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Abstract 
In this paper entitled on commutative Delta-Semigroups, we have obtained important results on 
commutative Δ-semigroups. 
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Introduction 
The concept of a commutative Δ-semigroup was introduced by a Tamura. T in his paper entitled “Commutative 
semigroup whose lattice of congruences is a chain” appeared in Bulletin de la S. M. F., tome 97 (1969), p. 369 - 
380 [1]. A semigroup S is called a Δ-semigroup if and only if the lattice of all congruences on S is a chain with 
respect to inclusion relation, in fact if S is a Δ-semigroup, then all the ideals of S form a chain, hence all the 
principal ideals of S from a chain. It is observed that a Δ-semigroup is either an s-indecomposable semigroup or 
these tunion of two s-indecomposable semigroups. Further every homomorphic image of Δ-semigroup is a Δ- 
semigroup. A semilattice is a Δ-semigroup if and only if it is of order ≤2, further a Δ-semigroup S is a s-inde- 
composable semigroups [2]. In fact, if G is a group, then G is an abelian Δ-semigroup if and only if G is a 
p-quasicyclic for some prime p which is also equivalent for saying that all sub semigroups of G are from a chain 
[3]. Further an abelian group oG  with zero is a Δ-semigroup if and only if G is a p-quasicyclic group, p is ar-
bitrary prime. It is also observed that an abelian group oG  with 0 is a Δ-semigroup if G is a p-quasicylicgroup, 
for an arbitrary prime p. Further in [4] Tamura stated that an ideal of semigroup S, every homomorphism of I 
onto a non-trivial group G can be extended to a homomorphism of S onto G. we proved that result in theorem 
0.8. In fact in this paper, we gave an example to show that the above result need not valid if the word “ideal” is 
replaced by just “left ideal”. In fact, if a semigroup S contains a proper ideal I and if S is a Δ-semigroup, then 
neither S nor I is homomorphic onto a non-trivial group. 

First, we start with the following preliminaries: 
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Definition 1 [1]: A semigroup S is called a Δ-semigroup if and only if the lattice of all congruences on S is a 
chain with respect to inclusion relation. That is, if ρ and σ are congruences on S, then exactly one of the follow-
ing three holds , , .ρ σ ρ σ σ ρ⊂ = ⊂  

Definition 2 [5]: If I is an ideal of a semigroup S then ρI = (I x I) ⋃ 1S is a congruence on S. it is called the 
Rees-congruence modulo the ideal I.  

Definition 3 [4]: A s-indecomposable semigroup is a semigroup which has no semilattice homomorphic im-
age except trivial one (one element semigroup). 

Definition 4 [3]: Let p be a prime number. If a group G is the set union of a finite or infinite ascending chain 
of cyclic groups nc  of order np , that is,  

1
,n

n
G C

∞

=

=


 
1 2 ,nC C C⊂ ⊂⊂ ⊂   

then G is called a p-quasicyclic group, or quacyclic group if it is not necessary to specify p. 
Definition 5 [5]: If a semigroup S satisfies the condition the divisibility ordering is a chain, we say then S sa-

tisfies the divisibility chain condition. 
First, we start with the following Theorem. 
Theorem 1: If S is a Δ-semigroup, then all the ideals of S form a chain, hence all the principal ideals of S 

form a chain. 
Proof: If S is a ∆-semigroup by the definition of ∆-semigroup; all Rees-congruences on S form a chain. Let ρ 

and σ be Rees-congruences modulo ideals I and J respectively. Now we show that ρ σ⊆  if and only if I J⊆ .  
Suppose ρ σ⊆  and let , I∈x y  so that ( ), ρ σ∈ ⊆x y  and thus ( ), σ∈x y  and hence , J∈x y . Thus 

I J⊆ . Conversely assume that I J⊆ , let ( ), ρ∈x y  so that both , I J∈ ⊆x y  then both , J∈x y  an thus 

( ), σ∈x y  and hence ρ σ⊆ . Therefore all the ideals of S form a chain. Since the set of all Rees-congruences 

of a ∆-semigroup forma infinite chain which is in fact a complete chain. In this chain every ideal is a principal 
ideal. Hence all the principal ideals of S form a chain. 

