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Abstract 
The interpolation method in a semi-Lagrangian scheme is decisive to its performance. Given the 
number of grid points one is considering to use for the interpolation, it does not necessarily follow 
that maximum formal accuracy should give the best results. For the advection equation, the driv-
ing force of this method is the method of the characteristics, which accounts for the flow of infor-
mation in the model equation. This leads naturally to an interpolation problem since the foot 
point is not in general located on a grid point. We use another interpolation scheme that will allow 
achieving the high order for the box initial condition. 

 
Keywords 
Numerical Schemes, Advection Equation, Semi-Lagrangian Approach 

 
 

1. Introduction 
The classical 1D linear advection equation is given by 

0t xu uα+ =                                        (1) 

We can see that Equation (1) is a 1-D version (linear) of the partial differential equations [1], which describe 
advection of quantities such as energy, mass, heat, etc. Here, ( ),u u x t= , x∈  and 0α ≠  is a nonzero con-
stant velocity. We can say that Equation (1) describes the motion of a scalar u as it is advected by a known ve-
locity field. 

We know that the unique solution of Equation (1) is determined by an initial condition ( )0 : ,0u u x=  where 
( ) ( )0,u x t u x tα= −  with 0u  an arbitrary function on  . 
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An analysis of a numerical scheme implies to study the consistency, stability and accuracy. The goal of the 
analysis is to get an idea about how good a difference scheme is representing the linear advection equation. In 
the following we will make some analysis of the approximate difference schemes to the Equation (1). 

Numerical problems arising with pollutions models are discussed in [2]. Textbooks that deal with advection 
problems are [3] and [4] The spectral-methods and finite elements for linear advection equations we refer are [5] 
and [6] respectively. There exists more recent bibliography on finite element methods, which can be consulted 
in [7]. 

The paper is organized as follows. In Sections 2 and 3, we consider two cases firstly ( )0 cosu x=  and here 
we study the implementation of the schemes Lax-Friedrich, Lax-Wendroff and RK3-TVD-WENO5 and we de-
rive the expected GTE (Global Truncation Error) and we verify it by producing a convergence plot (by using the 

1l , 2l  and l∞  norm). After this, we repeat by using the box function 
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In Section 4, we consider linear and quadratic interpolation and we study the stability and accuracy by using 
semi-Lagrangian approach for linear advection equation and finally we produce a convergence plot for (2) with 
another interpolation scheme. 

2. Implementation of the Schemes and GTE 
Initially we consider the 1-D linear advection equation 

( ]10, , 0,t xu u x S t T+ = ∈ ∈                               (3) 

( ) ( )0,0u x u x=                                     (4) 

We can to verify that the solution is ( ) ( )0,u x t u x t= − , and therefore for ( ) ( )01 ,1 1T u x u x= = −  [8]. 
Now, we compute the global truncation error for the schemes as follows. 
1) Lax-Friedrich. Here, the discretization of the advection equation by using Lax-Friedrich gives 

( )1
1 1 1 1

1
2

2

n n n n nj j j j j
u u u u u

t x

+
+ −

+ −
− + −

= −
∆ ∆

                            (5) 

and therefore we can verify 

( )
( ) ( ) ( )( ) ( ) ( )

1, , , , ,2,
2

u x t t u x x t u x x t u x x t u x x t
x t

t x
ξ

+ ∆ − + ∆ + − ∆ + ∆ − − ∆
∆ ∆ = +

∆ ∆
       (6) 

( )( )2O t x= ∆ + ∆                                                     (7) 

so the stability condition is 

( )1t t K x
x
∆

≤ ⇔ = ∆
∆

                                  (8) 

finally 

( ) ( )( ) ( )2
L-FGTE ,x t O t x O xξ≤ ∆ ∆ = ∆ + ∆ = ∆                        (9) 

2) Lax-Wendroff. Here, the discretization of the advection equation by using Lax-Wendroff gives 

( )

1
1 1 1 1 1

2

2
2 2

n n n n n n n
j j j j j j ju u u u u u ut

t x x

+
− + − + −− − − +∆ = − +  ∆ ∆   ∆

                     (10) 
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and therefore we can verify 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )( )
2

