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Abstract 
The Fourier transformations are used mainly with respect to the space variables. In certain cir-
cumstances, however, for reasons of expedience or necessity, it is desirable to eliminate time as a 
variable in the problem. This is achieved by means of the Laplace transformation. We specify the 
particular concepts of the q-Laplace transform. The convolution for these transforms is consi-
dered in some detail. 
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1. Introduction 
The Laplace transform provides an effective method for solving linear differential equations with constant coef-
ficients and certain integral equations. Laplace transforms on time scales, which are intended to unify and to 
generalize the continuous and discrete cases, were initiated by Hilger [1] and then developed by Peterson and 
the authors [2]. 

2. The q-Laplace Transform 
Definition 2.1. A time scale T is an arbtrary nonempty closed subset of the real numbers. Thus the real numbers 

R, the integers Z, the natural numbers N, the nonnegative integers 0N , and the q-numbers { }0
0:N kq q k N= ∈  

with fixed 1q >  are examples of time scales [2] [3]. 
Definition 2.2. Assume :f T C→  is a function and kt T∈ . Then we define ( )f t∆  to be the number with 

the property that given any 0ε > , there is a nighbourhood U (in T) of t such that 

( )( ) ( ) ( ) ( ) ( )    for all .f t f s f t t s t s s Uσ σ ε σ∆− − − ≤ − ∈    

We call ( ) f t∆  the delta (or Hilger) derivative of f at t. 
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 is the usual Jakson derivative if 0NT q= .  

Definition 2.3. If 0: Nx q C→  is a function, then its q-Laplace transform is defined by 
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for those values of 1
kz

q q
≠ −

′
, 0k N∈ , for which this series converges, where 1q q′ = − .  

Let us set  

( ) ( ) 00 1 ,   ,n k
n kp z q q z n N

=
′= + ∈∏                              (2) 

which is a polynomial in Z of degree 1n + . It is easily verified that the equations  

( ) ( ) ( )1 1 0,   ,n
n n np z p z zq q p z n N− −′− = ∈                           (3) 

and  

( ) ( ) ( ) 0
1

1 1 ,   ,
n

n n n

q qz n N
p z p z p z−

′
− = ∈                             (4) 

hold, where ( )1 1p z− = . The numbers 

0
1 ,   ,k k k N

q q
α = − ∈

′
 

where 1q q′ = − , belong to the real axis interval ( ) )11 ,0q −− −  and tend to zero as k →∞ . For any 0δ >  
and 0k N∈ , we set  

{ }:k
kD z C zδ α δ= ∈ − <  

and  

{ }00
\ : , k

k k Nk
C D z C zδ δ α δ∞

∈=
Ω = = ∈ − ≥ ∀



 

so that δΩ  is a closed domain of the complex plane C, whose points are in distance not less than δ  from the 
set { }0:k k Nα ∈ . 

Lemma 2.4. For any z δ∈Ω ,  

( ) ( )
( )

{ }
1

1 2
0, 1 .

n n
n

np z q q n Nδ
+

+′≥ ∈ −                           (5) 

Therefore, for an arbitrary number 0R > , there exists a positive integer ( )0 0 , ,n n R qδ=  such that  

( ) 1
0for all , .n

np z R n n z δ
+≥ ≥ ∈Ω                             (6) 

In particular,  

( )lim for all .n np z z δ→∞ = ∞ ∈Ω                              (7) 

Example 2.5. We find the q-Laplace transform of ( )x t k≡  (k is a fixed number). We have in,  

{ }( ) ( ) ( ) ( )

( )

0 0 1

1 1   

1lim 1 .

n

n nn n n
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kq kk z q
p z z p z p z

k k
z p z z
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= = −

→∞

 
′= = − 

  
 

= − = 
  

∑ ∑

 

Example 2.6. We find the q-Laplace transform of the functions ( ) cosx z az=  and ( ) sinx z az=  ( )a R∈ . 
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We have (see [4]),  

( ) 1 .e z
zα α

=
−

  

On the other hand, we know that 

e cos siniaz az i az= +  
with respect to 

2 2 2 2
1 z ai

z ia z a z a
= +

− + +  
The q-Laplace transform of the functions ( ) cosx z az=  and ( ) sinx z az= , would be 

2 2cos zaz
z a

=
+  

and 

2 2sin ,aaz
z a

=
+  

respectively. 
Theorem 2.7. If the function 0: Nx q C→  satisfies the condition  

( ) 0for all ,n nx q cR n N≤ ∈                               (8) 

where c and R are some positive constants, then the series in (1) converges uniformly with respect to z in the re-
gion δΩ  and therefore its sum ( )x z  is an analytic (holomorphic) function in δΩ .  