Proof: Let A be a ∆-semigroup that congruences of A form a chain. Let B be a homomorphic image of A, then 
also in B congruences form a chain. Let :f A B→  be a homomorphism which is onto. Let ρ  and σ  be 

any two congruences on B, then ( ) ( ) ( ) ( ) ( )( ){ }1  ,   | ,f X f A X A f x f yρ ρ− = ∈ ∈x y  clearly a congruence on 

A containing the kernel of f. Where ( ) ( ) ( ){ }ker ,   |f A X A f x f y= ∈ =x y  is congruence on A. it is observed 

that ( ) ( )1ker   f f X f ρ−⊆ . Let ( ), ker f∈x y  ⇒ ( ) ( )f x f y=  and thus ( ) ( ),f x f y ρ∈  ( ρ∴  is ref-

lexive) and hence ( ) ( ) 1,   f X f ρ−∈x y  and therefore ( ) ( )1ker   f f X f ρ−⊆ . Now we observe that  

( ) ( )1  f X f ρ−  is a congruence. We have ( ) 1  f X f ρ−  is reflexive. Let ( ) ( ) 1,   f X f ρ−∈x y  so that  

( ) ( )( ),f x f y ρ∈  and thus ( ) ( ),f y f x ρ∈  ( ρ∴  is symmetric) and hence ( ) ( ) 1,   f X f ρ−∈y x  and  

therefore ( ) ( )1  f X f ρ−  is symmentric. Let ( ) ( ) ( )1,   f X f ρ−∈x y  and ( ) ( ) ( )1,   f X f ρ−∈y x  so that  

( ) ( )( ),f x f y ρ∈  and ( ) ( ),f y f x ρ∈  and thus ( ) ( ),f x f z ρ∈  ( ρ∴  is transitive) and hence  

( ) ( ) ( )1,   x z f X f ρ−∈  and therefore ( ) ( )1  f X f ρ−  is transitive. Thus ( ) ( )1  f X f ρ−  is an equivalence rela-

tion. Let ( ) ( ) ( )1,   f X f ρ−∈y x  and a A∈  so that ( ) ( )( ),f x f y ρ∈  and thus 

( ) ( )( ) ( ) ( )( ), , ,f a f x f a f y ρ∈  and ( ) ( )( ) ( ) ( )( ), , ,f x f a f y f a ρ∈  and hence ( ) ( )( ),f ax f ay ρ∈  and

( ) ( )( ),f xa f ya ρ∈  ( ρ∴  is congruence) and therefore ( ) ( ) ( ) ( )1,   ax ay f X f ρ−∈  and  

( ) ( ) ( ) ( )1,   xa ya f X f ρ−∈ . Thus ( ) ( )1  f X f ρ−  is a congruence containing ker  f ] and ( ) ( )1  f X f ρ−  is a 
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congruence containing ker  f . Now the congruences on A form a chain, thus either  

( ) ( ) ( ) ( )1 1    f X f f X fρ σ− −⊆  or ( ) ( ) ( ) ( )1 1    f X f f X fσ ρ− −⊆ . Suppose that  

( ) ( ) ( ) ( )1 1    f X f f X fρ σ− −⊆ . Now we claim that ρ σ⊆  Let ( ) ( )( ),f x f y ρ∈  so that  

( ) ( ) ( )1,   f X f ρ−∈x y  and thus ( ) ( ) 1,   f X f −∈x y  and therefore ( ) ( )( ),f x f y σ∈ . Thus ρ σ⊆ . Con-

versely, let ( ) ( ) ( )1,   f X f ρ−∈x y  so that ( ) ( )( ),f x f y ρ∈  thus ( ) ( )( ),f x f y σ∈  and hence  

( ) ( ) ( )1,   f X f σ−∈x y . Thus ( ) ( ) ( ) ( )1 1    f X f f X fρ σ− −⊆ . Hence ( ) ( ) ( ) ( )1 1    f X f f X fρ σ− −⊆  if and 

only if ρ σ⊆ . Thus every homomorphic image of a ∆-semigroup is a ∆-semigroup. 
Theorem 3: A semilattice is a ∆-semigroup if and only if it is of order ≤ 2. 
Proof: Let L be a semilattice of order ≤ 2. We define , L∈x y , ≤x y  by z=x y  for some z L∈  i.e.  

( 2z z z z= = = = =xy y y yy y y x  and 2z z z= = = =yx yy y y x  and thus =xy yx ). Let a, b be distinct  
elements of L and let { }|aI ax x= ≤ , { }|bI bx x= ≤ , then aI  and bI  are ideals of L. Let aρ  and bρ  
denote the Rees-congruences modulo the ideals aI  and bI  respectively, since a bI I≠ , a bρ ρ≠ . Suppose L is a 
Δ-semigroup then either a bρ ρ⊆  or b aρ ρ⊆ . Hence either a bI I⊆  or b aI I⊆ . For the first case, ba I∈  
namely b<  ( a bI I∴ ⊆ ). There L is a chain. Suppose L is a chain containing at least three elements , ,a b c  say 

.a b c< <  Let { }\I x x b+ = ≥  where I −  is an ideal of L. We defined congruences ρ+  and ρ−  on L as fol-
lows: 

( ), ρ+∈x y  if and only either , I +∈x y  or =x y , 

( ), ρ−∈x y  if and only either , I −∈x y  or =x y . 

