9.78) 

Analogous procedure in case 0α =  and the claims are proved. If conditions in 
(9.44) are assumed we use both relations in (9.68) for ( )if  and the scale  

( ) ( ) ( ) ( ) ( ) ( )1 , .n nH y H y H y H y y− ′ → +∞            (9.79) 

Instead of (9.69) we now get:  

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

11
1 2, , ,

0
1 1

~ ~ , 2 ,

kk
k

j

i ii ik k
i i i

i k

k kk kk

E x c a H f x f x o

c H f x f x H f x f x k n

+ ++ +

≤ ≤

 
= ⋅ ⋅ ⋅ ⋅ +    

 

′⋅ ⋅ ⋅ ≤ ≤

∑








  (9.80) 

taking into account the fact that into the summation the term with the highest 
growth-order is the one term corresponding to “ 1 ki i k+ + = ”, that is:  
“ 1 , 0 1ji k i j= = ∀ > ”, with coefficient 1. By the assumption on H, see (4.8), these last 
relations imply:  

( ) ( ) ( )( ) ( )( )( ) ( )( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

1 1

1

~
, 2 .

~

k kk k kk

k k

E x f x H f x H f x E x E x
k n

E x E x E x E x

− −

−

 ′ ′ ′⋅ = ≤ ≤
 ′

 (9.81) 

Under conditions in (9.46) we use (9.75) and the scale in (9.79) so getting:  

( ) ( ) ( )
( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )
( )

( ) ( )( ) ( )( )

11
1 2, , ,

0
1 1

~ , 2 ;

kk
k

j

k
i ii ik

i i i
i k

k
k kk k

f x
E x a H f x f x o

f x

f x
H f x f x H f x f x k n

f x

+ ++ +

≤ ≤

 ′ 
= ⋅ ⋅ ⋅ ⋅ +           

′ 
′⋅ ⋅ = ⋅ ≤ ≤  

 

∑








 (9.82) 

which yield the same relations as in (9.81). 
Part (II). The common relations for H are:  

( ) ( )( ) ( )( ) ( )~ , , 1 .i i iH f x c H f x c E x x i n⋅ = ⋅ → +∞ ≤ ≤         (9.83) 

If (9.49) holds true then:  

( ) ( ) ( ) ( )1 , , 1 ;i i if x x f x o x i nα−  = + → +∞ ≤ ≤             (9.84) 
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

11
1 2

21

1

1 2 1

, , ,
0

2

, , , , ,
0

1

1 1 1

1 1 , 1 ,

kk
k

j

k

k

k k
j

i ik i ik
i i i

i k

i ii k

i ik
i i i i i

i k

E x E x x a c o f x

o o o

E x x a q cf x o k n

α α α

α

+ ++ +−

≤ ≤

+ +−

≤ ≤

 = ⋅ ⋅ + ⋅ 

    × + + +        

= ⋅ ⋅ ⋅ ⋅ + ≤ ≤  

∑

∑













 



 (9.85) 

wherein ( ) ( ) ( ) ( )21

1

2
, , : k

k

i ii k
i iq α α α α=


 . Condition “ ( )f +∞ = +∞ ” implies that the 
leading term in the sum is the one corresponding to “ 1 ki i k+ + = ”. As 

( ),0, ,0
k

kq α α=


 relation in (9.50) follows. From this we infer:  

( ) ( ) ( ) ( ) ( ) ( )
( )

1 1 1 if 0 1
~ = , 1 .

1 if 1
k k o

E x E x c x f x k n
α

α
α

− −  < < ≤ ≤±∞ >
    (9.86) 

Under condition in (9.52), we use relations in (9.75) for ( )if  so getting:  

( ) ( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )
( ) ( )( ) ( )

( ) ( )
( ) ( )( ) ( ) ( )( )

1 2
11

1 2

1

1 2

2

, , ,
0

, , ,
0

1

1 1

~ , 1 .

k
kk

k
j

k

k
j

i i ki
i ik i i

i i i
i k

k
i i

i i i
i k

k
k k

f x
E x E x a c o f x

f x

f x
E x a cf x o

f x

f x
E x cf x E x cf x k n

f x

+ + +
+ ++ +

≤ ≤

+ +

≤ ≤

′ 
 = ⋅ ⋅ + ⋅ ⋅    

 

′ 
= ⋅ ⋅ ⋅ ⋅ +     

 

′ 
′⋅ ⋅ = ⋅ ≤ ≤  

 

∑

∑

















 (9.87) 

Part (III). Under assumptions in (9.54), we have the following relations for ( )if :  

( ) ( ) ( ) ( ) ( )11 1 1 , 2 ;ii if x f x x o i n−−  ′= ⋅ ⋅ − + ≤ ≤              (9.88) 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

211
1 2

1 2 31
1 2

32

1
, , ,

0

11

2 1
, , ,

0

2 1

1 1 1

1 1

1

1 1 1 1 1 1

k
k

j

k

k kk
k

j

k

iik i i
i i i

i k

ikk

i i i i k ii i
i i i

i k

i ii k

E x E x a c o f x f x x o

f x x o

E x a c o f x x

o o o

+ + −

≤ ≤

−−

+ + − + + + −+ +

≤ ≤

−

  ′ ′= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − +   

 ′× × ⋅ ⋅ − + 

  ′= ⋅ ⋅ + ⋅ ⋅ 

   × − + ⋅ − + − +    

∑

∑





















( ) ( ) ( )( ) 11
1 2 2, , , , ,

0
1 ,kk

k k
j

i ii ik
i i i i i

i k
E x x a A c o xf x

+ ++ +−

≤ ≤


  

  ′= ⋅ ⋅ ⋅ + ⋅ ∑






 

 (9.89) 

with suitable nonzero coefficients 
2 , , ki iA


 which may have any signs. The extra assump-
tion ( ) ( )1xf x o′ =  implies that the leading term into the last sum is the one corres-
ponding to “ 1 1ki i+ + = ”, i.e. “ 1 1 0, 1k ki i i−= = = = ” so that  

( ) ( ) ( )1 1
0, ,0,1 1 1 1 !k kA k− −= − = − −


 and the relations in (9.55) follow; in particular 
( ) ( ) ( ) ( )( )1~ .E x cE x f x o x E x−′ ′ =  Condition “ ( ) 1~f x ax−′ ”, i.e. “ ( ) ( )1xf x a o′ = + ”, 

implies that  

( ) ( )( ) ( ) ( )( ) ( )1~ ;E x H f x f x cE x ax−′ ′ ′= ⋅ ⋅           (9.90) 
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( ) ( ) ( ) ( ) ( )1

1 2 2, , , , ,
0

1 , 2 ,k

k k
j

i ik k
i i i i i

i k
E x E x x a A ca o k n+ +−

≤ ≤

  
= ⋅ ⋅ ⋅ + ≤ ≤      

∑




 

