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Abstract

We consider the inverse spectral problem for a singular Sturm-Liouville operator with Coulomb
potential. In this paper, we give an asymptotic formula and some properties for this problem by
using methods of Trubowitz and Poschel.
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1. Introduction
The Sturm-Liouville equation is a second order linear ordinary differential equation of the form
_%(p(x)j_i}a(x)_zr(x))y(x):o (L1)

for some 1eC,xel :[a,b], and yeC?(I). It was first introduced in an 1837 publication [1] by the emi-

nent French mathematicians Joseph Liouville and Jacques Charles Frangois Sturm. The Sturm-Liouville Equa-
tion (1.1) can easily be reduced to form

-y"+q(x)y=2y. (1.2)

If we assume that p(x) has a continuous first derivative, and p(x), r(x) have a continuous second derivative,
then by means of the substitutions
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where ¢ is given by

1 I w
n a
Equation (1.1) assumes the form (1.2) replaced by u ; where

¢ 100 L
Z)= —c? : zZ)=(r(x)p(x)) .
D)= "y HD=0P()

The transformation of the general second order equation to canonical form and the asymptotic formulas for
the eigenvalues and eigenfunctions was given by Liouville. A deep study of the distribution of the zeros of ei-
genfunctions was done by Sturm. Firstly, the formula for the distribution of the eigenvalues of the single dimen-
sional Sturm operator defined in the whole of the straight-line axis with increasing potential in the infinity was
given by Titchmarsh in 1946 [2] [3]. Titchmarsh also showed the distribution formula for the Schrédinger Oper-
ator. In later years, Levitan improved the Titchmarsh’s method and found important asymptotic formula for the
eigenvalues of different differential operators [4] [5]. Sturm-Liouville problems with a singularity at zero have
various versions. The best known case is the one studied by Amirov [6] [7], in which the potential has a Cou-
lomb-type singularity

n 1
-y +;y+q(><)y=/1y,

at the origin. In these works, properties of spectral characteristic were studied for Sturm-Liouville operators with
Coulomb potential, which have discontinuity conditions inside a finite interval. Panakhov and Sat estimated
nodal points and nodal lengths for the Sturm-Liouville operators with Coulomb potential [8]-[10]. Basand Metin
defined a fractional singular Sturm-Liouville operator having Coulomb potential of type A/x [11].

Let’s give some fundamental physical properties of the Sturm-Liouville operator with Coulomb potential.
Learning about the motion of electrons moving under the Coulomb potential is of significance in quantum

theory. Solving these types of problems provides us with finding energy levels of not only hydrogen atom but
2

. . L —e
also single valance electron atoms such as sodium. For the Coulomb potential is given by U =——, where r
r
is the radius of the nucleus, e is electronic charge. According to this, we use time-dependent Schrddinger equa-
tion
. hZ 2
|ha_l// = __a_l//+U

ot 2m ox2 (X' Y, Z)(//, J.|l//|2 dxdydz =1,

RS
where s the wave function, h is Planck’s constant and m is the mass of electron.
In this equation, if the Fourier transform is applied

K _Mtl//dt,

- 1
N27m 7,
it will convert to energy equation dependent on the situation as follows:
2

— V47 +Uy = Ey.
Therefore, energy equation in the field with Coulomb potential becomes
h? _, e?) .
-——Vy+| E+— |y =0.
2m v ( r v

If this hydrogen atom is substituted to other potential area, then energy equation becomes
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h? e?
—2—V21/7+[E +—+0q(x, y,z)jl/7=0.
m r

If we make the necessary transformation, then we can get a Sturm-Liouville equation with Coulomb potential
|1
o[ Eeatm)]y-a

where A is a parameter which corresponds to the energy [12].
Our aim here is to find asymptotic formulas for singular Sturm-Liouville operatér with Coulomb potential
with domain

{y e L?[0,1]:y, y’ are absolutely continuous on (0,1], Ly € L*[0,1] and y(1) = O} ~

[JAlso, we give the normalizing eigenfunctions and spectral functions.