Clearly ρ−  is the Rees-congruence modulo I − . Now we show that ρ+  is a Rees-congruences. Clearly ρ+  
is reflexive. Let ( ), ρ+∈x y  so that eighter =x y  or , I +∈x y  and hence ( ), ρ+∈y x . Thus ρ+  is sym-
metric. Let ( ), ρ+∈x y  and ( ), ρ+∈y x  so that either =x y  or , I +∈x y  and either z=y  or  

, z I +∈y  and thus z=x  or , z I +∈x  and hence ( ), z ρ+∈x  then ( ),z z ρ+∈x y  and ( ),z z ρ+∈x y ,
.z L∀ ∈<  let ( ), ρ+∈x y  so that either =x y  or , I +∈x y . Suppose z b∈  then z b∧ ≥x  and z b∧ ≥y  

and suppose z b≥  then b z≥ ≥x  and b z≥ ≥y  and thus , .z z z z∧ = ∧ =x y  Hence ( ),z z ρ+∧ ∧ ∈x y  
and ( ),z z ρ+∧ ∧ ∈x y . Thus ( ),z z ρ+∈x y  and ( ),z z ρ+∈x y . Hence ρ+  is a congruence modulo I + . 
Now ( ),a b ρ−∈  but ( ),a b ρ+∉ . Suppose ( ),a b ρ−∈ , then either ,a b I −∈  or a b=  since ,a b I −∈ , so, 
a b≤ , b b≤ . Suppose ,a b I +∈  then a b≤ , b≤ . Then is contradiction ( a b c∴ < <  in L). thus ( ),a b ρ−∈  
but ( ),a b ρ+∉ . Also ( ),c b ρ+∉  but not in ( ),a b ρ−∈ . Suppose ( ),a b ρ+∈ , then either ,c b I +∈  or 
c b=  since b I +∈ , so ,c b≥  b b≥ . Suppose ,c b I −∈ , then c b≥ , b b≥ . this is contradiction 
( a b c∴ < <  in L). thus ( ),c b ρ+∈  but ( ),c b ρ−∉ . 

Therefore ρ ρ+ −  and ρ ρ− + . This is contradiction to our assumption. Thus L is a chain of order ≤ 2. 
Conversely suppose that L is a semilattice with two elements. Then   L x L  and 1L  are congruences on L and 
clearly 1   .L L x L⊆  Thus all congruences on two elements semilattice are comparable. Thus L is a Δ-semigroup. 

Theorem 4: A ∆-semigroup is either an S-indecomposable semigroup or the set union of two S-indecomposable 
semigroups. 

Proof: We define a relation   on S as a b  if and only if ( ) ( )N a N b=  that is a b  if and only if 
a F∈  if and only if b F∈  for any filter containing a. Now we show that   is an equivalence relation. Let 
a a  so that ( ) ( )N a N a=  thus   is reflexive. Let a b  so that ( ) ( )N a N b=  and thus a F∈  if and 
only if b F∈  and therefore ( ) ( )N b N a=  and hence b a . Thus   is symmetric. Let a b  and b c  
so that ( ) ( )N a N b=  and ( ) ( )N b N c=  and thus a F∈  if and only if b F∈  and b F∈  if and only if 
c F∈  and hence a F∈  if and only if c F∈  and therefore ( ) ( )N a N c= . Thus a c . So that   is tran-
sitive. Thus   is an equivalence relation. Now we have to show that   is a congruence on S that is 

,a b∈  so that ( ),ac bc ∈  and ( ),cb ca ∈ . Suppose ( ),a b ∈  so that ( ) ( )N a N b=  and thus 
( ) ( )N ac N bc=  and hence ac F∈  if and only if ,b c F∈  (since ( ) ( )N a N b=  ) if and only if bc F∈  