2 2

, , , ,
,

2
, 2 , ,

2

               .

u x t t u x t u x x t u x x t
x t

t x
u x x t u x t u x x tt

x

O t x

ξ
+ ∆ − + ∆ − −∆

∆ ∆ = +
∆ ∆

+ ∆ − + −∆∆ −  
  ∆

= ∆ − ∆

                  (11) 

and the stability condition (CFL) is 

( )1t t K x
x
∆

≤ ⇔ = ∆
∆

                                  (12) 

Therefore, 

( ) ( ) ( )( ) ( )( )2 2 2
L-WGTE ,x t O x x O xξ≤ ∆ ∆ = ∆ + ∆ = ∆                      (13) 

3) RK3-TVD + WENO5. For this scheme the one-step is 

( ) ( ) ( )( )4 6,t x O t xσ ∆ ∆ = ∆ + ∆                               (14) 

and the stability condition is 

( )1t t K x
x
∆

≤ ⇔ = ∆
∆

                                 (15) 

therefore, 

( ) ( ) ( )( ) ( )( )4 6 3
R3W5

1 1GTE ,x t O x x O x
x x
ξ≤ ∆ ∆ = ∆ + ∆ = ∆

∆ ∆
                 (16) 

Now, for all schemes we proceed by to build the spatial grid by letting 2πd
2kx = , k ∈  and we define the 

vector 

( ){ }0,d ,2d , , 1 d 2πX x x N x= − =                             (17) 

( ) ( ) ( ) ( ){ }1 , 2 , , 1 ,X X X N X N= −                         (18) 

which has N points. As the boundary conditions are periodic, we will have to make the following identifications, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 ,   1 2 ,   0 1 ,   1 ,   1 2X X N X X N X X N X X N X N X− = − − = − = − = + =   

To build the grid in time, we first d dt r x=  for some r satisfying the CFL (condition). Therefore we define 
( )ceil dN tτ=  where τ  is the final time. So we going to iterate until the time dt N t= ⋅ . Then, in general 

t τ≠  but at least. Here, all times steps are the same size dt. Finally, when computing the global truncation error, 
the only important thing is to always compute it at the same time t  for all grid resolutions. Now, the scheme 
(LF, LW or RK3-WENO5) is applied until t  is reached. Then the output is appu . The grid resolution dx, cal-
culate what the true solution is at time t  and compute the norm of the errors by using 

( ) ( )app true1, ,
max

i K
E u i u i∞ =

= −


                               (19) 

( ) ( )1 app true
1

d
K

i
E x u i u i

=

= ⋅ −∑                                (20) 

( ) ( )
1 2

2
2 app true

1
d

K

i
E x u i u i

=

 = ⋅ − 
 

∑                              (21) 

Here we iterate over the resolution by varying k in order to get a convergence plot of the various norms of the 
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errors vs. grid size. 
Lax-Friedrich. This scheme can be coded very efficiently using matrices. We can see that the scheme can be 

rewritten as 

( ) ( )1
1 1 1 1

1 11 1 1 1
2 2

n n n n n
j j j j j

t tu u u r u r u
x x

+
+ − + −

 ∆ ∆      = − + + = − + +      ∆ ∆    
              (22) 

therefore taking into account the periodic boundary conditions 
1

1 1

2 2

3 3

2 2

1 1

0 0 0 0 1 0
1 0 1 0 0 0

0 1 0 0 0 0
1
2

0 0 0 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0

n n

K K

K K

K K

u ur
u ur r
u ur

u ur
u ur r
u ur r

+

− −

− −
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 −
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Lax-Wendroff. Similarly this scheme can be implemented by using 

( ) ( )

( ) ( )

( )

( )

( ) ( )
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RK3-TVD-WENO5. For each point on the grid, we need to compute two intermediate values as follows. 

