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Abstract 
The generating function for generating integer sequence of Aunu numbers of prime cardinality 
was reported earlier by the author in [1]. This paper assigns an operator sup ,ai aj ai aj= ∆ + −Θ  

on the function ( ), 123
1

2
n

n
PA −

=  for 5n ≥  where the operation induces addition or subtraction on 

the pairs of ai, aj elements which are consecutive pairs of elements obtained from a generating set 
( ) ( ), 123 , 123n nB A⊂  of some finite order. The paper identifies that the set ( ), 123nB  of the generated 

pairs of integer sequence is non-associative. The paper also presents the graph theoretic applica-
tions of the integers generated in which subgraphs are deduced from the main graph and adja-
cency matrices and incidence matrices constructed. It was also established that some of the sub-
graphs were found to be regular graphs. The findings in this paper can further be used in coding 
theory, Boolean algebra and circuit designs. 
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1. Introduction 
An overview of Aunu numbers, Aunu permutations patterns, the 123 and 132 avoiding patterns and their appli-
cations was reported by the authors in [2]. This paper considered the prime enumerative function ( ), 123 , 5nA n ≥  
generated by the author in [3] and defined an operator on some ( ) ( ), 123 , 123n nB A⊂  using the addition and subtrac-
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tions as an operators such that the pairing of elements in ( ), 123nB  was closed in ( ), 123nA .  
In simplest form, a graph is a collection of vertices that can be connected to each other by means of edges. In 

particular, each edge of graph joins exactly two vertices. Using a formal notation, a graph is defined as follows. 
Definition 2.1: A graph G consists of a collection of V vertices and a collection of edges E, for which we write 
( ), .G V E=  Each edge e E∈  is said to join two vertices, which are called its end points. If e joins ,u v V∈ , 

we write , .e u v=  Vertex u and v in this case are said to be adjacent. Each e is said to be incident with vertic-
es u and v respectively. 

We will often write ( )V G  and ( )E G  to denote the set of vertices and edges associated with graph G re-
spectively. It is important to realize that an edge can actually be represented as an unordered tuple of two vertic-
es, that is, its end points. For this reason, we make no distinction between ,u v  and ,u v : they both 
represent the fact that vertex u and v are adjacent [4]. 

Definition 2.2: A graph H is a subgraph of G if ( ) ( )V H V G⊆  and ( ) ( )E H E G⊆  such that for all 
( )e E H∈  with ,e u v= , we have that ( ),u v V H∈ . When H is a subgroup of G, we write H G⊆  [4]. 

Definition 2.3: Adjacency matrix is a table A with n rows and m columns with entry [ ],A i j  denoting the 
number of edges joining vertex iv  and jv  [4]. 

Definition 2.4: An incidence matrix M of graph G consists of n rows and m columns such that [ ],M i j  
counts the number of times that edge je  is incident with vertex iv . Note that [ ],M i j  is either 0, 1 or 2. 

Theorem 2.1: For all graphs G, the sum of the vertex degrees is twice the number of edges [4]. That is, 

( )( ) ( )2v V G v E Gδ
∈

= ⋅∑ .                                  (1) 

Corollary 2.1: For any graph G, the number of vertices with odd degrees is even [4]. 

2. Method of Construction 

Let 
1

2
n

n
P

A
−

=  where in this case 5nP ≥  (being prime numbers). The restriction 5nP ≥  is deliberately put  

since we are only interested in enumerations involving Aunu numbers of (123)-avoiding category which, by de-
finition begins from 5 upwards as reported in [5]. Then;  

( ) { }, 123 2,3,5,6,8,9,11,14,15,18,20,21,nA =  . 

We now obtain from ( ), 123nA  a restricted subset ( ) { }, 123 2,3,5,6,8,9,11,14,15,18, 20, 21nB = . Then ( ), 123nB
( ), 123nA⊂  contains all elements of ( ), 123nA  up to 21. 