and therefore ( ) ( ).N ac N bc=  thus ( ),ab ba ∈  and similarly ( ),ca cb ∈ . Thus   is a congruence 
on S. Now ( )2 ,a a ∈  so that ( ) ( )2N a N a=  and thus 2a F∈  if and only if a F∈  and also 
( ),ab ba ∈  since ab F∈  if and only if ,a b F∈  if only if , .b a F∈  Thus ( ) ( )N ab N ba=  so that 
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( ), .ab ba ∈  Thus   is a semilattice congruence on S. Now we have to show that   is the least semilat-
tice congruence on S. If ρ is any semilattice congruence on S. Now we claim that ρ⊆ . Suppose ,a b∈  
so that ( ) ( )N a N b=  we have ( ),ab ba ρ∈  and ( )2 ,a a ρ∈ . Now we have to show that ( ),a b ρ∈  so that 
a bρ ρ= . Let K be a filter in S|ρ such that a Kρ ∈  we have : |S s ρΠ →  by ( )x xρΠ =  is the natural 
homomorphic { }|a x S x Kρ∈ ∈ ∈  is a filter of s so that b Kρ ∈ . Thus we have for any filter K of S|ρ we 
have a Kρ ∈  if and only if b Kρ ∈  so that a bρ ρ=  and thus ( ),a b ρ∈ . Thus ρ⊆ . Thus   is a 
least semilattice congruence on S. we have :f Na Y→  is onto homomorphism. Here | ker  .Na f Y≈  

We have to show that    .ker f Na X Na=  
Let be the family of completely prime ideals of S such that ( ),a b σ∈  so for any either ,a b I∈  or ,a b I∉  

where ab I∈  wherever either a I∈  or b I∈ . Here ( ) ( ){ }|Na x S N x N a= ∈ = . Suppose  
( ),   x y Na X Na∈  then ( ) ( ) ( )N x N y N a= = . Now Ι is a completely prime ideal such that x I∈  and y I∉  
that is \y S I∈  is a filter and \ .x S I∉  We have to show that \S I  is a filter. Let , \a b S I∈  so that 
a I∉  and b I∉  and thus ab I∉  and hence  \a b S I∈  if  \a b S I∈  then \b S I∈  otherwise either 
a I∈  or b I∈  we have a I∈  so that ab I∈  or b I∈  so that ab I∈ . This is contradiction, so that 

 a b I∉ . Thus  \a b S I∈ . Hence \S I  is a filter. Thus each Na  is a s-indecomposable semigroup. 
Now let τ  be a family of completely prime ideals of S. Define ( ),a b σ∈  by for any I τ∈  we have either 

,a b I∈  or ,a b I∉ . Let ( ),a a σ∈  so that either a, a I∈  or a I∉  so σ is a reflexive. Let ( ),a b σ∈  so 
that either ,a b I∈  or ,a b I∉  so that ( ),b a σ∈  and hence σ is a symmetric. Let ( ),a b σ∈  and ( ),b a σ∈  
so that either ,a b I∈  or ,a b I∉  and either ,b c I∈  or ,b c I∉ . 

Case (i): Let ,a b I∈  and ,b c I∈ , so ,a c I∈ . 
Case (ii): Let ,a b I∈  and ,b c I∉ , so ,a c I∈  and thus a I∈  or c I∈  and hence c I∈ . 
Case (iii): Let ,a b I∈  and ,b c I∈  so that ac I∈  and thus a I∈  or c I∈  and hence a a I∈  thus 

( ),a c σ∈ . 
Thus σ is an equivalence relation on S. 
Now we have ( ),a c σ∈  we have to show that ( ),ac bc σ∈  that is ,ac bc I∈  or ,ac bc I∉ . For any 

I τ∈  since ( ),a b σ∈ , so ( ),a b I∈  or ,a b I∉ . Now we take ac I∈  and bc I∉ . So that either a I∈  or 
c I∈  and thus c I∈  and hence bc I∈  (since b I∈ ). Thus ( ),ac bc σ∈  and similarly ( ),ca cb σ∈ . Thus 
σ is a congruence on S. Also clearly ( )2 ,a a σ∈  (since a I∈ , so 2a I∈ ). Now we claim that ( ),ab ba σ∈  
that is both either ,ab ba I∈  or ,ab ba I∉ . Now take ab I∈  and ba I∉  so that either a I∈  or b I∈  
and thus b I∈  and hence ba I∈ . Thus ( ),ab ba σ∈ . Thus σ is a semilattice congruence on S. 

Conversely given any semilattice congruence ρ we have to show that ρ σ=  we have : |S s ρΠ →  where 
s|ρ is a semilattice so that a bρ ρ≤  if and only if a b bρ ρ ρ⋅ = . Let J be an ideal of s|ρ so that  

( ) { }1 |a J x S xp J−∉Π = ∈ ∈  is completely prime ideal. Let ( )1a J−∉Π  so and ( )1b J−∉Π  so that a Jρ ∉  
and b Jρ ∉ . Now ( ) ( )( )ab a b a b Jρ ρ ρ ρ ρ= = ∨ ∉  