( ) ( )FE WENOn n n
i i i itξ ξ ξ ξ∗ = = − ∆ ⋅                             (23) 

( )( ) ( )( )1 3 1 3FE FE WENO
4 4 4 4

n n n
i i i i i itξ ξ ξ ξ ξ ξ∗∗ ∗ ∗= + = −∆ ⋅ +                  (24) 

( ) ( )( )1 2 1 2 1FE WENO
3 3 3 3

n n n
i i i i i itξ ξ ξ ξ ξ ξ+ ∗∗ ∗∗ ∗∗= + = − ∆ ⋅ +                   (25) 

Therefore, the code for WENO5, when solving a conservative equation of the form 

( ) ( )0 0t t xxu f u u f u u′+ = ⇔ + =                              (26) 

provided u and f are 1C . Then ( )( ) ( )( ), : ,c u x t f u x t′=  acts as the speed function. Then at the interior point 
ix . If ( ) 0n

ic u > , define 

( ) ( )1 2 5 2 3 1 2 2 1
1, , , , , ,i i i i i iv v v u u u u u u
x − − − − + += − − −

∆
                      (27) 

We can say that 610−= , then 

( ) ( )2 2
1 1 2 3 1 2 3

13 12 4 3
12 4

s v v v v v v= − + + − +                          (28) 
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( ) ( )2 2
2 1 2 4 1 4

13 12
12 4

s v v v v v= − + + −                            (29) 

( ) ( )2 2
3 3 4 5 3 4 5

13 12 3 4
12 4

s v v v v v v= − + + − +                         (30) 

( )
( ) ( ) ( )1 2 3 2 2 2

1 2 3

1 1 6 3, , , ,
10 s s s

α α α
 
 =
 + + +   

                      (31) 

1 2 3sα α α α= + +                                   (32) 

( ) ( )1 2 3 1 2 3
1, , , ,w w w
sα

α α α=                              (33) 

finally we obtain 

( ) ( ) ( ) ( )1 1 2 3 2 2 3 4 3 3 4 5
1WENO 2 7 11 5 2 2 5
6

n
iu w v v v w v v v w v v v = − + + − + + + + −          (34) 

3. Test Problems 
Example 1. We consider the condition ( )0 cosu x x= , then by using the schemes we have: 
• Lax-Friedrich. The convergence results are shows on Figure 1. (Convergence plot for ( ) ( ), cosu x t x t= −  

in Log-Log scale, advected by using L-F scheme. ( )log GTE  at 1T ≈  is plotted against ( )log h .) The 
grid resolution was varied from 5d 2π 2x =  to 162π 2x = . So the expected orders of convergence were 
already visible at those resolutions. 

• Lax-Wendroff. The convergence results are shown on Figure 2. (Convergence plot for ( ) ( ), cosu x t x t= −  
in Log-Log scale, advected by using L-W scheme. ( )log GTE  at 1T ≈  is plotted against ( )log h .) As 
above, the grid resolution was varied from 5d 2π 2x =  to 112π 2x = . 

• RK3-TVD + WENO5. The convergence results are shown on Figure 3. (Convergence plot for  
( ) ( ), cosu x t x t= −  in Log-Log scale, advected by using L-W scheme. ( )log GTE  at 1T ≈  is plotted 

against ( )log h .) As above, the grid resolution was varied from 4d 2π 2x =  to 112π 2x = . 
The norms errors behave as expected in the asymptotic behavior. This example underlines the importance of 

letting the error go to machine∈  whenever possible. Here, since the computer time became unreasonably long for  
 

 
Figure 1. Convergence plot for ( ) ( ), cosu x t x t= −  with L-F scheme. 
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Figure 2. Convergence plot for ( ) ( ), cosu x t x t= −  with L-W scheme. 

 

 
Figure 3. Convergence plot for ( ) ( ), cosu x t x t= −  with RK3-TVD-WENO5 scheme. 

 
high grid resolutions, this was not possible. However, as suggested in class, one way to observe the order of the 
global truncation error (GTE) is to increase the final time (for example 5T = ) in order to let error in t∆  ac-
cumulate and become more significant than the error in x∆ . 

Example 2. Consider the box condition (2), then we have 
• Lax-Friedrich. The convergence results are shown on Figure 4. (Convergence plot for ( ) ( ), cosu x t x t= −  

in Log-Log scale, advected by using L-W scheme. ( )log GTE  at 1T ≈  is plotted against ( )log h .) As 
above, the grid resolution was varied from 4d 2π 2x =  to 162π 2x = . 

