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Abstract 
A solution of Hilbert’s fourth problem leads to the integral equation which can be called the gene-
ralized cosine equation. In the present paper, we propose an inversion formula for the solution of 
the generalized cosine equation using integral and stochastic geometry methods. 
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1. Introduction 
The integral-geometric approach to Hilbert’s fourth problem. The fourth problem in Hilbert’s famous 
collection of 1900, asks for the geometries, defined axiomatically, in which there exists a notion of length for 
which line segments are the shortest connections of their endpoints. The problem has later seen many trans- 
formation and interpretation. It was shown by G. Hamel that it is the same to ask (see [1] [2]): Given an open 
convex subset C  of nR , determine all complete projective metrics on C . 

A metric d  is called projective if it is continuous and linearly additive. Here nR  is the n-dimensional 
Euclidean space. There are two classical examples of projective metrics, already given by D. Hilbert. The first 
example is nR  with the metric induced by a norm (a Minkowski space). Such metrics are the translation 
invariant projective metrics on nR . The second example is what is now called a Hilbert geometry. 

The modern approaches make it clear that the problem is at the basis of integral geometry, inverse problems 
and Finsler geometry (see [3]-[5]). There is anintegral-geometric approach suggested by H.Busemann to cons- 
truct class of projective metrics (see [3]). 

We denote by nE  ( EE =3 )—the space of hyperplanes in nR , 1n−S -the unit sphere in nR  (the space of 
unit vectors), 2

ω ⊂S S -the oriented great circle with pole at 2ω∈S . By ][x  we denote the bundle of hyper- 
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planes containing the point nx∈R . Let µ  be a measure on nE  which satisfies 

 [ ]( ) 0 for each nx xµ = ∈R  (1) 

and  

 { }( )0 < : < for ,ne e xy x yµ ∈ ∩ ≠ ∅ ∞ ≠E  (2) 

where xy  is the segment with endpoints x  and y . 
If we define  

 ( ) { }( ), :nd x y e e xyµ= ∈ ∩ ≠ ∅E  (3) 

for , nx y∈R , then d  is a projective metric. 
The question arises whether this construction produces all projective metrics on nR . First comes the A. V. 

Pogorelov-R. V. Ambartzumian-R. Aleksander result ([2] [6] [7]) stating that in two dimensional case every 
projective metrics can be obtained by (3) with a measure in the space of lines in the plane. This essentially 
solves Hilbert’s fourth problem in two dimensional case (see also [8]). 

In dimension greater than two, the situation is different: not every projective metric on 3R  can be obtained 
by (3) with some measure µ  in 3E . This is already seen from the following construction. 

Now let ⋅  be a norm on 3R . Suppose that the projective metric ( ),d x y x y= −  can be generated by (3) 
with translation invariant measure µ  on E . The translation invariant measure µ  can be decomposed: there 
exists a finite even measure m  on 2S  such that ( )d d dm pµ ξ= ⋅  (see ([9]), where ( ),p ξ  is the usual para- 
metrization of a plane e: p is the distance of e from the origin O; 2ξ ∈S  is the direction normal to e. We 
assume that ( ) ( )d = dm hξ ξ ξ . Now the assumed representation (3), gives 

 ( ) ( ) ( ) ( ) ( )2 2d ,0 , d , d .x x x m x hξ ξ ξ ξ ξ= = =∫ ∫S S
 (4) 

The equation  

 ( ) ( ) ( ) 3
2 , d forH x x h xξ ξ ξ= ∈∫S R  (5) 

where 0H ≥  is a given even function while h  is the unknown function, is known as the zonoid equation. By 
a result of W. Blaschke the following is known (see ([10]). If the even function H  is sufficiently often 
differentiable then (5) has a uniquely determined continuous even solution not necessarily positive. If h  is the 
solution of (5), then we can define a translation invariant measure ( )d d dh pµ ξ ξ= ⋅  on 3E  which satisfies 
(4). 