So ( )1ab J−∉Π . 
Let τ  be the set of all completely prime ideals of the form ( )1 J−Π  where J is an ideal of S|ρ. Let σ be the 

induced semilattice congruence on S. Now ( ),a b σ∈  if and only if for any completely prime ideals ( )1 J−∉Π  
where J is an ideal of S|ρ so that ( )1,a b J−∈Π  or ( )1,a b J−∉Π  and thus ,a b Jρ ρ ∈  or ,a b Jρ ρ ∉  and 
hence ( ),a b ρ∈ . Thus ρ⊆ . Now we claim σ⊆ . Let ( ),a b ρ∈  so that a bρ ρ= . Suppose a bρ ρ≠  so 
that a bρ ρ  and thus ( ]a bρ ρ∉ . Then there is an ideal J of S|ρ such that b Jρ ∈  and a Jρ ∉ . Then 

( )1b J−∈Π  and ( )1a J−∉Π . This is contradiction since a bρ ρ≠ . Thus a Jρ ∈  and b Jρ ∈ . Then 
( )1,a b J−∈Π . Hence ( ),a b σ∈ . Thus ρ σ⊆ . Hence ρ σ= . 

Since S is a ∆-semigroup and every homomorphic image of a ∆-semigroup is a ∆-semigroup, So /S   is a 
∆-semigroup, which is also a semilattice ∆-semigroup if and only if is of order less than 2, so / 2S ≤ . thus 

/ 1S =  or / 2S ≤ . If / 1S =  we are through. If / 2S =  then we have 0 1S S S=   where 
0 1 0 ,S S S⊆  and 1 0 0 ,S S S⊆  and 0 1 0 1, , .S S S S∅= ≠ ∅  
Theorem 5: If G is a group then the following statements are equivalent: 
(1) G is an abelian group which is a ∆-semigroup; 
(2) G is a group in which all subgroups from a chain; 
(3) For any two elements a and b of a group G, either na b=  or nb a=  for some positive integer n; 
(4) G is a p-quasicyclic group for some prime p; 
(5) G is a group in which all subsemigroups from a chain. 
Proof: (1) ⇒ (2) Let G be an abelian group such that G is a ∆-semigroup. Since G be an abelian, so G is a 



K. V. R. Srinivas 
 

 
313 

group such that G is a ∆-semigroup. Let H be any subgroup of G then we have the congruence on H is defined 
by ( )moda b H≡  if and only if 1b H− ∈ . This relation is an equivalence relation. Clearly reflexive, since a is 
always congruent to a. 

It is also symmetric. Since a is congruent to b, so b is also congruent to a. Let ( )moda b H≡  and 
( )modb c H≡  then 1b a H− ∈  and 1c H− ∈ . Now we show that ( )moda c H≡  if and only if 1c H− ∈ . 

Now 1 1 1c bb a c a H− − −= ∈ . Now we so that ( )modac bc H≡  so that  
( ) ( )1 1 1 1 1 1bc ac c b ac b c ca b H− − − − − −= = = ∈ . Thus ( )modac bc H≡  similarly ( )modac bc H≡ . Thus the rela-
tion is congruence. Let 1 2 nH H H⊆ ⊆ ⊆  then { }1 2 n nH H H H=  . Hence the set of all subgroups 
of a group G from a chain. 

(2)⟹ (3) Let G be a group satisfying the condition that subgroups from a chain. Then G is periodic and all 
cyclic subgroups from a chain. i.e. a b⊆  or b a⊆ . If a b⊆  then na b=  for some positive in-
teger n, or if b a⊆ . Then nb a=  for some positive integer n. 

(3)⟹ (4) By the periodicity of G it follows that all cyclic subgroups of G form a chain with respect to inclu-
sion. According the order of every element, hence of every cyclic subgroup is a power of a same prime number 
p. let ( )C x  denote the cyclic subgroup generated by x. Let nF  be the set of all elements of order np  in G. 
We have a finite or infinite sequence { }nF  and 

1
n

n
G F

∞

=

=


                                       (1) 

Let { }, nx F∈y  by (3), we have either m=x   or mx=  for some 0.m >  Assume that ,m=x   so 

( ) ( )C x C⊆ y  since ( ) ( ) nC x C p= =y , so we have ( ) ( )C x C= y  similarly mx= , we have  

( ) ( ).C x C= y  Conversely, suppose ( ) ( )C x C= y  we have ( ) ( ) nC x C p= =y . since ( )x C x∈  so that  

np=x  for some p and mq=x  for some q and thus n mp q=  (since ( ) ( )C x C= y ). Thus nx F∈  and  

similarly nF∈y  so that , nx F∈y . Thus ( ) ( )C x C= y  if and only if ,x y  are in a same nF . Choose one 
element na  in nF . then we have a finite or infinite sequence ( ) ( ) ( )1 2 nC a C a C a⊂ ⊂ ⊂ ⊂   → (2) 
where ( ) n

nC a p=  and ( )n nF C a⊂  by (1). 