Therefore, since in deriving the LTE and GTE, we used the Taylor series of the function ( ),u x t . But the box 
function being only 0C , we cannot expect ( ),u x t  to equal its Taylor series point wise, and thereforethe above 
reasoning does not apply. It is interesting to watch the box evolve when advected with a L-F scheme. This is 
presented in a series of snapshots put together in Figure 5. (The true solution is plotted in red and the numerical 
solution is plotted in blue.) Clearly, the schemes fails to capture the discontinuities of the function, and its diffu-
sive nature eventually leads to large errors near the discontinuities. This explains why the L∞  norm of the error 
cannot converge. This also explains why the 1L  norm, which is simply the area between the true solution and 
the numerical solution, improves with the grid resolution. 
• Lax-Wendroff. The convergence results are shown on Figure 6. (Convergence plot for ( ) ( ), box ,u x t x t=   
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Figure 4. Convergence plot for ( ) ( ), box ,u x t x t=  with L-F scheme. 

 

 
Figure 5. Snapshots for ( ) ( ), box ,u x t x t=  with L-F 
scheme. 

 

 
Figure 6. Convergence plot for ( ) ( ), box ,u x t x t=  
with L-W scheme. 

 
in Log-Log scale, advected by using L-W scheme. ( )log GTE  at 1T ≈  is plotted against ( )log h ). As 
above, the grid resolution was varied from 5d 2π 2x =  to 162π 2x = . The slope for the L∞ , since there 
clearly isn’t convergence.  
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It is interesting to watch the box evolve when advected by a L-W scheme. This is presented in a series of 
snapshots put together in Figure 7 (true solution in red and numerical solution in blue). This scheme also fails to 
capture the discontinuities of the function, and its dispersive nature eventually leads to large errors near the dis-
continuities, where wild oscillations appear. However, the overall shape of the box is better preserved than when 
advected with L-F, which provides a simple explanation as to why the rate of convergence of the L1 norm is 
slightly better. 
• RK3-TVD-WENO5. The convergence results are shown on Figure 8. (Convergence plot for box in log-log 

scale, advected by using RK3-TVD-WENO5 scheme.) As above, the grid resolution was varied from 
5d 2π 2x =  to 12d 2π 2x =  The final time was increased to 4T = . Therefore 

We almost get first order convergence in the L1 norm, which is much better than with the previous two 
schemes. However, convergence is slower in the L2 norm and absent in the L∞  norm. 

Again, it is interesting to watch the box evolve when advected by an RK3-TVD-WENO5 scheme. Although 
this scheme also fails to capture the discontinuities of the function, the overall shape is much better preserved 
than when advected with the previous two linear schemes. Although the L∞  norm cannot converge because of 
the large errors near the discontinuities, those errors do not spread out and pollute the solution, which explains 
why the rate of convergence of the L1 norm is almost 1. 

4. Semi-Lagrangian Approach 
The idea is to use various values of 0

ju  to build an interpolant ( )L x  and the get 1
2u  from ( )1

2 2u L x c t= − ∆ . 
We use the formula for Lagrange interpolation in each case, here 0.5r =  and 1c = . For the linear interpola-
tion we use the two neighboring points ( )0

1 1,x u  and ( )0
2 2,x u , therefore 

 

 
Figure 7. Snapshots for ( ) ( ), box ,u x t x t=  with L-W 
scheme. 