From now on, we restrict ourselves to Finsler metrics on 3R , since sufficiently smooth projective metrics are 
induced from Finsler metrics, and projective metrics can be approximated, uniformly on compact sets, by 
smooth projective Finsler metrics (see [2] [4]). 

We define a Finsler metric on 3R  as a continuous function [ )3 3: 0,H × → ∞R R  with the property that 
),( ⋅xH  is a norm on 3R , for each 3x∈R . 

We consider locally finite signed measure µ  in the space E , which posses density with respect to the 
standard Euclidean motion invariant measure, i.e. (see [11])  

 ( ) ( ) ( )d d d de h e e h e pµ ξ= =  (6) 

where de  is an element of the standard measure. To define function xh  on 2S  we consider the restriction of 
h  onto [ ]x  as a function on the hemisphere, since a direction completely determines a plane from [ ]x . Then 
we extend the restriction to 2S  by symmetry. Thus  

( ) ( ) 2for ,xh h e Sξξ ξ= ∈  

where [ ]e xξ ∈  is the plane with normal ξ . Below xh  we call the restriction of h  onto [ ]x . In [2], 
A. V. Pogorelov showed the following result. 

Theorem 1 If H  is a smooth projective Finsler metric in 3R  ( [ )3 3: 0,H × → ∞R R ), then there exists a 
uniquely determined locally finite signed measure µ  in the space E , with continuous density function h , 
such that, for 3x∈R   
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 ( ) ( ) ( ) 2
2, , d , .xH x h Sξ ξ ξΩ = Ω Ω∈∫S  (7) 

Here xh  is the restriction of h  onto ][x , dξ  denotes the spherical Lebesgue measure on 2S . 
The measure µ  is also called a Crofton measure for the Finsler metric H (see [4]). Different from the 

approach in [2], Theorem 1 was proved by R.Schneider [12] using expansions in spherical harmonics. 
(7) defines a transform  
 h H→  
and we pose the problem of its inversion (i.e. reconstruction of h for given H). The Equation (7) where H is a 
given function and h is required, we call generalized cosine equation. We are interested in the solution of the 
generalized cosine equation defined by (7). Note that, the Equation (7) can have either no or exactly one con- 
tinuous solution (see [10]). 

In case µ  is a translation invariant measure on E  ( ( ) ( )d d d d dm p h pµ ξ ξ ξ= ⋅ = ⋅ ), (7) represents the 
zonoid Equation (5) playing an important role in convexity (see [10]). 

An inversion of the generalized cosine equation. The problem of finding the solution of (7) we reduce to 
find the solution of an other integral equation appearing in Combinatorial Integral Geometry. The concept of a 
flag density which was introduced and systematically employed by R. V. Ambartzumian, in [9] [11] will be of 
basic importance below. 

We consider the so-called directed flags (below just a flag). A flag is a triad ( ), ,f x g e= , where x is a point 
in 3R  called the location of f, g is a directed line containing the point x, and e is an oriented plane (a plane with 
specified positive normal direction) containing g. There are two equivalent (and dual to each other) repre- 
sentations of a flag:  

( ) ( ), , or , , ,f x f x ω ϕ= Ω Φ =  

where 2ω∈S  is the normal of e and ϕ  is the angular coordinate of the direction of g in ωS , while 2Ω∈S  
is the spatial direction of g and Φ  is the angular coordinate of the normal of e in ΩS . 

We use locally finite signed measure ( ) ( )d de h e eµ =  in the space E  to define the following function (flag 
function) in the space of flags   (so-called sine-square transform) (see [13] [14])  

 ( ) ( ) ( )2
2

1 , d for .sin
2 xS

f f h fρ α ξ ξ ξ= ∈∫   (8) 

Here xh  is the restriction of h onto [ ]x . To explain ( ), fα ξ  we write ( ), ,f x g e= . Then ( ), fα ξ  is 
the angle between g and the trace e eξ ∩ , where eξ  is the plane through the origin orthogonal to e. If we 
represent ( ), ,f x ω ϕ=  then  

 ( ) ( )2 2, ,sin cosfα ξ ϕ ψ= −  (9) 

where ψ  is the angular coordinate of the projection of ξ  into the plane of the flag f . Note that (9) does not 
depend on the choice of the reference point on the plane of the flag f . The function ρ  defined by (8) we call 
flag density of measure µ . 