We are now set to carry out some algebraic theoretic investigations on ( ), 123nB  being a direct subset of 
( ), 123nA . 

First let us introduce an operator on ( ), 123nB  such that: 
Define an operator  

sup ,ai aj ai aj= ∆ + −Θ                                  (2) 

where: Θ  is an operator which induces addition or subtraction on any pair ( ), 123, nai aj B∈  whereby addition or 

subtraction in absolute value is closed in ( ), 123nA  and sup∆  implies whichever of ( ), 123or .nai aj ai aj A+ − ∈  

Then we obtain from ( ), 123nB  set of pairs 

( ) { }{ } { } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { } { }
{ } { } { } { } { } { } { } { }
{ } { }

, 123 2,3 ,{2,5 , 2,8 , 3,5 , 3,6 , 3,8 , 3,9 , 5,8 , 6,9 , 5,6 , 2,9 ,

3,14 , 11,3 , 11,6 , 11,5 , 11,8 , 11,9 , 5,9 , 6,8 , 6,11 , 15,6 ,

15,9 , 15,3 , 18,3 , 18,9 , 15,18 , 18,2 , 14,6 , 11,9 , 15,5 ,

20,2 , 20,5 , 20,6 , 20,9 , 20,14 , 20,18 , 21,3 , 21,6 ,

21,15 , 21,18

p
nB =

{ } { }}, 18,3 , 15,6

 

where the superscript p on ( ), 123nB  indicates that ( ), 123
p

nB  is obtained from ( ), 123nB  by breaking elements of 
( ), 123nB  into pairs such that application of Θ  of (1) on ( ), 123

p
nB is closed in ( ), 123nA . 
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3. Results 
3.1. Testing for Nonassociative Properties Using the Stated Pairing Scheme Yields the 

Following Results 
1) Given { } { }2,3 , 2,5 , {2,8}ai bi ci= = = , we note that: the operation rule is either “+ or −” as earlier de-

fined.  
{ } { }{ }{ } { }{ } { }2,3 , 2,5 2,8 2 5,3 5 3,8 2,8 5,6 .= − + = =  

Also { }{ } { }2,3 6,3 5,9=  
∴ { } { }5,6 5,9≠ , hence it is not associative. 
2) { } { } { } { }{ } { }{ } { }3,5 , 3,6 , 3,8 6,9 2,8 2,8 3,8 5,6= = =  
Also, { }{ } { }3,5 6, 2 3,5=  
∴ { } { }5,6 3,5≠ , hence it is not associative. 
3) { } { } { } { }{ } { }3,9 , 5,8 , 6,9 2,5 6,9 8,11= =  
Also,{ } { } { } { }{ } { }5,8 , 6,9 2,14 3,9 2,14 5,11= → =  
∴ { } { }8,11 5,11≠ , hence it is not associative. 
4) { } { } { } { }{ } { }3,5 , 6,9 , 11,3 9,11 11,3 2,8= =  
Also, { }{ } { }3,5 5,6 2,11=  
∴ { } { }2,8 2,11≠ , hence it is not associative. 
5) { } { } { } { }{ }{ } { }{ } { }3,14 , 11,3 , 11,6 8,3 6,3 11,6 2,6 11,6 9,5= = =  
Also,{ }{ } { }11,3 11,6 5,14=  
{ }{ }3,14 5,14 {8,9}=  
∴ { } { }9,5 8,9≠ , hence it is not associative. 
6) { } { } { } { }{ } { }11,5 , 11,8 , 11,9 6,3 11,9 5,3= =  
Also, { }{ } { }11,5 2,3 9,8=  
∴ { } { }5,3 9,8≠ , hence it is not associative. 
7) { } { } { } { }{ } { }5,9 , 6,8 , 6,11 11,3 6,11 5,9= =  
Also, { }{ } { }5,9 5,3 8,14=  
∴ { } { }5,9 8,14≠ , hence it is not associative 
8) { } { } { } { }{ } { }15,6 , 15,9 , 15,3 6,3 15,3 9,6= =  
Also, { }{ } { }15,6 18,6 3,9=  
∴ { } { }9,6 3,9≠ , hence it is not associative. 
9) { } { } { } { }{ } { }18,3 , 18,9 , 15,18 9,6 15,18 6,14= =  
Also, { }{ } { }18,3 3,6 15,9=  
∴ { } { }6,14 15,9≠ , hence it is not associative. 
10) { } { } { } { }{ } { }15,5 , 20, 2 , 20,5 5,3 20,5 15, 2= =  
Also, { }{ } { }15,5 18,3 3,8=  
∴ { } { }15, 2 3,8≠ , hence it is not associative. 
11) { } { } { } { }{ } { }20,6 , 20,9 , 20,14 11,14 20,14 9,6= =  
Also, { }{ } { }20,6 6,11 14,9=  
∴ { } { }9,6 14,9≠ , hence it is not associative 
12) { } { } { } { }{ } { }21,3 , 21,6 , 21,15 15,18 21,15 6,3= =  
Also, { }{ } { }21,3 6, 21 15,3=  
∴ { } { }6,3 15,3≠ , hence it is not associative. 
13) { } { } { } { }{ } { }21,8 , 18,3 , 15,6 3,11 15,6 18,5= =  
Also, { }{ } { }21,8 3,9 18,11=  
∴ { } { }18,5 18,11≠ , hence it is not associative. 