 

 
Figure 8. Convergence plot for ( ) ( ), box ,u x t x t=  
with RK3-TVD-WENO5 scheme. 
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( ) ( ) ( )0 0 0 0 0 02 1 2 1
1 1 2 2 1 2 1 2

1 2 2 1

x x x x x x x xL x u l x u l x u u u u
x x x x x x
− − − −

= + = + = +
− − −∆ ∆

              (35) 

then 

( )1 0 0 0 02 1
2 2 1 2 1 1 1

x x c tc t c t c tu L x c t u u u u
x x x x

− − ∆− ∆ ∆ ∆ ≈ − ∆ = + = + − −∆ ∆ ∆ ∆ 
               (36) 

and finally 

( )
1 0 0 0
2 2 1 2  upwind method

u u u uc
t x
− −

=
∆ ∆

                          (37) 

We can see that if we let 0.5r =  and 1c = , then 
0 0

1 0 2 1
2 2 2

u uu u −
− = − . Now, for the quadratic interpolation- 

left, using ( )0
0 0,x u , ( )0

1 1,x u  and ( )0
2 2,x u  we have 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )0 2 0 11 20 0 0 0 0 0
0 0 1 1 2 2 0 1 22 2 22 2

x x x x x x x xx x x x
L x u l x u l x u l x u u u

x x x
− − − −− −

= + + = + +
∆ −∆ ∆

   (38) 

then 

( ) ( ) ( )1 0 0 0 0 2 2 0 0 0
2 2 2 0 1 2 0 1 22

1 4 3 2u L x c t u c x t u u u c t u u u
x

 ≈ − ∆ = + ∆ ∆ − + − + ∆ − + ∆
           (39) 

finally 

( ) ( ) ( )
1 0 2

0 0 0 0 0 02 2
0 1 2 0 1 224 3 2   Beam-Warming method

2 2
u u c c tu u u u u u

t x x
− ∆

= − − + + − +
∆ ∆ ∆

        (40) 

Here, if we let 0.5r =  and 1c = , then ( ) ( )1 0 0 0 0 0 0 0
2 2 0 1 2 0 1 2

1 14 3 2
4 8

u u u u u u u u− = − − + + − +  Now, with qua-

dratic interpolation-right and by using ( )0
1 1,x u , ( )0

2 2,x u  and ( )0
3 3,x u  we have 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 3 1 3 1 20 0 0 0 0 0
1 1 2 2 3 3 1 2 32 2 22 2

x x x x x x x x x x x x
L x u l x u l x u l x u u u

x x x
− − − − − −

= + + = + +
∆ −∆ ∆

   (41) 

therefore 

( ) ( ) ( )
2 2

1 0 0 0 0 0 0
2 2 2 1 3 3 2 12 2

2 2
c t c tu L x c t u u u u u u

x x
∆ ∆

≈ − ∆ = + − + − +
∆ ∆

                  (42) 

finally we have 

( ) ( ) ( )
1 0 2

0 0 0 0 02 2
1 3 3 2 12 2   Lax-Wendroff method

2 2
u u c c tu u u u u

t x x
− ∆

= − + − +
∆ ∆ ∆

             (43) 

Now, if we let 0.5r =  and 1c = , then ( ) ( )1 0 0 0 0 0 0
2 2 3 1 3 2 1

1 1 2
4 8

u u u u u u u− = − − + − + . 

We consider now a high-order interpolation, i.e. higher than quadratic. Proceeding in the same way in part 
above by using 4 points, in order to get a cubic interpolant. Using ( )0

0 0,x u , ( )0
1 1,x u , ( )0

2 2,x u  and ( )0
3 3,x u  

we have 

( ) ( ) ( ) ( ) ( )
( )( )( ) ( )( )( )

( )( )( ) ( )( )( )

0 0 0 0
0 0 1 1 2 2 3 3

1 2 3 0 2 30 0
0 13 3

0 1 3 0 1 20 0
2 33 3

6 2

.
2 6

L x u l x u l x u l x u l x

x x x x x x x x x x x x
u u

x x
x x x x x x x x x x x x

u u
x x

= + + +

− − − − − −
= +

− ∆ ∆
− − − − − −

+ +
− ∆ ∆

                (44) 

therefore, 
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( ) ( ) ( )

( )

2 2
1 0 0 0 0 0 0 0 0
2 2 2 0 1 2 3 1 2 32

3 3
0 0 0 0
0 1 2 33

6 3 2 3 6 3
6 6

3 3
6

c t c tu L x c t u u u u u u u u
x x

c t u u u u
x

∆ ∆
≈ − ∆ = + − + − − + − +

∆ ∆
∆

+ − + −
∆

           (45) 

finally, 

( ) ( )