  (9.91) 

where the sum is some number which may have any sign including zero. This is (9.56). 
In the third case condition “ ( ) ( )1x f x′ = +∞ ” implies that the leading term is the one 
corresponding to “ 1 ki i k+ + = ”; now 0, ,0 1A =



 and (9.57) follows. This in turn im-
plies:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

1
1~ 1 as ;

~ ~ , 2 .

k k

k kk

E x E x cf x o f

E x E x cf x E x E x k n

−
−

 ′ ′= ∈ +∞


′ ′ ≤ ≤


        (9.92) 

Part (IV). If ,c α ∈  then:  
( ) ( )

( ) ( ) ( )( ) ( )1 21 2 1 2
1 2

2
, , ,

0
1 1 ,kk k

k
j

k

i i ii i i i i ki
i i i

i k

E x

a E x c o f x oα
+ + ++ + + + + +

≤ ≤

   = ⋅ ⋅ + ⋅ ⋅ +   ∑




 



 (9.93) 

wherein the leading term is the one corresponding to 1 2 ki i i k+ + + =  and (9.60) 
follows. If α ∈  and c = ±∞  then:  

( ) ( ) ( ) ( )( ) ( )( ) ( )1 21 1 2
1 2

2
, , ,

0
1 ,kk k

k
j

i i ii ik i i ki
i i i

i k
E x a H f x f x oα

+ + ++ + + + +

≤ ≤

 = ⋅ ⋅ ⋅ + ∑










 (9.94) 

wherein the leading term is, once again, the one corresponding to 1 2 ki i i k+ + + =  
due to the scale in (9.79), and (9.61) follows. If α = +∞  and 0c ≠  then, using rela-
tions in (9.75), we get:  

( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

( )
( )

( ) ( )( ) ( )( ) ( )

1 2
11

1 2

11
1 2

2

, , ,
0

, , ,
0

1 1

1 1 .

k
kk

k
j

kk
k

j

i i ki
i ii ik

i i i
i k

k
i ii i

i i i
i k

f x
E x a H f x f x o

f x

f x
a H f x f x o

f x

+ +…+
+ ++ +

≤ ≤

+ ++ +

≤ ≤

′ 
= ⋅ ⋅ ⋅ ⋅ +     

 

 ′ 
= ⋅ ⋅ ⋅ ⋅ +           

∑

∑

















 (9.95) 

If { }\ 0c∈  then  

( ) ( ) ( )
( )

( ) ( ) ( )( ) ( )11
1 2, , ,

0
1 1 ,kk

k
j

k
i ii ik

i i i
i k

f x
E x a c E x f x o

f x
+ ++ +

≤ ≤

 ′ 
= ⋅ ⋅ ⋅ ⋅ ⋅ +           

∑








 (9.96) 

and (9.62) follows. If c = ±∞  and if also the scale in (9.79) is taken into account then 
the last expression in (9.95) implies:  

( ) ( ) ( )
( )

( ) ( )( ) ( )( )~ ,
k

kk kf x
E x H f x f x

f x
′ 

⋅ ⋅  
 

           (9.97) 

that is (9.63).                                                            

10. Two Simple Applications of Exponential Variation 
10.1. Relations between the Integral of a Product and the  

Product of Integrals 

From elementary calculus we know that, generally speaking, an integral of type 
x

T
fg∫  
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has no precise quantitative relationships with ( ) ( )x x

T T
f g⋅∫ ∫  and inequalities linking the 

two quantities are known: see, e.g., ([11]; §2.13, pp. 70-74), ([12]; Chap. X). Similar re-
marks apply to the pair 

x

T
fg∫  and ( ) ( )x

T
f x g⋅ ∫ . The concepts related to exponential 

variation yield asymptotic information about the ratios of these quantities as x → +∞ .  
Proposition 10.1. Let [ ), ,f g AC T∈ +∞ ; ,f g  ultimately 0> . 
(I) In the case “ fg

+∞
= +∞∫ ” we have the following contingencies:  

( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )
1 21 2 1 2

0

0 if , ;
1 if , , 0 ;

lim
1 1 if , , 0 , ;

if and is arbitrary.

x x

T T c
xx c c

T

f g
f g c f g c

c c f g c cfg
f g

+∞

+∞

→+∞

 ∈ +∞
⋅ ∈ +∞ ∈ +∞ < < +∞=  + ∈ +∞ ∈ +∞ < < +∞
+∞ ∈ +∞

∫ ∫

∫


 
 



(10.1) 

(II) Under the assumptions “ , ,f g fg
+∞ +∞ +∞

< +∞∫ ∫ ∫ ” we have the following contin-
gencies:  

( ) ( )
( )

( ) ( )

( ) ( )

( )
1 2 1 2

1 2

0

0 if , ;
1 if , , 0;

lim 1 1 if , , , 0;

if and is arbitrary.

c
x x

x c c
x

f g
c f g cf g

f g c cfg c c
f g

−∞
+∞ +∞

−∞

+∞→+∞

 ∈ +∞
− ∈ +∞ ∈ +∞ −∞ < <⋅ = − − ∈ +∞ ∈ +∞ −∞ < <

+∞ ∈ +∞

∫ ∫

∫


 

 



 (10.2) 

(III) For ,f g  regularly varying (hence hypoexponentially varying) we have the 
exact principal parts at +∞  of the above ratios, namely  

( ) ( ) ( ) ( )( ) ( ) ( )11 1, ,
~ ;

1, 1; 1,
x x x

T T T

f g
fg x f gα β α β

α βα β α β
−+ +∈ +∞ ∈ +∞

⇒ ⋅ ⋅
+ +> − + > −

∫ ∫ ∫
 

  (10.3) 

( ) ( ) ( ) ( )( ) ( ) ( )11 1, ,
~ .

1, 1; 1, x x x

f g
fg x f gα β α β

α βα β α β
+∞ +∞ +∞−+ +∈ +∞ ∈ +∞

⇒ ⋅ ⋅
+ +< − + < −

∫ ∫ ∫
 

 (10.4) 

Proof. By L’Hospital’s rule we have:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

lim lim in case I ,

lim lim in case II ,

x x x x
T T T T

xx x
T

x x x x

x x
x

f g f g

f x g xfg

f g f g

f x g xfg

→+∞ →+∞

+∞ +∞ +∞ +∞

+∞→+∞ →+∞

  ⋅  = +  
  

  ⋅

  = +
 

  

∫ ∫ ∫ ∫
∫

∫ ∫ ∫ ∫
∫

     (10.5) 

and then we apply the various results in Propositions 8.1-8.3. The last claims in (10.1) 
and (10.2) simply follow noticing that the two limits on the right-hand sides in (10.5) 
are not smaller than the limits of the sole ratios involving f. Part (III) follows from 
Proposition 2.4-(I).                                                       

For ,f g  rapidly varying in the strong restricted sense of Definition 4.1, Proposi-
tion 2.4-(II) would give relation  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )~ , , for , ,

x x x

T T T

f x g x
f g fg x f g

f x g x +∞

′
⋅ → +∞ ∈ +∞

′ ′∫ ∫ ∫     (10.6) 
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and a similar one for ( ),f g −∞∈ +∞ . More precise results depend on the types of 
exponential variation of ,f g  which provide information on the  

( ) ( )limx f f g g→+∞ ′ ′+    and the foregoing results are reobtained under the unne-
cessary restrictions on the second derivatives.  