2. Basic Properties

We consider the singular Sturm-Liouville problem
”n 1
-y +[—y+q(x)}y:ﬁy, 1eC (2.1)
X

where the function q(x)e L*[0,1]. Let us denote by ¢(x,4,q) the solution of (2.1) satisfying the initial con-
dition

?(0,4,9)=0, ¢'(0,4,9)=1 (2.2)
and by w(x,ﬂ,, q) the solution of same equation, satisfying the initial condition
v(0,4,9)=1, v'(0,4,9)=0 (2.3

Lemma 1. The solution of problem (2.1) and (2.2) has the following form:

sm\/_x j.lnfxt(

0

(/)(X,/l

+q(t )]co(t,m)dt (2.4)

where q(x)eL*[0,1].
Proof. Since ¢(x,4,q) satisfies Equation (2.1), we have

Esmf (x— t(t+q(t)j¢)(t,ﬂ,q)dt

tsiny/2 (x—t) X
= —(0" t,4,q)dt+ 1 siny/4 (x—t o(t,4,q)dt
[F o (Laa)ds 2fsinVE (x-1)p(1.2.9)
Integrating the first integral on the right side by parts twice and taking the conditions (2.2) into account, we
find that

jX'SIn\/_ x-1) (t q(t)j(p(t,i,q)dt:q)(x,/l,q)—sinﬂx

which is (2.4).
Lemma 2. The solution of problem (2.1) and (2.3) has the following form:
sin \/_ (x—t
w(x4,q)= cos\/7x+.[ T )( +q(t ))y/(t,ﬂ,q)dt (2.5)

Proof. The proof is the same as that of Lemma 1.

Now we give some estimates of ¢ and y which will be used later. For each fixed x in [0, 1] the map
,q) = o(Xx,4,q) is an entire function on Cx ,1| which is real-valued on Rx . Using the esti-
A A i ire functi CxL?[0,1] which i I-valued Rx L% [13]. Using th i
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mate
Isin z| < _CZ_ginl
1+|7]
we get
9 |m‘fx‘ X X t) Im‘ﬁx‘ l |m\ft\d .
[o(x 2.0 < 1+‘f‘ ! ‘f(x t‘ t q(t)1+‘\/_t‘ t
Since 0<t<x<1 and
X—t < X
1+‘\/ﬂ(x—t)_1+‘«/ﬂx
we have
CX Im‘ﬂx‘
A Q) S —— 2.6
lo(x q)|<1+‘\/1x‘e (2.6)
From (2.6) the inequality is easily checked
sinﬁx| ox v | p1+tq(t)
A,q) - < d 2.7
¢(X Q) |< +‘\/Zx‘e £1+‘ﬂt‘ t 2.7)

where ¢ is uniform with respect to q on bounded sets in L2 [0,1].
Lemma 3 (Counting Lemma). [13] Let qeL*[0,1] and N > 2 pe an integer. Then ¢(L4,q) has ex-

actly N roots, counted with multiplicities, in the open half plane
Re <(N +1/2)" n*
and for each n> N , exactly one simple root in the egg shaped region
|2 —nn| <m/2

There are no other roots.
From this Lemma there exists an integer N such that for every n> N there is only one g, (q) eigenvalue
in {/1 € R,|ﬂ’/2 —(n +1/2)n| < n/Z}. Thus for every n>N

(2.8)

,Lln(C])l/Z :(n+%jn+gn, |gn|<g, n>N

N can be chosen independent of g on bounded sets of L% [0,1] . Following theorem [13] shows that the eigen-

values {yn (q)}n>1 are the zeroes of themap 1 — ¢(1,4,q) and these zeroes are simple.