Proof. By Lemma 2.4, for the number R given in (8) we can choose an 0n N∈  such that  

( ) ( ) 1
01    for all , .

n
np z q R n n z δ

+
≥ + ≥ ∈Ω    

Then for the general term of the series in (1), we have the estimate  

( )
( ) ( ) 0    for all  , .

1 1

n n n

n

q x q c R n n z
p z q R R δ

 ≤ ≥ ∈Ω + + 
 

Hence the proof is completed. 
A larger class of functions for which the q-Laplace transform exists is the class δ  of functions  

0: Nx q C→  satisfying the condition 

( )
( )

( )
1

2

0
.

n n
n n

n
q q x qδ

−∞ −−

=

′ < ∞∑                                (9) 

Theorem 2.8. For any x δ∈ , the series in (1) converges uniformly with respect to z in the region δΩ , and 
therefore its sum ( )x z  is an analytic function in δΩ .  

Proof. By using the reverse (5), hence  

( ) ( ) ( )
( )1

1 21 n n
n

n

q q
p z

δ
+

−− +′≤
 

and comparison test to get the desired result. 
Theorem 2.9. (Initial Value and Final Value Theorem). We have the following: 
a) If x δ∈  for some 0δ > , then 

( ) ( ){ }1 lim .zx zx z→∞=                                  (10) 

b) If x δ∈  for all 0δ > , then 

( ) ( ){ }0lim lim .n
n zx q zx z→∞ →=                              (11) 
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Proof. Assume x δ∈  for some 0δ > . It follows from (1) that  

( ) ( ) ( )
( )( )

( )
( )( )( )

2
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1 1 1 1 1 1
q x q qx q q q x q

x z
q z q z q qz q z q qz q q z
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= + + +
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             (12) 

and  

( ) ( ) ( ) ( )
( )
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1 1

1 1 1
q qx q q q x q
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q qz q qz q q z

′ ′
′ ′+ = + + +

′+ ′ ′+ +


                (13) 

Hence  

( ) ( ) ( ){ } ( )lim 0   and    lim 1 1  ,z zx z q z x z q x→∞ →∞ ′ ′= + =   

Multiplying 0z ≠ , on both sides of the relation of (12) and by using equivalence relation, which yields (10). 
Note that we have taken a term-by-term limit due to the uniform convergence (Theorem 2.8) of the series in the 
region δΩ . 

3. Convolutions 
Definition 3.1. Let T be a time scale. We define the forward jump operator :T Tσ →  by 

( ) { }inf :   for .t s T s t t Tσ = ∈ > ∈  

Definition 3.2. For a given function [ )0: ,f t C∞ → , its shift (or delay) ( )ˆ ,f t s  is defined as the solution of 
the problem 

( )( ) ( )
( ) ( )
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ˆ , ,    , .
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= ∈ ≥
                       (14) 

Definition 3.3. For given functions [ )0, : ,
T

f g t C∞ → , their convolution f g∗  is defined by  

( )( ) ( )( ) ( )
0

0
ˆ , ,     , ,

t

t
f g t f t s g s s t T t tσ∗ = ∆ ∈ ≥∫                       (15) 

where f̂  is the shift of f introduced in Definition 3.2 [4]. 
Definition 3.4. For given functions 0, : Nf g q C→ , their convolution f g∗  is defined by  

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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with ( )( )0 0f g q∗ = , where 0n N∈ .  

Theorem 3.5. (Convolution Theorem). Assume that { }( )f z , { }( )g z , and { }( )L f g z∗  exist for a 
given z C∈ . Then at the point z, 

{ }( ) { }( ) { }( ).L f g z f z g z∗ =                               (16) 

4. Concluding Remarks 
1) We can see from Theorem 2.9(a) that no function has its q-Laplace transform equal to the constant function 

1. 
2) Finally, we note that most of the results concerning the Laplace transform on 0Nq  can be generalized ap-

propriately to an arbitrary isolated time scale { }
0n n N

T t
∈

=  such that  

{ }1 0lim       inf : 0.n n n nt t t n N→∞ += ∞ − ∈ >  
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