If the flag density ρ  is sufficiently often differentiable, then (8) has a unique continuous solution h  (see [9] 
[14]). In [14] [15] (see also [16]-[18] in case µ  is a translation invariant measure) by author of the present 
paper using integral and stochastic geometry methods was found an inversion formula for (8) and reconstruct the 
density h  of signed measure µ  in terms of its smooth flag density ρ . 

The problem of finding the solution of (7) we reduce to finding the flag density ρ  for which  

 ( ) ( )2

0

1, , , d .
π

H x x
π
ρΩ = Ω Φ Φ∫  (10) 

and using inversion formula of (8). 
Now we describe the inversion formula of (7). We need to give the definitions of certain partial derivatives of 
( )fρ . With each directed flag we associate three orthogonal axes through x: by definition, axis 1x  coincides 

with the direction of g; axis 2x  lies within e, is orthogonal to 1x  and is directed into the right half of e 
bounded by g; axis 3x  is coincides with the positive normal to e . We require that the axes 1x , 2x , 3x  form 
a left triad. 



R. Aramyan 
 

 
237 

By ( )fρΦ′  we denote the derivative of ρ  at f which corresponds to positive rotation of f around the axis g. 
By definition, the positive rotation of the space around the axis g appears clockwise, when we look in the 
direction of the axis g. 

Also we denote by 
xη

∂
∂

 the partial derivative in the argument x which is taken in the direction 2η ∈S . In 

the special cases where η  coincides with directions of the axes 2x  or 3x  respectively, the values of 
xη

ρ∂
∂

  

will be denoted as yρ′  and nρ′  correspondingly. 
Our main result is the following. Let H be a sufficiently often differentiable function ( [ )3 2: 0,H S× → ∞R ). 

Also we assume that the Equation (7) has a solution. For every fixed 3x∈R , we now solve the zonoid equation 
for the function ),( ⋅xH . Since ( ),H x ⋅  is smooth, there exists a smooth even solution ),( ⋅xh  on 2S . Then we 
put the function ),( ⋅xh  into Equation (8) instead of ( )xh ⋅  and found the flag function ρ   

 ( ) ( ) ( ) ( )2
2

1( , , ) , d for every , ,cos
2

f x h xρ ρ ω φ ϕ ψ ξ ξ ω ϕ= = −∫S  (11) 

which depends on 3x∈R . 
For a given plane e and a point x e∈ , the corresponding so-called bundle of flags we denote by  

 ( ){ }, : , , .x e f f x g e= =  

We consider so-called bundle mass of flag density ρ  at 3x∈R :  

 ( ) ( ) ( )2
20

1 1, , d , d .
π 2

M x x h x
π
ρ ω ϕ ϕ ξ ξ= =∫ ∫S  (12) 

Note that the first integral in (12) does not depend on 2ω∈S . 
By ( )ρ ⋅  we denote the restriction of ρ  onto ,x e . The notation ( )ρ ϕ  is reasonable since 1S∈ϕ  

completely determines a flag from ,x e . 
Theorem 2 Let H be a sufficiently often differentiable function ( [ )3 2: 0,H S× → ∞R ) and h defined on E  

be the solution of (7). For a given plane e∈E  the following representation is valid  

( ) ( ) ( ) ( ) ( ) ( )( )
2

2 2

20 0

1 2d 2 d .
2π π y yy

M x
h e M x

x
π π

ϕ

ϕ ρ ϕ ρ ϕ ρ ϕ ϕΦΦ Φ

∂
′′ ′′ ′′= + − + +

∂∫ ∫                  (13) 

where x is a point on e, ρ  is defined by (11), ( )ρ ⋅  is the restriction of ρ  onto ,x e , ( )M ⋅  is the bundle 
mass function of ρ .  

In Setion 3, we present the expression for ( )ρ ϕΦ′  in terms of the derivatives of ρ  with respect to the 
parameters involved. 