Theorem 1. If A is Dirichlet eigenvalue of g in L*, then
0 a b
aj(l ,9) (0 (L4,9)=[(o( q))zdt=||(p(t,/1,q)||2 >0
0

In particular, —¢(1,/1,q) #0. Thus, all roots of ¢(1,1,q) are simple.

Proof. The proof is similar as that of ([13], Poschel and Trubowitz).

3. Asymptotic Formula
We need the following lemma for proving the main result.

Lemma 4. For every fin L*[0,1],
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e Gk ) 10 1) o
0 Hy (q) Hn (q) 0 2 n
and
tsing/u, (9)sin2/u, (q)t 1
[ T raeo(z) o
Proof. Firstly, we shall prove the relation (3.1)
:[cos\/ﬂn (‘25'(';‘) \/ﬂn (q)tf (t)dt (3.3)

By the Cauchy-Schwarz inequality, we get

jcos\/yn sinZ\/yn(Q)tf(t)dt<cos‘/yn(q)[.l[ fgt it .1[005 2\ u, (q) tdt.lff }

AC) AC))

Since fisin L?[0,1], the last two integrals are equal to
1 22 t L
jwdq fz(t)dtzo(lj.
0 4 0 n
So (3.3) is equivalent to
.1[005\/;1,](q)sin2\/yn(q)tf _cosyu, () (3 (1) 1
(t)dt= [—=dt+0| = ||.
; #,(9) Hy (9) 2

n
Finally, we shall prove the relation (3.2)

Jl.sm,/yn q)sin2 y”(q)tf(t)dt

0

2ﬂn(q)
_Slgﬂ“;u(” Ism 2, ( )tifz(t)dtzo(%)

This proves the lemma.
The main result of this article is the following theorem:
Theorem 2. For q(x)e L*[0,1],

1#,(9) :(n+%j2 i {1+ j':q(zt)dt] +O(n—14j .

Proof of the Main Theorem. Since ¢(0,4,q)=0, it must be ¢(1,4,0)=0. Because ¢(x,4,q) isa non-
trivial solution of Equation (2.1) satisfying Dirichlet boundary conditions, we have

0=90(Lu,(a).q)= SIT/ﬂ“nﬂ“ ism jﬂ - t(t q(t)]qo(t,un(q),q)dt (3.4)

From (2.7) someone gets the inequality

(D(t P ( ) ) Sm\[;un (q) ct ‘Imm‘tj- 1+|q |t gt (35)
" Vi (a) 1+‘\/un(q o1+, ()

From (3.5) integral in the equation of (3.4) takes the form

—
—
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o'—.»—-

Vi (a)
sinyJu, (9) (1- sin/u, ()t

T a@ T EE o

+J1.sm1/,u (q)(1-t) (

u,(9)

smW(l t) (erq( )j(p(t,ﬂn(Q)’q)dt
t

<

O'—.H

et t_1+[a(5) |—dsdt

01+‘,l ‘

pral ]1+‘\/—

By using difference formulas for sine we have

j.sm— ‘m)(l_t)(%Jrq(t)j(o(t,un ().q)dt

0 ﬂn(Q)
<J1.(sin\/yn (q)sin 2\/;4” (q)t)/Z—sin2 \/,un (q)tcos\/,un (a)
0 tﬂn(Q)
1 (sin\/yn (q)sin 2\/;1n (q)t)/Z—sin2 \/yn (q)tcos\/yn (q) 1
g o (a) q(t)dtm(ﬁ}

From Lemma 4 we get

}MGW(OJ(P(L% (), a)dt S‘Cosmiq(t)dtm(%)

—

w

dt

0 Hy (q) Hy (q) 2
Thus, by using this inequality (3.4) can be written in the form
L PLILUME -
\/,U My (q) 0 2 n3

From (2.8) we conclude that

0= sinKn +%jn+€n } - COE({EE: ;ik;}n } %IJQ(t)dt + O(n—lsJ 3.7)