Proposition 10.2. Let each of the two functions ,f g  belong to one of the three 
classes in Definition 8.1 

(I) In the case “ fg
+∞

= +∞∫ ” we have the following contingencies:  

( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

1 2

1

0

1 2 1 2

1

0

1 if , , 0 ;
( ) 1 if , , , 0 ;

lim
1 if , , ;

if , .

cx

c cT
xx

c
T

f g c
f x g c c f g c c

f g cfg
f g

→+∞
+∞

+∞

 ∈ +∞ ∈ +∞ < ≤ +∞
⋅ + ∈ +∞ ∈ +∞ ∈ < < +∞=  ∈ +∞ ∈ +∞ ∈
+∞ ∈ +∞ ∈ +∞

∫

∫

 
 

 

 




 (10.7) 

(II) Under the assumptions: “ ,g fg
+∞ +∞

< +∞ < +∞∫ ∫  and ( ) ( ) ( )1
x

f x g o
+∞

⋅ =∫ ”, we 
have the following contingencies:  

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

1 2

1

0

1 2 1 2

1

0

1 if , , 0;
1 if , , , 0;

lim
1 if , , ;

if , .

c

c cx

x
c

x

f g c
f x g c c f g c c

f g cfg
f g

+∞

+∞→+∞
−∞

−∞

 ∈ +∞ ∈ +∞ −∞ ≤ <
⋅ − ∈ +∞ ∈ +∞ ∈ −∞ < <=  ∈ +∞ ∈ +∞ ∈
+∞ ∈ +∞ ∈ +∞

∫

∫

 
 

 

 




 (10.8) 

Proof. Again by L’Hospital’s rule:  

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

lim 1 lim in case I ,

( )
lim 1 lim in case II .

x x
T T

xx x
T

x x

x x
x

f x g gf x
f x g xfg

f x g gf x
f x g xfg

→+∞ →+∞

+∞ +∞

+∞→+∞ →+∞

 ⋅ ′ = + ⋅


 ⋅ ′ = − ⋅



∫ ∫
∫

∫ ∫
∫

         (10.9) 

 

10.2. Sums of Exponentially-Varying Terms  

If [ ),f AC T∈ +∞  has a definite type of exponential variation at +∞  according to 
Definition 8.1, then classical results going back to Hardy ([8]; Th. 33, p. 48) under 
stronger regularity assumptions, express the asymptotic behavior of a sum ( )1

n
k f k
=∑  

or ( )k n f k∞

=∑  via either ( )f n  or 
n

f∫ , the behavior of the integral being then de-
tected by some of the results in Proposition 2.4. Our exposition allows simplified proofs 
and we also point out to what extent the classical results apply to more general series of 
type ( )kk f a∑ . It turns out that the functional Equations (8.14) and (8.15) impose 
drastic restrictions on the sequence { }n n

a .  
Proposition 10.3. For [ ) ( ), cf AC T∈ +∞ ∩ +∞ , with c−∞ ≤ ≤ +∞ , the following 

equivalence holds true:  

( ) ( )
integer

d ,
Tk T

k

f k f t t
∞ +∞

=
< +∞ ⇔ < +∞∑ ∫              (10.10) 
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together with the following asymptotic comparisons between sums and integrals. 
(I) If 0c =  and { }n n

a  is a sequence of real numbers such that:  

1 1 2; lim ; 0 ;n n n nn
a T n a M a a M n+≥ ∀ = +∞ < ≤ − ≤ < +∞ ∀       (10.11) 

then:  

( ) ( ) ( )1

1 11
d d , ;n n

n a a
k a a

k
f f a f t t f t t n++∞

=

= +∞⇒ → +∞∑∫ ∫ ∫        (10.12) 

( ) ( ) ( )
1

d d , .
n n

k a a
k n

f f a f t t f t t n
+

∞+∞ +∞ +∞

=

< +∞⇒ → +∞∑∫ ∫ ∫        (10.13) 

If 0c =  and { }n n
a  is a sequence of real numbers such that:  

[ ]1 1; lim ; 0 ; lim 0;n n n n n nn n
a T n a a a n a a λ+ +≥ ∀ = +∞ < − ∀ − = >    (10.14) 

then:  

( ) ( ) ( )1

1 11

1 1~ d ~ d , ;n n
n a a

k a a
k

f f a f t t f t t n
λ λ

++∞

=

= +∞⇒ → +∞∑∫ ∫ ∫      (10.15) 

( ) ( ) ( )
1

1 1~ d ~ d , .
n n

k a a
k n

f f a f t t f t t n
λ λ +

∞+∞ +∞ +∞

=

< +∞⇒ → +∞∑∫ ∫ ∫      (10.16) 

In the particular case “ ( ) , 1,f α α∈ +∞ ≠ − ” the asymptotic relations in (10.15)- 
(10.16) respectively become, by Proposition 2.4-(I):  

( ) ( )
( ) ( )

1
~ , , 1 ;

1

n
n n

k
k

a f a
f a n α

λ α=

→ +∞ − < < +∞
+∑             (10.17) 

( ) ( ) ( )~ , , 1 .
1

n n
k

k n

a f a
f a n α

λ α

∞

=

→ +∞ −∞ < < −
+∑             (10.18) 

(II) If \ 0c∈  and { }n n
a  satisfies conditions in (10.14) then:  

( ) ( ) ( )
1

1 11
0 ~ d ~ d , ;

1 e e 1

n na an

k c c
k a a

c cc f f a f t t f t t nλ λ

++∞

−
=

> ⇒ = +∞⇒ → +∞
− −∑∫ ∫ ∫  (10.19) 

( ) ( ) ( )
1

0 ~ d ~ d , .
1 e e 1

n n

k c c
k n a a

c cc f f a f t t f t t nλ λ
+

+∞ +∞∞+∞

−
=

< ⇒ < +∞⇒ → +∞
− −∑∫ ∫ ∫  (10.20) 

(III) If c = ±∞  and { }n n
a  is a sequence of real numbers such that:  

1; 0 ;n n na T n M a a n+≥ ∀ < ≤ − ∀                 (10.21) 

then:  

( ) ( )
1

0 ~ , ;
n

k n
k

c f f a f a n
+∞

=

> ⇒ = +∞⇒ → +∞∑∫            (10.22) 