2. Convex Bodies and Measures in the Space of Planes 
Equation (8) naturally emerges in Integral Geometry (see [13] [14]). It proved in [14] that Equation (8) has the 
unique solution in the class of continuous functions and found an inversion formula. Here we present a short 
version of the proof of the formula for completeness. 

Note that, in [16] the same problem was considered for the case µ  is a translation invariant measure on E  
( ( )d d dm pµ ξ= ⋅ ). In [16] (see also [17]) was obtained integral expression for the value of m  for a spherical 
domain bounded by a piecewise smooth curve and an inversion formula was found for a case m  has a density, 
which first was found in [11] (see also [18]). 

To invert Equation (8) we do the following. Let ρ  be a smooth function on the space of flags that is defined 
by (8) of a measure µ  in 3E  possessing continuous density h. We consider the restriction of h onto the set of 
planes tangent to a spherical domain. Then, by integral geometry methods we find the integral of the restriction 
over a spherical disc in terms of ρ . Using this integrals we find an inversion formula for h. 

We need some results from integral geometry. Let µ  be a signed measure on E , possessing density h with 
respect to the invariant measure, i.e. deehde )(=)(µ . Given a subset 3A ⊂ R , by [ ]A  we denote the set of 
planes, that intersect A. Let B  be a convex body with a sufficiently smooth boundary ∂B . By 1 2,k k  we 
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denote the principal normal curvatures of ∂B  at a point s∈∂B , and by ( ), ,i if s g t= , 1, 2i =  we denote the 
flag, where t is the plane tangent to ∂B  at the point s , ig  is the directed line whose direction coincides with 
the i-th principal direction of curvature at s∈∂B . In [14] (see also [19]) the following representation has been 
obtained. 

Theorem 3 Let µ  be a signed measure on E , possessing density h with respect to the invariant measure. 
For any sufficiently smooth convex body B  we have the following representation:  

 [ ]( ) ( ) ( ) ( )1
1 2 2 12π d ,k f k f sµ ρ ρ−

∂
= +  ∫ B

B  (14) 

where ρ  is the flag density of µ  defined by (8), ds  is an area element on ∂B .  
For the case µ  is a translation invariant measure on E  the representation first was found in [20]. 

We will need some further definitions. By ( ),Q RS  we denote the sphere with center Q  and radius R , 
2S  will stand for ( ),1OS . 
Assume h is the density of µ . We define the following function on ( ),Q RS   

( ) ( )( ) ( )* for , ,h s h t s s Q R= ∈S  

where ( )t s  is the plane tangent to ( ),Q RS  at ( ),s Q R∈S . 
The measure ( )2 *R h s ds− , where ds  is an area element on ( ),Q RS , we call the conditional measure on 
( ),Q RS , generated by µ  (or h). 
Let A  be a geodesically convex domain on ( ),Q RS , which is contained in some hemisphere. Let 

3
ε ⊂B R , > 0ε  be the convex body bounded by ( ),Q R ε+S , planes tangent to ( ),Q RS  at points of A∂  

and the conical surface with the vertex Q and base A. In [14], the following result was shown. 
Theorem 4 Let µ  be a signed measure on E  with continuous density h with respect to the invariant 

measure, and let ( )A ,Q R⊂ S  be an open convex domain contained in some hemisphere. Then  

 ( )
[ ]( ) [ ]( )0*

2 A 0

1 d .limh s s
R

ε

ε

µ µ

ε→

−
=∫

B B
 (15) 

Using Theorems 3 and 4, one can calculate the values of the “conditional measure” for various domains 
2A ⊂ S . 

Now we calculate the conditional measure of a spherical disc ( )A ,1Q⊂ S  of spherical radius < π 2α  and 
using this result we find an inversion formula for (8). For translation invariant case the result was obtained in 
[16] (see also [17]). Without loss of generality, one can consider Q as the origin O. On 2S  we consider usual  
spherical coordinates ( ),ϕ ν . The center of the disc chosen for the pole. We have: ( ){ }, : 0 < 2πA l ϕ α φ∂ = = ≤ . 