Since sin Kn +%)n + gn} =(-1)"cose, and cos Kn +%Jn + gn} =—(-1)"sine,, (3.7) is equivalent to

tang, =

Z(M;jnm(zj

[[q(t)dt n)
So we get
2(n+1jn
2 1
& =—3 +O(—j. (3.8)
joq(t)dt n

From (2.8) we have
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In this case, the theorem is proved.
From this theorem, the map

> #(a)=(1(a) 4 (a).+)

from q to its sequences of Dirichlet eigenvalues sends L? into S. Later, we need this map to characterize spec-

tra which is equivalent to determining the image of u .

4. Inverse Spectral Theory

To each eigenvalue we associate a unique eigenfunction g, (x,q) normalized by

o, (x.a)] =1
Let’s define the normalizing eigenfunction g, (x,q):

NRC)
)= o (o)

Lemma5. For q(x)eL*[0,1],
92 (x,q) = 2sin? ynx+0(%j

This estimate holds uniformly on bounded subsets of [0,1]>< L>.

Proof. Let ¢, (x)=¢(x 4, (0).q) and v, (x)=w(x x,(q).q). By the basic estimate for ¢(x, ,(q).q),

_sin\/yn—m)ero(

o(% u,(0).9)= (o)

By using this estimate we have
P02
5 Sin‘ \/u, X 1
A== o)
So we get

Lsin? X 11—
J‘ H, X J‘

0 Hq 0
Thus we conclude that

et

Dividing ¢, (X) q)n(X)"Z we get

1

n

92 (x,q) = 2sin? ,unx+0(%j.

2

)

C0s 2 e _L(HO[EJJ
Hy 2u, n

Also, we need to have asymptotic estimates of the squares of the eigenfunctions and products
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a,(x,a)=9¢,(X)w,(x), nx1

Lemma 6. For q(x)e L*[0,1],

a, (x.q) _ 2y (a)x (9« +O(i)

21, (0) n’

This estimate holds uniformly on bounded subsets of [0,1]x L?.

Proof. We know that
sin/u, (9)x +O(iJ

o(x 1, (a),9)= (@ 2

By the basic estimate for v (x, 4, (q),q), we have

W(x,ﬂn(Q),Q):cos\/ero(n_lzj

Hence,

Let
n 6(0

Themap q-—>«,(q) isreal analyticon L%[0,1]. Now we give asymptotic behavior for «, (q).
Theorem 3. Each x,,n>1 isacompact, real analytic function on L* with

1 . 1
. () = ———(sin 2 ()%, (x) +o[—j @1
2 un(q)< > n’
Its gradient is
in2
O, _ S “"(q)x+0(i2] 42)
a(t) 2w, (q) n
The error terms are uniform on bounded subsets of [0,1]x L*.
Proof. From [14] we have
oK :
== gnn tq an
() )]
_sin2 yn(q osin? Fjsmz yn d 0(1)
= —2si X+
2 (q) 0 ) n
So we calculate the integral
Jl.sin2 yn(q)xd 1-cos2yu,(q)
X =
2 2w, () 4u,(a)

Finally, since «,(0)=0, we get
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= .1“1.—sin 2t (9)5 q(s)dsdt + O(n—lzJ

21, (9)

(4.3)

By the Cauchy-Schwarz inequality, we prove the theorem.
Let

x(a)={nx, (9)} .,

Formula (4.3) shows that rc(q) belongs to Ié . By Theorem 3, the map

a4 x(q)=(x;(a),x, ().~

from q to its sequences of & -values maps L? into the If. So we obtain a map

q— (xxu)(a)=(x(a), #(a))

from L* intothe 17xS .
Theorem 4. [13] xxu is one-to-oneon L2,
Let d,(xxu) bethe Frechet derivative of the map xxu atag.
Theorem 5. [14] d, (xx ) is anisomorphism from L%[0,1] onto I3xS.
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