( ) ( )0 ~ , .k n
k n

c f f a f a n
∞+∞

=

< ⇒ < +∞⇒ → +∞∑∫            (10.23) 

Proof. (I) Under conditions in (10.11) it follows from (8.14) that:  
( ) ( ) ( )1 1

1~ , ;n n n n

n n

a a a a
n n na a

f f a a f a n+ ++ −

+= − → +∞∫ ∫           (10.24) 
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( ) 1 1 1

1 1

by (8.13)

1 1 11

1~ ~ , ;k k n n

k k

n n na a a a
k a a a a

k k kk k

f a f f f f n
a a

+ + +

= = =+

= → +∞
−∑ ∑ ∑∫ ∫ ∫ ∫   (10.25) 

and the analogous relation in case of convergence. Under conditions in (10.14) we get 
from (8.15):  

( ) ( )1 1
~ , ;n n

n n

a a o
na a

f f f a n
λ

λ+ + +
= → +∞∫ ∫                (10.26) 

( ) 1 1

1 11 1

1 1 1~ ~ , .k n n

k

n n a a a
k a a a

k k
f a f f f n

λ λ λ
+ +

= =

= → +∞∑ ∑∫ ∫ ∫            (10.27) 

and the analogous relation in case of convergence. And also the equivalence in (10.10) 
is proved.  

(II) From (8.29) we get:  

( ) ( )1

1 1

1
1

e 1~ , ;n n

n n

ca a o
na a

f f f a n
c

λ
λ−

− −

+ +

−
−

≡ → +∞∫ ∫             (10.28) 

( ) ( ) 1

1 1

1 by (8.28)

1
1 2

~ ~ , ;
e 1 1 e

n n
n n a a

k k c ca a
k k

c cf a f a f f nλ λ
+

+

− −
= =

= → +∞
− −

∑ ∑ ∫ ∫     (10.29) 

and the analogous relation in case of convergence. (III) For “ c = ±∞ ” f  is ultimately 
strictly monotonic and, for the argument’s sake, we may suppose that f  is strictly 
monotonic on the whole interval [ ),T +∞ . For 0c > , f  is strictly increasing so that:  

( ) ( )( )1 1

1

1 1 1 by (8.39)

1 1 11

1 1 1 , ;k k n

k k

n n na a a
k na a a

k k kk k

f a f f f o f a n
a a M M

+ +
− − −

= = =+

< ≤ = = → +∞
−∑ ∑ ∑∫ ∫ ∫  (10.30) 

whence:  

( ) ( ) ( ) ( )
1

1 1
~ , .

n n

k n k n
k k

f a f a f a f a n
−

= =

= + → +∞∑ ∑           (10.31) 

Analogously for 0c < , f  is strictly decreasing and  

( ) ( )( )
1 1

by (8.47)

1 1 11

1 1 1 ;k k

k k n

a a
k na a a

k n k n k nk k

f a f f f o f a
a a M M− −

∞ ∞ ∞ +∞

= + = + = +−

≤ ≤ = =
−∑ ∑ ∑∫ ∫ ∫   (10.32) 

whence:  

( ) ( ) ( ) ( )
1

~ , .k n k n
k n k n

f a f a f a f a n
∞ ∞

= = +

= + → +∞∑ ∑           (10.33) 

The equivalence in (10.10) in cases (II) and (III) is implicit in the previous relations. 
 

Remarks. 1. Condition “ 1 0n na a M+ − ≥ > ” is adequate in part (III) whereas the 
stronger condition “ ( )1 1n na a oλ+ − = + ” is needed in part (I) to apply (8.15) and get a 
precise asymptotic result. A sequence such that “ ( )10 1n na a o+< − = ” may not work in 
each of the above three circumstances dramatically changing the type of exponential 
variation; take for instance “ logna n= ” checking the three cases pertinent to: 
“ ( )f x x= ”, “ ( ) expf x x= ”, “ ( ) ( )2expf x x= ”. If the inequalities concerning 
“ 1n na a+ − ” in (10.11) and in (10.21) are satisfied only for each n large enough this does 
not affect the principal parts of the sums though the given relations might be quite in-
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accurate from a numerical standpoint. 
2. The equivalence in (10.10) for the case 0c =  is remarkable in so far it does not 

require the monotonicity of f  in which case it trivially follows from the inequalities:  

( ) ( ) ( )1 , : integer part of ,f x f x f x x x≤ ≤ + =                    (10.34) 

or from the inverted ones. Another classical criterion grants the equivalence in (10.10) 
under conditions “ [ ), ,

T
f AC T f

+∞
′∈ +∞ < +∞∫ ” regardless of the sign of f ′ . 

3. The mentioned original proofs by Hardy for ( )k f k∑  implicitly assume that 
( ){ }of order 2cf ∈ +∞ . The proofs by Dieudonné in ([9]; pp. 101-103), assuming 

1f C∈ , are reported in ([2]; pp.V.30-V:31) with some simplifications. 
Comments and examples on applying the foregoing results. Suppose that the asymp-

totic behavior of the given sequence { }n n
a  is described by an expansion with several 

terms, say “ ( )1n n na b c oλ= + + + ” with “ 1n nb c  ”. If f has a definite type of 
asymptotic variation then, generally speaking, there is only one case wherein the mere 
principal part nb  suffices to find the principal part of the pertinent sum, namely:  

( ) ( ) ( ) ( ) ( )
b (5.6)

~ ~
y

n n k k
k k

f f a f b f a f bα∈ +∞ ⇒ ⇒∑ ∑         (10.35) 

separating the cases of convergence and divergence. If the expansion has the simpler 
form “ ( )= 1n na b oλ+ + ” with “ 1nb  ” then the inferences in (10.35) hold true for the 
larger class of ( )0f ∈ +∞  whereas, for a generic “ ( ) , 0,cf c∈ +∞ > ” all the diver-
gent and convergent terms in the expansion must be taken into consideration save fur-
ther simplifications. The results in part (III), with the mild restriction on the sequence 
{ }n n
a , may yield interesting relations difficult to achieve by other methods. 
Example 1. For “ , 0; 0 1a b β> < < ” we have two quite equivalent ways of applying 

(10.19) to evaluate the sum:  

( )
( )

( ) ( )
1

1

11

1 1e d ~ exp
1 e 1 e

exp ~ , .
exp

exp d ~
1 e 1 e

an bn t
a an

nk
a a

t an bn

ak bk nan bna aat bt t
a b t

β
β

β
β

β
ββ

+

− −

=

− − −

 + − −+ → +∞ + + − − +

∫
∑

∫
(10.36) 

In the first procedure we put ( ) : exf x =  and :na an bnβ= +  which last satisfies 
conditions in (10.14) with aλ = ; in the second we notice that  

“ ( ) ( ) ( ): exp af x ax bxβ= + ∈ +∞ ” and choose “ na n= ” getting the same result. 