3.2. Graph Theoretic Schemes Generated Using Pairs of Elements in An and Bn 
In what follows some graph theoretic models are presented using pairs of points of ( ), 123nA  and ( ), 123nB  as ad-
jacent nodes. 

Figure 6 shows some examples of regular graphs and their adjacency and incidence matrices can be 
constructed using the same format as outlined in Table 1-10. 
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Table 1. Adjacency matrix of Figure 1. 

 2 3 5 6 8 9 11 14 15 18 20 21 

2 0 1 1 0 1 1 0 0 0 1 1 0 

3 1 0 1 1 1 1 1 1 1 1 0 1 

5 1 1 0 1 1 1 1 0 1 0 1 0 

6 0 1 1 0 1 1 2 1 1 0 1 1 

8 1 1 1 1 0 0 1 0 0 0 0 0 

9 1 1 1 1 0 0 1 0 1 1 1 0 

11 0 1 1 2 1 1 0 0 0 0 0 0 

14 0 1 0 1 0 0 0 0 0 0 1 0 

15 0 1 1 1 0 1 0 0 0 1 0 1 

18 1 1 0 0 0 1 0 0 1 0 1 1 

20 1 0 1 1 0 1 0 1 0 1 0 0 

21 0 1 0 1 0 0 0 0 1 1 0 0 

Theorem 2.1 and corollary 2.1 has been satisfied. Note also that, every column of incidence matrix has 
2e =  entries 1. 

 
Table 2. Incidence matrix of Figure 1. 

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26 e27 e28 e29 e30 e31 e32 e33 e34 e35 e36 e37 e38 e39 

2 1 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

6 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 

8 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 

18 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 

20 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 
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Table 3. Adjacency matrix of subgraph in Figure 2. 

 3 5 6 9 11 

3 0 1 1 1 0 

5 1 0 1 1 1 

6 1 1 0 1 2 

9 1 1 1 0 1 

11 0 1 2 1 0 

Theorem 2.1 and corollary 2.1 has been satisfied. Note also that, every column of incidence matrix has 
2e =  entries 1. 

 
Table 4. Incidence matrix of subgraph in Figure 2. 

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

3 1 1 1 0 0 0 0 0 0 0 

5 1 0 0 1 1 1 0 0 0 0 

6 0 1 0 1 0 0 1 1 1 0 

9 0 0 1 0 1 0 1 0 0 1 

11 0 0 0 0 0 1 0 1 1 1 

 
Table 5. Adjacency matrix of subgraph of Figure 3. 