( )
1

n
n

G C a
∞

=

=


 

If the sequence (2) is finite ( )nG C a=  for some n. that is G cyclic subgroup of order np . Thus we have G 
is a p-quasicyclic group of some prime p. 

(4) ⟹ (5) Let G be a p-quasicyclic group, that is G is ( )1 nn
C a∞

=
 where ( )nC a  is cyclic group of order p. 

Let H be a subsemigroup of G and let nnH F H′ =   where nF  is the set of all elements of order np  in G, 
also ( )n nF C a⊂ . Here 

1n
nH H

∞

=

′=


 

Let nx H ′∈  by the definition of nF , ( ) ( ) .nC a C x H= ⊆  If the set { }|
ii nn H φ′ ≠  is infinite, then H G= . 

If the set is finite, and if mn  its maximum, ( )nmH C a= . Consequently G has no proper subsemigroup, hence 
no proper subgroup except ( ) , 1, 2,nC a n =   in (2). Thus ( ) ( ) ( )1 2 mnC a C a C a⊂ ⊂ ⊂ . Thus we have all 
subsemigroups of G form a chain. 

(4) ⇒ (1) Since cyclic groups are abelian, so G is abelian which is a ∆-semigroup. 
(5) ⇒ (1) It follows that G is periodic, therefore every subsemigroup is a subgroup. Hence all subgroups form 

a chain.  
Theorem 6: A group G0 with zero is a ∆-semigroup if and only if the group G is a ∆-semigroup. 
Proof: Let G be a group and G0 be the group G with zero element adjoined. Let ρ be any congruence on G. A 

congruence ρ0 on G0 is associated with as follows: 
( ) 0,a b ρ∈  if and only if either 0a b= =  or ( ),a b ρ∈ , ,a b G∈ . Clearly ρ0 is reflexive, since ( ),a a ρ∈  

and ρ is reflexive. Let ( ) 0,a b ρ∈  so that either 0a b= =  or ( ),a b ρ∈  and thus 0a b= =  or ( ),b a ρ∈  
( ρ∴  is symmetric). Thus ( ) 0,b a ρ∈  and hence ρ is symmetric. Let ( ) 0,a b ρ∈  and ( ) 0,b c ρ∈  so that ei-



K. V. R. Srinivas 
 

 
314 

ther 0a b= =  or ( ),a b ρ∈  and either 0b c= =  or ( ),b c ρ∈  and thus 0a c= =  or ( ),a c ρ∈  ( ρ∴  is 
transtive). Thus ( ) 0,a c ρ∈  and hence ρ0 is transtive. Hence ρ0 is an equivalence relation. Let ( ) 0,a b ρ∈  and 
c G∈  so that either 0a b= =  or ( ),a b ρ∈  an also 0ac bc= =  or ( ),ac bc ρ∈  ( ρ∴  is congruence). 
Thus ( ) 0,ac bc ρ∈  and similarly ( ) 0,ca cb ρ∈ . Thus ρ0 is a congruence on G0. Clearly the mapping 0ρ ρ→  
is a one to one. Now we have to show that ρ σ⊆  if and only if 0 0ρ σ⊆ . Assume that ρ σ⊆  and let 
( ) 0,a b ρ∈  so that either 0a b= =  or ( ),a b ρ∈ , ,a b G∈  and thus either 0a b= =  or ( ),a b σ∈   
( ρ σ∴ ⊆ ) and hence ( ) 0,a b σ∈ . Thus 0 0ρ σ⊆ . Conversely suppose that 0 0ρ σ⊆  let ( ) 0 0,a b ρ ρ⊆∈  
and thus ( ) 0,a b σ∈  ( 0 0ρ σ∴ ⊆ ) and hence ( ),a c σ∈  ( 0 0σ σ∴ ⊆ ) so that ρ σ⊆ . Hence ρ σ⊆  if and 
only if 0 0ρ σ⊆ . Let Gω  and 0G

ω  denote the universal relation on G and G0 respectively. Now we will 
prove that every congruence on G0 is either 0G

ω  or ρ0, acongruence associated with ρ on G. let 𝜎𝜎 be a con-
gruence on G0 so that ( ),0a σ∈  for some a G∈  and multiflying the both sides by 1a x− , 0x G∈  we have 
( ),0x σ∈ , for all 0 .x G∈  Therefore 0G

σ ω= . Thus every congruence on G0 is either 0G
ω  or ρ0 for some 

congruence ρ on G, and also clearly 0G G
ω ω⊆ . Hence a group G0 with zero is a ∆-semigroup if and only if the 

group G is a ∆-semigroup. 
Theorem 7: An abelian group G0 with zero is a ∆-semigroup if and only if G is a p-quasicycli group, p is ar-

bitrary prime. 
Proof: From theorem 6 we have G is a p-quasicycli group for some prime p if and only if G is an abelian 

group which is a ∆-semigroup. From theorem 6 we have a group G0 with zero is a ∆-semigroup if and only if the 
group G is a ∆-semigroup. Since G is an abelian group which is a ∆-semigroup. So G0 is an abelian group with 
zero is a ∆-semigroup. 