Example 2. For “ :n na an bα= + ”, where “ ( ), 0; 0; 1n na b b oα > ≥ = ”, we have:  

( ) ( ) ( ) ( )

( )
11

1 1

exp
exp d ~ if 0 1,

exp ~ exp ~
exp if 1.

n
n n

k
k k

an
at t

ak b ak a n
an

α
α

α α α

α

α
α

α

−

= =


 < <+ 
 >

∫∑ ∑  (10.37) 

The sole relation “ ( )1na an oα= + ” is enough in this case. 
Example 3. For :na an bnα β= + , where “ , 0; 1;a b α β α> > < ”, (10.19) cannot be ap-

plied with the choice ( ) : exf x =  as “ [ ]1limn n na a+ − = +∞ ”; but noticing that 
“ ( ) ( )exp ax bxα β

+∞+ ∈ +∞ ” we get from (10.22):  
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( ) ( )
1
exp ~ exp , .

n

k
ak bk an bn nα β α β

=

+ + → +∞∑            (10.38) 

And the same argument can be used to establish the relation:  

( ) ( ) ( )
1
exp sin ~ exp sin , , , 0; 1; .

n

k
ak b k k an b n n n a bα β α β α β α

=

+ + → +∞ > > <∑ (10.39) 

Example 4. Let  

( ): 0; 1; 1 ; 0 .n n na an p n a p M nα β α β α= + > > < − ≤ ≤ < +∞ ∀      (10.40) 

To evaluate ( )1expn
kk ak p kα β

=
+∑  we cannot apply neither (10.19) with the choice 

( ) : exf x =  as “ [ ]1limn n na a+ − = +∞ ” nor, generally speaking, a direct method save, 
e.g., the case wherein “ ( )np P n≡ ” with “ ( ) ( )P x +∞∈ +∞ ”, as in the preceding exam-
ple. But there is an indirect method which works well for any np  though not very 
“natural”. Starting from the expansion:  

( ) ( ) ( )1 1 2 2 , , , 1 ,n nan p n a n a p n O n n
αγ α α α α γ α γα α γ− + − + −+ = + + → +∞ ∈ <   (10.41) 

it can be checked that:  

( ) ( ) ( )11 1 1 2 , , , .n nan p n a n a p n O n n
αα αα β α β α β αα α β α−− + − − + = + + → +∞ ∈ <   (10.42) 

Hence for 2β α<  we have ( ) ( )2 1O n oβ α− =  and:  

( ) ( ){ }11 1 1

1 1
exp ~ exp , ,

n n

k k
k k

ak p k a k a p k n
αα αα β α β αα −− + −

= =

 + + → +∞ ∑ ∑    (10.43) 

for: ( )0, 1, min 1, 2 .a α β α α> > < −  For the sequence  
( )11 1 1:n nb a n a p nα αα β αα −− + −= +  we have that [ ] 1

1lim 0n n nb b a α
→+∞ + − = >  and we may 

apply (10.22) with ( ) : expf x xα=  so getting:  

( ) ( ){ }
( ) ( )

11 1 1

1
b (10.42)

exp ~ exp

~ exp , ; 1, min 1, 2 ;

n

k n
k

y

n

ak p k a n a p n

an p n n

αα αα β α β α

α β

α

α β α α

−− + −

=

 + + 

+ → +∞ > < −

∑
 (10.44) 

which is a remarkable relation due to the presence of the possibly oscillatory term np . 

11. Asymptotic Expansions for ( )( )f x r x+  

In iterative processes aiming at determining the asymptotic behavior of solutions of a 
functional equation it is sometimes useful to know asymptotic expansions of a quantity 
like ( )( )f x r x+ . We preliminarly state a few elementary facts about the asymptotic 
relation  

( )( ) ( )~ , ,f x r x f x x+ → +∞                    (11.1) 

from a different viewpoint than that in §5. If ( ) { }\ 0f +∞ = ∈  , (11.1) is trivially true 
for any r such that ( )( )limx x r x→+∞ + = +∞ ; otherwise it makes sense for 
( ) ( ) ,r x o x x= → +∞  and, in such a case, it is satisfied by any ( )f α∈ +∞ : see 

(5.6). Weakening the hypothesis on f useful results hold true under strong conditions 
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on the growth-order of r. This point is highlighted in the following preliminary result 
containing a classification of various asymptotic functional equations, partly overlap-
ping the results in Proposition 5.1.  

Lemma 11.1. (I) If [ ),f AC T∈ +∞ , f ultimately 0≠ , then:  

( ) ( ) ( )
( )

( )( ) ( )
1

1 2

, ,
~ , ;

0 ,

f x f x o x x
f xr x f x x

c r x c

− ′ = → +∞ ⇒ → +∞
< ≤ ≤ < +∞

     (11.2) 

( ) ( ) ( ) ( )( ) ( )1 , , ~ , ;f x f x O x x f x o x f x x−′ = → +∞ ⇒ + → +∞     (11.3) 

( ) ( ) ( ) ( )( ) ( )1 , , 1 ~ , ;f x f x o x f x O f x x′ = → +∞ ⇒ + → +∞      (11.4) 

( ) ( ) ( ) ( )( ) ( )1 , , 1 ~ , ,f x f x O x f x o f x x′ = → +∞ ⇒ + → +∞      (11.5) 

without any restrictions on sign and monotonicity of f ′ , and on the sign of r apart 
from the first inference. The four inferred asymptotic relations are listed in order of 
decreasing logical strength. 

(II) Relation in (11.1) holds true under the following conditions:  

[ )
[ ) ( ) ( )( )
everywhere differentiable and 0 on , ; ultimately monotonic and 0;

: , [0, ); ( ) , ;
f T f
r T r x o f x f x x

′ ≠ +∞ ≠
 ′+∞ → +∞ = → +∞

 (11.6) 

which means that, no matter what the growth-order of f f′ , (11.1) is practically 
granted for any nonnegative and sufficiently small r. This result implies those in 
(11.3)-(11.5) but with additional unnecessary assumptions, hence it is better used in the 
case “ f f′  unbounded”. For results with a nonpositive r see ([2]; p. V.44) and ([9]; 
exercise 6, p. 113).  