( ) ( )

1 0 2
0 0 0 0 0 0 02 2
0 1 2 3 3 2 12

2 2 2 2
0 0 0 0 0 0 0
1 2 3 1 1 2 32 3

6 3 2 2
6 2

3 6 3 3 3 .
6 6

u u c c tu u u u u u u
t x x

c t c tu u u u u u u
x x

− ∆
= − + − − + − +

∆ ∆ ∆
∆ ∆

+ − + + − + −
∆ ∆

                (46) 

Now, we can see the Stability as follows. Performing Von Neumann gives the following, 

( ) ( ) ( )

( )

2
2

3
2 2

1 e 6e 3 2e 3e 6 3e
6 6

e 3e 3 e
6

k k k k k k k k k k

k k k k k k

r rG k

r

− ∆ − ∆ ∆ − ∆ ∆

− ∆ − ∆ ∆

= + − + − − + − +

+ − + −

                (47) 

In order to find out for which values of r the scheme is stable, here we plotted ( )G k  for various values of r, 
ranging from 0r =  and 1r =  since that CFL condition for the other schemes was 1r ≤ , the results shown on 
Figure 9 (plot of ( )G k  against k x∆  for 0 : 0.02 :1r = , the top straight line corresponds to 0r =  and  
therefore ( ) ( )2 1G k r G k r<  for 1 2r r<  pointwise), indicate that 1r ≤  ensures stability, since ( ) 1G k ≤  for  

all [ ]0,2πk x∈ ∆ . 
For the accuracy we compute the LTE of the scheme, 

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2

2

3 2

3

1, , ,

2 , 6 , 3 , 2 ,
6

3 , 6 , 3 ,
6

2 , 3 , 3 , , .
6

x t u x t t u x t
t

c u x x t u x x t u x t u x x t
x

c t u x x t u x t u x x t
x

c t u x x t u x x t u x t x x t
x

ξ ∆ ∆ = + ∆ −
∆
− − − ∆ + −∆ − − + ∆ ∆
∆

+ −∆ − + + ∆
∆

∆
+ − ∆ −− −∆ + − + ∆ ∆ 

            (48) 

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 4

4 5 6

2
2 4 6

2

3 2
3 4 5 6

3

1
2 6 24

1 1 16
6 2 5 12

1 13
4 1206
1 1 1
2 40 126

t tt ttt tttt

x xxxx xxxxx xxxxxx

xx xxxx xxxxxx

xxx xxxx xxxxx xx
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Therefore, if we use the CFL condition 1r ≤ , we expect the GTE to be ( )( )3O t∆ . 
We can see the results for ( )0 cosu x x=  where the convergence is shown on Figure 10. Here the grid reso-

lution was varied from 5d 2π 2x =  to 12d 2π 2x = . Finally, for ( ) ( )0 boxu x x t= −  the convergence results 
are shown on Figure 11, where the grid resolution was varied from 4d 2π 2x =  to 16d 2π 2x = . 

Note. As for Lax-Friedrich and Lax-Wendroff, those results should not be surprising, because we cannot ex-
pect a method based on the Taylor series of a function to work for a C0 function. 

We can see the box evolve when advected by a 3rd order scheme. This is presented in a series of snapshots 
put together in Figure 12. Although this scheme fails to capture the discontinuities of the function, just like the 
previous schemes, the oscillations created near the discontinuities don’t seem to grow very fast. Moreover, the 
overall shape of the box is (at least visually) better preserved that when advected with L-F of L-W, which provides 
a simple explanation as to why the rate of convergence of the L1 norm is better than that with those schemes. 
 

 

Figure 9. Plot of ( )G k . 

 

 
Figure 10. Convergence plot for ( ) ( ), cosu x t x t= −  advected 
using a 3rd order scheme. 
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Figure 11. Convergence plot for ( ) ( ), boxu x t x t= −  advected us-
ing a 3rd order scheme. 

 

 
Figure 12. Snapshots for ( ) ( ), boxu x t x t= −  advected by a 
3rd order scheme. 
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