Theorem 8: Let I be an ideal of a semigroup S. If f is a homomorphism of I onto a non-trivial group G, then 
there is a homomorphism g of S onto G such that f is the restriction of g to I. 

Proof: Let :f I G→  is an onto homomorphism :g S G→  defined by ( ) ( ) ,g x f x=  if x I∈ , 
( ) ( ) ( ) 1g x f xa f a −= , If x I∉  (choose a I∈ ) Now we show that g is a homomorphism. 
Case(i): If both x I∈ , y I∈ . ( ) ( ) ( ) ( ) ( ) ( ).g xy f xy f x f y g x g y= = =  Thus g is a homomorphism. 
Case(ii): If x I∉ , y I∈ . 
We have ( ) ( )g xy f xy=  and ( ) ( ) ( ) ( ) ( )1 .g x g y f xa f a f y−=  Now ( ) ( ) ( ) ( )1f xy f xa f a f y−=  

since ( ) ( ) ( ) ( ) ( ) ( )1f a f xy f a f xa f a f y−=  and since ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1f a f xy f a xy f ax f a f a f y−= =  

and ( ) ( ) ( ) ( ) ( ) ( )1f a f xa f a f y f ax f y− =  and ( )( ) ( )( ).f a xy f ax y=  Thus ( ) ( )g xy g y=  and hence g 
is homomorphism. 

Case(iii):If ,x y I∉ , xy I∈ . 

We have ( ) ( )g xy f xy=  and ( ) ( ) ( ) ( ) ( ) ( )1 1g x g y f xa f a f ya f a− −= . Now we have to show that 

( ) ( ) ( ) ( ) ( )1 1f xy f xa f a f ya f a− −= . Put ( ) ( )1f a f b− =  f∴  is onto) so that ( ) ( ) ( ) ( )1f a f a f a f b− =  

and thus ( ) .f ab e=  Then to show that ( ) ( )( )( )f xy f xab yab= .Now we claim that  

( )( )( ) ( ) 1 .f xab yab f xy e− =  Put ( ) ( )1f xy f z− =  ( f∴  is onto) so that ( ) ( ) ( ) ( )1f xy f xy f xy f z− =  and 

hence ( ) .f xyz e=  Then we prove that ( )( )( ) ( ) .f xab yab f z e=  Now ( )( )( ) ( )f xab yab f z   

( )( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).f xab yab z f xa f by f ab f z f xa f by f z f xabyz f xab f yz= = = = =  and now 

we show that ( ) ( ).f xab f x=  i.e. ( ) ( )1f x f xab e− =  put ( ) ( )1f x f t− =  so that  

( ) ( ) ( ) ( )1 0f x f x f x f t− =  and thus ( )f xt e=  then ( ) ( ) ( ) ( ) ( )f t f xab f txab f tx f ab e e e= = = ⋅ =  and 

hence ( ) ( )1f x f xab e− =  and therefore ( ) ( ).f xab f x=  Now we have  

( ) ( ) ( ) ( ) ( ) .f xab f yz f x f yz f xyz e= = =  and thus ( )( )( ) ( )f xab yab f z e=  and hence  

( )( )( ) ( ) 1f xab yab f xy e− =  and therefore put ( ) ( ) ( ).f xab f yab f xy=  Thus ( ) ( ) ( ).g xy g x g y=  Hence g 
is a homomorphism. 
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Case(iv):If ,x y I∉ , xy I∉ .  

We have ( ) ( ) ( ) 1g xy f xya f a −=  by definition and ( ) ( ) ( ) ( ) ( ) ( )1 1 .g x g y f xa f a f ya f a− −=  Now we 

show that ( ) ( ) ( ) ( ) ( ) ( )1 1 1 .f xya f a f xa f a f ya f a− − −=  we have ( ) ( ) ( ) 1 ( )f xya f xa f a f ya−=  and hence 

( ) ( ) ( ) ( ) ( ) ( )1f a f xya f a f xa f a f ya−=  and therfore ( ) ( ) ( ) ( ) 1 ( )f axya f ax f a f a f ya−=  thus  

( ) ( ) ( ).f axya f ax f ya=  Now we show that ( )( )( ) ( ) ( ).f ax ya f ax f ya=  

We have ( )( )( ) ( ) ( ) ( ) ( ) ( ) ( )f ax ya g ax f ya g ax g ya f ax f ya= = =  and thus  
( )( )( ) ( ) ( )f ax ya f ax f ya=  and hence ( ) ( ) ( ).g xy g x g y=  Thus g is a homomorphism. Since :f I G→  

is onto, so that ( ) ,f x y y G= ∈ . Now :g S G→  by ( ) ( ) ,g x f x=  If x I∈  then ( ) ,g x y=  for some 
y G∈ . Thus g is onto. Thus :g S G→  is an onto-homomorphism. 