Proof. Using the first equality in (5.20) all claims in part (I) reduce to proving that 
either ( )xr x

x
f f′∫  or ( )x r x

x
f f

+
′∫  is “ ( )1o ” under the different assumptions on r: 

this is elementary and left to the reader. For part (II) it is simpler to apply the 
mean-value formula after a few preliminary remarks. First we may suppose 0f >  and 
the assumptions imply that ( )f +∞  exists in  ; so we have to study the two non-
trivial cases ( )f +∞ =  “either 0 or +∞ ”. Moreover it is easily seen that the case 
( )f +∞ = +∞  is brought back to the other case referred to 1g f= . Hence we are 

supposing 0f >  and ( ) ( )1f x o=  so that the monotonicity of f ′  implies that 
( )f x′  is ultimately decreasing (to zero) as x → +∞ . Now we have:  

( )( ) ( ) ( ) ( ) ( )( ) ( ), 0 1,f x r x f x r x f x x r x xθ θ′+ − = + < <        (11.7) 

and all the assumptions on f ′  and r imply:  

( ) ( ) ( )( ) ( ) ( ) ( )( ).r x f x x r x r x f x o f xθ′ ′+ ≤ =          (11.8) 

 
Simple counterexamples show the necessity of the restrictions on r in (11.6); in fact, 

even if f ′  is monotonic, condition ( ) ( ) ( )( )r x O f x f x′=  may not work:  
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( )( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

3

21 2

31

exp 1 ~ e unless 1 ; here 1 ;

exp ~ e e ; here 1 2 ;

exp e unbounded; here 1 3 .

x

x

x

x O r x o f f

x x f f x

x x f f x

−

−

 ′+ = ≡/

 ′+ =

 ′+ =  

Various types of expansions for ( )( )f x r x+  can be obtained using “higher-order 
types of variation” for f.  

Proposition 11.2. (Higher-order regular or rapid variation). (I) If  
[ ) ( ){ }, of ordernf C T nα∈ +∞ ∪ +∞ , [ ): , ,r T +∞ →   and ( ) ( )r x o x=  then the 

ordered n-tuple ( )( ) ( ) ( ){ }
1, ,

k k

k n
r x f x

= 

 is an asymptotic scale at +∞ , i.e.  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2
, ,

n nr x f x r x f x r x f x x′ ′′ → +∞ 
      (11.9) 

and the following asymptotic expansion of Poincaré’s type holds true:  

( )( ) ( )

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1 1 1

1

1 , .
!

n k nk n

k

f x r x f x

r x
r x f x O r x f x x

k x

− − −

=

+ −

 
= + → +∞ 

 
∑

     (11.10) 

If ( ) ( ) ( ) ( )11
1~n n

nf x x f xα −−
− , with 1 0nα − ≠ , we have the remainder estimate:  

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )1

1

1 , .
!

n k nk n

k
f x r x f x r x f x O r x f x x

k

−

=

+ − = + → +∞∑    (11.11) 

(II) If [ ) ( ){ }, of order 1nf C T n±∞∈ +∞ ∪ +∞ − , ( )nf  monotonic,  
[ ) [ ): , 0, ,r T +∞ → +∞  and ( ) ( ) ( )( )r x o f x f x′=  then we have the asymptotic scale 

in (11.9) and the asymptotic expansion of Poincaré’s type in (11.11). The conditions on 
f are granted when assuming [ ) ( ){ }1 , of ordernf C T n+

±∞∈ +∞ ∪ +∞ .  
In part (I) the sign of r may be arbitrary. The result in part (II) shows another con-

text wherein our concept of higher-order rapid variation reveals appropriate: the hy-
pothesis “ ( ){ }of order 1f n±∞∈ +∞ − ” is the right one to grant the asymptotic scale 
in (11.9); the other assumptions serve to get a simple estimate of the remainder. Ac-
cording to Proposition 8.5 this result also is the right one to be applied to hyperexpo-
nentiality of higher order. 

Proposition 11.3. (Higher-order hypoexponentiality). (I) If  
[ ) ( ){ }0, of ordernf C T n∈ +∞ ∪ +∞  and [ ): ,r T +∞ →   is bounded then the fol-

lowing expansion holds true:  

( )( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )( )1

1

1
, ,

!

k
n nk n

k

r x
f x r x f x f x o r x f x x

k

−
−

=

+ − = + → +∞∑   (11.12) 

where ( ) ( ){ }
1, ,

k

k n
f x

= 

 is an asymptotic scale at +∞  by (8.68). This is an asymptotic 
expansion with variable coefficients; it is of a more general type than Poincaré’s, see, 
e.g., ([2]; p. V.17), ([9]; pp. 84-85), and has been introduced by Erdélyi: ([13]; p. 2), 
([14]; p. 222). If ( ): sup 0M r x= >  then, under a monotonicity assumption for 

( )nf , we have the remainder estimates:  
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( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1

0

, if ,

! , if .

n n nk
n

k

n n nk

O r x f x M fr x
f x r x f x

k O r x f x M f

−

=

 ++ = + 
 −


∑




 (11.13) 

(II) If [ ) ( ){ }0, of ordernf C T n∈ +∞ ∪ +∞  and ( ) ( )1r x o=  then the following 

expansion holds true for each fixed { }\ 0λ ∈ :  

( )( ) ( )
( )( ) ( ) ( ) ( ) ( )( )

1
1

1
, ,

!

k
n

k n

k

r x
f x r x f x f x o f x x

k
λ

λ
−

−

=

+
+ + − = + → +∞∑   (11.14) 

which may be thought of as an asymptotic expansion either of Poincaré’s type with re-

spect to the asymptotic scale ( )( ) ( ) ( ){ }
1, ,

k k

k n
r x f xλ

=
+



 or of Erdélyi’s type with re-

spect to the scale ( ) ( ){ }
1, ,

k

k n
f x

= 

. In particular:  

( ) ( ) ( ) ( ) ( ) ( )( )
1

1

1
, , for each fixed 0;

!

kn
k n

k
f x f x f x o f x x

k
λλ λ

−
−

=

+ − = + → +∞ ≠∑  (11.15) 

and, under the additional assumption of monotonicity for ( )nf , we have the remainder 
estimates:  

( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1

1

, if , 0,

! , if , 0,

n n
kn

k

n nk

O f x f
f x f x f x

k O f x f

λ λλλ
λ

−

=

 + >+ − = + 
>

∑




    (11.16) 

inverting the estimates for 0λ < . Notice that, though ( )nf  does not appear in some 
of the previous expansions, the given remainder-estimates have been obtained using 
some property of ( )nf  granted by the assumptions.  