A flag f we call a tangent flag to A at l A∈∂ , if f is located at l, the plane of f is tangent to 2S  at Al∈∂   
and the positive normal of the plane of f coincides with the outer normal to 2S  at Al∈∂ , the line of f is 
tangent to A∂  at l and the direction on the line of f corresponds to the motion along A∂ , which leaves (locally) 
A on the left hand side. By A∂  we denote the set of the tangent flags of A. The tangent flag at l is unique and 
therefore ( )lρ  is a reasonable notation for the value of ρ  at the tangent flag located at l. By ( )ρ ⋅  we 
denote the restriction of a flag function ρ  onto A∂ . 

Theorem 5 Let ρ  be a 2C  smooth flag function that is defined by (8) of a signed measure µ  in E  with 
continuous density h with respect to the invariant measure. Then for any spherical disc 2A ⊂ S   

 
( ) ( ) ( ) ( )

( ) ( ) ( )

2*
A A 0

2 2 2

0 0 0

2π d d d cos d

sin 2cos sin ,

A

y

M s
h s s M s s s M l

n

l d l d l d

π

π π π
φ

α ϕ

α ρ ϕ α ρ ϕ α ρ ϕ

∂
= + +

∂

′ ′− − −

∫ ∫ ∫ ∫

∫ ∫ ∫
 (16) 

here n is the outer normal direction to 2S  at s, dϕ  denotes the Lebesgue measure on [ )0,2π , ( )M s  is the 
bundle mass of ρ  at s.  

Proof of the Theorem 5. According to Theorem 4 we have to calculate [ ]( )εµ B  and [ ]( )0µ B . In order 
to apply Theorem 3, instead of εB  and 0B  we consider their smooth versions ( ),Oε δ+B S  and 

( )0 ,O δ+B S  for some > 0δ . We have  
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 [ ]( ) ( )( ) [ ]( ) ( )( )0 0
0 0

, , , .lim limO Oε ε
δ δ

µ µ δ µ µ δ
→ →

= + = +      B B S B B S  (17) 

We divide the surfaces ( ),Oε δ+B S  and ( )0 ,O δ+B S  into domains (part of conical surface and part of 
spherical surface) and using (14) we get the expressions for [ ]( )εµ B  and [ ]( )0µ B  in terms of flag density. The 
last expressions we put into (15) and obtain (16). The realization of this procedure can be found in [14] [15]. 

3. An Inversion Formula for (8) 
To derive an inversion formula for (8), we express h in terms of given function ρ . Let x e∈ , 

( ){ }, : , ,e x f f x g e= =  is the bundle of flags. 
Theorem 6 Let ρ  be a 2C  smooth function on the space of flags in 3R , that is defined by transform (8) 

of a signed measure µ  in E  with continuous density h. For a given plane e the following representation is 
valid  

 ( ) ( ) ( ) ( ) ( ) ( )( )
2

2 2π

20 0

1 2d 2 d .
2π π y yy

M x
h e M x

x
π

ϕ

ϕ ρ ϕ ρ ϕ ρ ϕ ϕΦΦ Φ

∂
′′ ′′ ′′= + − + +

∂∫ ∫  (18) 

where x is a point on e, ( )ρ ⋅  is the restriction of ρ  onto ,e x , ( )M x  is the bundle mass of ρ  at x.  
Proof of the Theorem 6. Let x e∈  be a point. We consider a unit sphere 2

1S  tangent to e at x e∈  and 
denote by 2

1nA ⊂ S  the spherical disk centered at x with the spherical radius nα . By the mean-value theorem  

 ( ) ( )*

0

1 d ,lim Ann n

h e h s s
Aα →

= ∫  (19) 

where nA  is the area of nA . 
On 2

1S , we consider usual spherical coordinates ( ),ϕ ν  with x chosen for the pole. We consider the restric- 
tion of the bundle mass M  onto 2

1S  and by ( ),M ϕ ν  we denote the value of the restriction at ( ) 2
1,ϕ ν ∈S . 