 2 3 8 9 11 

2 0 1 1 1 0 

3 1 0 1 1 1 

8 1 1 0 0 1 

9 1 1 0 0 1 

11 0 1 1 1 0 

Theorem 2.1 and corollary 2.1 has been satisfied. Note also that, every column of incidence matrix has 
2e =  entries 1. 

 
Table 6. Incidence matrix of subgraph of Figure 3. 

 e1 e2 e3 e4 e5 e6 e7 e8 

2 1 1 1 0 0 0 0 0 

3 1 0 0 1 1 1 0 0 

8 0 1 0 1 0 0 1 0 

9 0 0 1 0 1 0 0 1 

11 0 0 0 0 0 1 1 1 
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Table 7. Adjacency matrix of subgraph of Figure 4. 

 3 5 6 9 11 14 15 18 20 21 

3 0 1 0 0 0 0 1 1 0 0 

5 1 0 1 1 1 0 1 0 0 0 

6 0 1 0 0 1 1 0 0 0 1 

9 0 1 0 0 1 0 0 0 0 0 

11 0 1 1 1 0 0 0 0 0 0 

14 0 0 1 0 0 0 0 0 1 0 

15 1 1 0 0 0 0 0 1 0 0 

18 1 0 0 0 0 1 0 0 1 1 

20 0 0 0 0 0 1 0 1 0 0 

21 0 0 1 0 0 0 0 1 0 0 

Theorem 2.1 and corollary 2.1 has been satisfied. Note also that, every column of incidence matrix has 
2e =  entries 1. 

 
Table 8. Incidence matrix of subgraph of Figure 4. 

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 

3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

5 1 0 0 1 1 1 1 0 0 0  0 0 0 0 

6 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 

9 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 

11 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 

14 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 

15 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 

18 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 

20 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

21 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 
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Table 9. Adjacency matrix of subgraph of Figure 5. 

 3 5 6 15 18 21 

3 0 1 0 1 1 1 

5 1 0 1 0 0 0 

6 0 1 0 1 0 1 

15 1 0 1 0 1 1 

18 1 0 0 1 0 1 

21 1 0 1 1 1 0 

Theorem 2.1 and corollary 2.1 has been satisfied. Note also that, every column of incidence matrix has 
2e =  entries 1. 

 
Table 10. Incidence matrix of subgraph of Figure 5. 

 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 

3 1 1 1 1 0 0 0 0 0 0 

5 1 0 0 0 1 0 0 0 0 0 

6 0 0 0 0 1 1 0 0 1 0 

15 0 1 0 0 0 1 1 1 0 0 

18 0 0 1 0 0 0 1 0 0 1 

21 0 0 0 1 0 0 0 1 1 1 
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Figure 1. Graph network constructed from elements of An and Bn. 
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Figure 2. Subgraph of the network of Figure 1. 
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Figure 3. Subgraph of the network of Figure 1. 
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Figure 4. Subgraph of the network of Figure 1. 
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Figure 5. Subgraph of the network of Figure 1. 
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Figure 6. Subgraph of the network of Figure 1. 
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Figure 7. Subgraph of the network of Figure 1. 

 
Figure 7(i)-(vi) also shows some examples of regular graphs and their adjacency and incidence matrices can 

be constructed using the same format as outlined in Table 1-10 and can also be viewed as Eulerian circuits. 

4. Conclusion 
After establishing the non-associativity of the finite sets ( )123nA  and ( )123nB  under the action of an operator 

sup∆  we have also established some good applications in graph network analysis. This, we have achieved by 
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generating some Eulerian circuits which are of some consequences in the study of network theory and in circuits 
theory. Our results would thus have some promising applications in both the communication and in the signal 
processing formalisms. Also the results involving adjacency and incidence matrices could be used in communi-
cation and coding theory which could be investigated in further researches. 
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