Proofs. The common formula for the various claims is Taylor’s formula with initial 
point x and Lagrange remainder:  

( )( ) ( )

( )( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( )

1

1

(

, 0 1.
! !

k n
n

k n
n n

k

f x r x f x

r x r x
f x f x x r x x

k n
θ θ

−

=

+ −

= + + < <∑
     (11.17) 

For the claim in Proposition 11.2-(I), we start from formula (3.5):  
“ ( ) ( ) ( ) ( )1k k

kf x x f x oγ−= +   ” with suitable constants , 1k k nγ ≤ ≤ ; whence  

( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 , 1 ;
kk k

kr x f x x r x f x o k nγ−= + ≤ ≤           (11.18) 

and this, because of condition ( ) ( )r x o x= , implies (11.9) if 0, 1 1k k nγ ≠ ≤ ≤ − . If 
0kγ =  for k i≥  then the foregoing argument yields  

“ ( ) ( ) ( )( ) ( ) ( )i ir x f x r x f x′


” whereas the regular variation of ( )if  gives  

( )( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 11 1

1

.

i ii i

i i

i i

r x f x r x o x f x

o x r x r x f x

o r x f x

+ ++ −

−

=

=

=

          (11.19) 

In any case (11.9) holds true. For the remainder we know that there exists a number 
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1nα −  (using the notation in Definition 3.1) such that:  
( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( )( )
( ) ( ) ( ) ( ) ( )

1 11
1

11
1

11
1 1

1 by 5.6 applied to

if 0,

1 1 ~ if 0,

n
n

n n
n n

n
n

n n
n n

f x x r x

x f x x r x o f

o x f x

x f x o f x

θ

θ α

α

α α

− −−
−

−−
−

−−
− −

+

= + + =  
 == 
 + ≠  

   (11.20) 

whence (11.10) and (11.11) follow. For part (II) in Proposition 11.2, the assumption is 
that f  be rapidly varying of order 1n −  in the strong restricted sense of Definition 
4.1 hence, by Proposition 4.1,  

( ) ( ) ( ) ( ) ( ) ( )1 ~ , ;1 1;k kf x f x f x f x x k n+ ′ → +∞ ≤ ≤ −         (11.21) 

and  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( )( ) ( ) ( )

1

1 1 ,

k k

k kk k

r x f x f x r f x f x

r x f x r x f x

+

+ +

′ ⇒

⇒

 



     (11.22) 

for 1 1k n≤ ≤ − , and (11.9) follows. From the nonnegativity of r and (11.21) we also 
get:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( )( )1~ .nn n
n n

n

f x x r x
f x x r x f x x r x

f x x r x
θ

θ θ
θ

−
′ +

+ ⋅ +
+

   (11.23) 

Applying Lemma 11.1-(II) to the three quantities on the right and using the mono-
tonicity of ( )nf :  

( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )1~ ~ ,n n n
n

f x
f x x r x f x f x

f x
θ −′

+           (11.24) 

whence (11.11). For part (I) in Proposition 11.3 we have ( ) ( ) ( )1n x r x Oθ =  so that the 
assumption “ ( )1nf −  hypoexponentially varying” and (8.10) yield the following two re-
lations as x → +∞ :  

( ) ( ) ( )( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 1; ~ ,n n n n
n n nf x x r x o f x x r x f x x r x f xθ θ θ− − −+ = + +  (11.25) 

whence (11.12) follows. Under the monotonicity assumption we have  
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )max , ,n n n

nf x x r x f x M f x Mθ+ ≤ − +        (11.26) 

and (11.13) follows. The proof for (11.14) is quite the same: relations in (11.25) still 
hold true and the quantity ( )r x  in (11.12) is now replaced by ( ) ~r xλ λ+ .       

We now briefly examine to what extent the powers ( )( )k
r xλ +  in (11.14) can be 

replaced by their full binomial expressions with suppression of the parentheses. It is 
clear that a correct arrangement depends on the relative growth-orders between ( )kf  
and ( )( ) ( )1 ,

h kr x f −  1 1,h k≤ ≤ −  and there are too many possible cases to be collected 
together in a readable result except for one special case in which ( )r x  is not too small 
and a “natural” arrangement of the terms occur.  

Proposition 11.4. (Different arrangements in the expansion of ( )( )f x r xλ+ + ). 
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Let [ ) ( ){ }1
0, of order 1 , 2,nf C T n n+∈ +∞ ∪ +∞ + ≥  so that we have the expansion in 

(11.14) with 0λ ≠ , ( ) ( )1r x o=  and n replaced by 1n + ; but we shall consider just 
the expansion in (11.14) with the stronger remainder-estimate ( ) ( ) ( )( )nr x O f x= . 
Under any one of the following further restrictions, either  

( ){ } ( ) ( ) ( )1 1of order 1 , ; 1 , ,nf n x r x xα α − −∈ +∞ + ∈ → +∞     (11.27) 

or  

( ){ } ( ) ( )( ) ( ) ( ) ( )1 1
of order 1 , ; 1 , ,

n
f n f x f x r x xα

−

±∞ ′∈ +∞ − ∈ → +∞  (11.28) 

then the asymptotic expansion in (11.14) can be rewritten as the new expansion:  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )( )

2

32 33

0

1
11

0

1
2

31 1
2 3!

11 , ,
1 !

ii

i

n i n nn i

i

f x r x f x f x r x f x f x r x f x

r x f x r x f x
i

n
r x f x O f x x

in

λ λ λ λ

λ

λ

−

=

−
−− −

=

′ ′ ′′ ′′+ + = + + + +

 ′′+ + + 
 

− 
+ + → +∞ −  

∑

∑

  (11.29) 

where all the terms, in the given order and with no grouping inside each sum, form an 
asymptotic scale at +∞ , that is  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

2 3

2 33 3 4(3)

4 14 1 1 .
nn n n

f x f x r x f x f x r x f x r x f x f x

r x f x r x f x r x f x f x

r x f x f x r x f x f x
−− −

′ ′ ′′ ′′ ′′
     

    

   

 (11.30) 

Example. For all 2n ≥  the function r:  

( ) ( )( ): , with 0,k
p h

k p
k p

r x x
β

β
+

=

= <∏ 
               (11.31) 

satisfies the conditions in (11.27), and also the conditions in (11.28) with respect to 
( ) ( ): expf x cxγ= , 0c ≠ , 0 1γ< < . 
Proof. The chain ( ) ( ) ( ) ( )f x f x r x f x′ ′

   obviously follows from ( )0f ∈ +∞  
and ( )1r o= . For 2n =  the right hand-side in (11.29) is an asymptotic expansion if 
“ ( ) ( ) ( )r x f x f x′ ′′

 ”; for 3n =  this happens if both conditions are satisfied: 
“ ( ) ( ) ( )r x f x f x′ ′′

 , ( )( ) ( ) ( ) ( )2 3r x f x f x′′
 ”; and in general the right-hand side 

in (11.29) is an asymptotic expansion if the following conditions are satisfied:  

( )( ) ( ) ( ) ( ) ( )1 1 , ; 2 .
k k kr x f x f x x k n
− − → +∞ ≤ ≤           (11.32) 

Now, if ( ){ }of order 1 , ,f nα α∈ +∞ + ∈  two circumstances can occur; if 
( ) ( ) ( ) ( )1 1~ ,k k

kf x f x xγ− −  0,kγ ≠  2 ,k n≤ ≤  then conditions in (11.32) are satisfied 

iff “ ( )( ) 1 1, 2 ,
k

r x x k n
− − ≤ ≤ ” i.e. “ ( )( ) 1 1n

r x x
− −
 ”. If this is not the case then, by 

Proposition 2.6-(I), there exists 0 2k ≥  such that:  
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( ) ( ) ( ) ( ) ( )
1

0

1 1
0

1
0

~ , 0; 2 ,

; ,

~ , 0; .

k k

k k

k k

x k k

f x f x o x k k

x k k n

γ γ

γ γ

−

− −

−

 ≠ ≤ ≤
= =


≠ < ≤

            (11.33) 

As above we see that conditions in (11.32) are satisfied for 0k k≠  iff  
( )( ) 1 1k

r x x
− −
 , whereas the condition for 0k k=  is certainly satisfied if  

( )( ) 0 1 1k
r x x

− −
 ; and our claim is proved.  