Example 1: Let / 0, , , 0, , , ,
a b

S a b c d a b c d
c d

   = > ≥ ∈  
   

 . 

Let 1 1 1 2

1 1 2 2

a b a b
S

c d c d
  

∈  
  

. 

Now 1 1 1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2 1 2

a b a b a a b c a b b d
S

c d c d c a d c c b d d
+ +    

= ∈    + +    
. 

Where 1 2 1 2 1 2 0a a b c a a+ ≥ >  because 1 2 0b c ≥  and since 1a  and 2a  are positive and also matrix multip-
lication is associative. Thus S is a semigroup. 

Now write 
0

/ 0, 0
0

a
I a b

b
   = > ≥  
   

. 

We verify I is left ideals of S. 

Let 1 1 1 1

1 1 1 1

00
00

a b a a b ba
I

c d c a d bb
+    

= ∈     +    
 Thus I is a left ideal. 

Now 
1 1
1 1

S 
∈ 

 
 and 

0 1 1
0 1 1

a a a
I

b b b
    

= ∈    
    

. 

Thus I is not a right ideal. 
Now we have ( + ) is a group. 

Define :f I +→   by 
0
0

a
f a

b
 

= 
 

. 

Now let 
0 0 0
0 0 0

a c ac
f ac

b d bc
     

= =     
     

. 

And let 
0 0
0 0

a c
f f ac

b d
      

=      
      

. 

Thus f is a homomorphism which is also onto. 

Now we claim that f can’t be extended to homomorphism :g S +→   such that g f
I
= . 

We have 
1 1 1 1 1 1
0 0 0 0 0 0
    

=    
    

 is an idempotent. 

Since g is a homomorphism, so 
1 1

1.
0 0

g
  

=  
  

 

Let 
a b

S
c d
 

∈ 
 

. 
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Consider 
1 1
0 0

a b a a
c d c c
    

=    
    

. 

An let 
1 1
0 0

a b a a
g g g

c d c c
          

=          
          

. 

And hence 
a b a a

g g
c d c c

      
=      

      
 → (1). 

Put 0, 0b d= =  in (1) 

Then 
0
0

a a a
g g

c c c
      

=      
      

.  

And hence 
0
0

a a a
f g

c c c
      

=      
      

.  

Since 
0
0

a
I

c
 

∈ 
 

, we have 
0 0
0 0

a a
g f a

c c
      

= =      
      

.  

And therefore 
a a

g a
c c

  
=  

  
. 

From (1), 
a b a a

g g a
c d c c

      
= =      

      
. 

This is contradiction. 

Consider 
1 2 1 3 5 11
2 3 2 4 10 18
    

=    
    

. 

So, 
5 11

10 18
g
  
  
  

. 

And 
1 2 1 3

1 1 1
2 3 2 4

g g
      

= × =      
      

.  

Here 1 5≠ . Thus g is not homomorphism. 
Theorem 9: If a semigroup S contains a proper ideal I and I and if S is a ∆-semigroup, then neither S nor I is 

homomorphic onto a nono-trivial group. 
Proof: Suppose there is a homomorphism f of S onto G, so that ( )f s G= , 1G > . Since G, contains no 

ideal except G, so ( ) .f I G=  Hence 1I > . Let ρ be the congruence on S induced by f. For each  a S I∈ , 
there is an element b in I such that ( ),a b ρ∈ . Let σ be the Rees-congruence on S modulo I. Then ( ),a b ρ∈  
but ( ),a b σ∉  then both ( ),a b I∈ . Now since ( )1 ,G x σ> ∈y  but ( ),x ρ∉y , for some ( ),x I∈y . 
Since ( ),x σ∈y  so that both ( ),x I∈y . But if ( ),x ρ∈y  then x I∉ . Thus ρ σ  and ρ σ . Which is 
contradiction to assumption, since S is a ∆-semigroup. Therefore a S is not homomorphic onto a group G, 

1G > . Suppose that I is homorphic onto G, 1G > . Then by the above theorem there is a homomorphic of 
𝑆𝑆onto G. This leads to the same contradiction above. Therefore I is not homomorphic onto G. 
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