If ( ){ }of order 1f n±∞∈ +∞ −  then we have the set of relations in (4.8) whence it 
follows that  

( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( )

1 11 1

1 1

, 2 , 2

, 2 .

k kk k k k

k n

r x f x f x k n r x f x f x k n

r x f x f x k n r x f x f x

− −− −

− −

≤ ≤ ⇔ ≤ ≤

′ ′⇔ ≤ ≤ ⇔

 

 

 (11.34) 

  
For an exponentially-varying f a possible expansion with more than one term must 

be of a different type as the n-tuple ( )( ), , , nf f f′
  is no asymptotic scale at +∞ , and 

here is the corresponding result.  
Proposition 11.5. (Higher-order exponentiality). Let  

[ ) ( ){ }, of ordern
cf C T n∈ +∞ ∪ +∞ , { }\ 0c∈ , be represented, by (8.5), in the form 

( ) ( ) ecxf x H x= ⋅  where ( ){ }0 of orderH n∈ +∞ , so that we have:  

( )( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( )

e e e e

e e e .

r xcx c cx

r xcx c

f x r x f x H x r x H x

H x r x H x

λ

λ

λ λ

λ

+ + − = + + ⋅ − ⋅

 = ⋅ ⋅ + + − 
    (11.35) 

If ( ) ( )1r x o=  then we may replace ( )er x  by its n-term expansion in powers of 
( )r x  and ( )( )H x r xλ+ +  by its expansion of type (11.14) to get an expansion for 

the left-hand side in (11.35). For 0r ≡  we get:  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1

1

1
e e 1 e , , 0 .

!

kn
k ncx c c

k

f x f x

H x H x o H x x
k

λ λ

λ

λ λ
−

−

=

+ −

 
= ⋅ − + + → +∞ ≠ 

 
∑

  (11.36) 

For 1H ≡  the expansion reduces to the identity ( ) ( )e e e e 1c x cx cx cλ λ+ − = ⋅ − . For 
1n =  we have “ ( ) ( ) ( ) ( )e ~ 1cxH x f x c f x′⋅ = ” and the expansion is a disguised form 

of  

( ) ( ) ( ) ( ) ( )( )e 1 , ,cf x f x c f x o f x xλλ   ′ ′+ − = − + → +∞       (11.37) 

which is directly obtained from (8.26) and the decomposition  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

= .
f x f x f x f x f x

f x f x f x f x
λ λ+ − +

−
′ ′ ′

          (11.38) 

12. Conclusions and Open Problems 

As cursorily stated in the general introduction to this two-part paper in §1, our job 
consisted in: first, collecting all almost elementary and standard material about basic 
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properties of regularly-, rapidly- and exponentially-varying functions; second, giving 
appropriate definitions for higher-order types of asymptotic variation; third, exhibiting 
several characterizations of higher-order smooth and rapid variation and highlighting 
the role of a lemma by Balkema, Geluk and de Haan about smooth variation, a role 
somewhat hidden in the original concise proof. Afterwards, a great deal of work has 
been required to prove complete results concerning the possible types of asymptotic 
variation for functions obtained by means of algebraic operations; in so doing much of 
the material in the previous sections have been used including (seemingly) futile re-
marks and (seemingly) minor results. On the contrary §5 on asymptotic functional eq-
uations is expository in nature its only merit being that of collecting in a systematized 
way as many such equations as possible. And the same can be said for such types of eq-
uations satisfied by exponentially-varying functions and grouped in §8. 

All the material in both parts of the paper must be considered as the systematized 
general theory of higher-order asymptotic variation including the few simple applica-
tions in §§10,11. A (here again) semi-expository paper on the applications of such a 
theory should collect known and new results about asymptotic expansions of parame-
ter-dependent integrals and sums, solutions of differential-functional equations, impli-
cit functions and so on. But this requires a separate long effort. 

We end by pointing out a few open problems in the just developed theory. 
Open Problem 1. About the limit ( )f ′ +∞  for an exponentially-varying function f: 
-If “ ( )0f ∈ +∞ ” all possible circumstances can occur for “ ( )limx f x→+∞ ′ ” due to 

the great variety of functions in this class. 
-If “ ( ) { }, \ 0 ,cf c∈ +∞ ∈ ” then “ ( ) ( )~f x cf x′ ” and relations in (8.22) imply 

that:  
either “ ( ) ( )f f′ +∞ = +∞ = +∞ ” or “ ( ) ( ) 0f f′ +∞ = +∞ = ” accordind to the sign of c. 
-If “ ( )f +∞∈ +∞ ” then “ ( ) ( )( )f x f x′ = +∞ ” and relation in (8.37) implies that 

“ +∞+∞+∞′ =)(=)( ff ”. 
-But if “ ( )f −∞∈ +∞ ” then “ ( ) 0f +∞ = ” and “ ( ) ( )( )f x f x′ = −∞ ”, and this does 

not automatically implies “ ( ) 0f ′ +∞ = ”. Prove that “ ( ) 0f ′ +∞ = ” for each f in this 
class or find a counterexample. It is easily checked that if “ ( )f ′ +∞ ” exists in   then 
necessarily “ ( ) 0f ′ +∞ = ”; hence the only possible counterexample consists in a func-
tion “ ( )f −∞∈ +∞ ” such that “ ( )limx f x→+∞ ′ ” does not exist in  . See Remark 3 af-
ter the proof of Proposition 2.3 and Proposition 2.5-(III). 

Open Problem 2. Provide a proof for the third relation both in (8.41) and in (8.42) 
without the restriction “f convex”, or exhibit a counterexample. 

Open Problem 3. A counterexample to monotonicity condition in Lemma 11.1: 
Find a pair of functions (f, r) satisfying all conditions in (11.6) except monotonicity 

such that (11.1) does not hold true.  
Open Problem 4. The first sentence after (9.11), concerning the inversion of a func-

tion with a definite type of exponential variation is in fact inaccurate; for instance, if the 
index of exponential variation is a real nonzero number c, then the principal part of the 
inverse is 1/c times a logarithm and something can be said about higher-order variation 
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of the inverse. Find results for each extended real number c. 
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