Also, we consider the restriction of ρ  onto A∂ , where 2
1S⊂A  is the spherical disk centered at x with the 

spherical radius α . By ( ),ρ ϕ α  we denote the value of the restriction at ( ), Al ϕ α= ∈∂ . 
We represent the integral in (19) according to (16) and find the limit by decomposing the resulting terms in 

powers of nα . We have  

 ( ) ( ) ( ) ( ) ( )
2

2, ,0 ,0 ,0 .
2

n
n n nM M M M oα αα

α
ϕ α ϕ ϕ α ϕ α′ ′′= + + +  (20) 

To decompose other terms we need the following lemma. 
Lemma 1 For any differentiable flag function ρ   

 
( ) ( ) ( )

0

,
,0 ,0 .y

α

ρ ϕ α
ρ ϕ ρ ϕ

α Φ

=

∂
′ ′= +

∂
 (21) 

In its formulation, yρ′  is defined assuming that the positive normal of e is parallel to the outer normal to 2
1S  

at x. Note, that ( ) ( )= ,0ρ ρ⋅ ⋅  defined on the bundle of flags ,e x . 
We have  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2

2, ) ( 2 ,
2

n
y n y yy no

α
ρ ϕ α ρ ϕ ρ ϕ ρ ϕ α ρ ϕ ρ ϕ ρ ϕ αΦ ΦΦ Φ′ ′ ′′ ′′ ′′= + + + + + +  (22) 

 ( ) ( ) ( ) ( )( ) ( ), ,n y n noρ ϕ α ρ ϕ ρ ϕ ρ ϕ α αΦ Φ ΦΦ Φ′ ′ ′′ ′′= + + +  (23) 

 ( ) ( ) ( )( ) ( )( , ) .y n y y yy n noρ ϕ α ρ ϕ ρ ϕ ρ ϕ α αΦ′ ′ ′′ ′′= + + +  (24) 

After proper substitution and taking into account that 
( ) 22π 1 cos πn n nA α α= −  , we find  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2π 2π

0 0

1 2,0 d 2 d .
2π π y yy

M x
h e M x M

n αα ϕ ϕ ρ ϕ ρ ϕ ρ ϕ ϕΦΦ Φ

∂
′′ ′′ ′′ ′′= + + − + +

∂ ∫ ∫  (25) 
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Here 
( )M x
n

∂
∂

 is the derivative of M  at x e∈ , in the direction of normal to e  which is outer normal to 2
1S . 

It is easy to prove that  

 ( ) ( ) ( )2

2,0 ,
M x M x

M
nxαα

ϕ

ϕ
∂ ∂

′′ = −
∂∂

 (26) 

where 
( )2

2

M x
xϕ

∂

∂
 denotes the second derivative in the spatial direction which corresponds to the direction ϕ   

on e. After substitution (26) into (25) we obtain (18). Theorem 6 is proved. 
The second integral in (13) contains the derivative ρΦΦ′′ . To present the expression for ρΦ′  in terms of the 

derivatives of the function with respect to the parameters involved we introduce on 2S  spherical coordinates in 
which ω  is specified by a pair ( ),υ χ , where υ  denotes the latitude of ω , and χ  denotes its longitude. 
The corresponding derivatives with respect to Φ  are given by the expressions (see. [17]):  

 sintan sin cos , .
cos

ϕφ χ ϕ χ ϕ υ
χΦ Φ Φ′ ′ ′= − ⋅ = − =  (27) 

Using these formulas one can write the expression for Φ′ρ . 

4. The Connection between Equations (7) and (8) 
For a given line g  and a point x g∈ , the corresponding bundle of flags we denote by  

( ){ }, : , , .x g f f x g e= =  

Now we integrate (8) over bundle of flags ,x g  with respect to Lebesgue measure dΦ  on ΩS , where 
Ω  is the direction of g  and ΩS  is the great circle on 2S  with pole at Ω . We obtain  

 ( ) ( ) ( )2π
20

1 1, , d , d ,
2π 2 xx hρ ξ ξ ξΩ Φ Φ = Ω∫ ∫S  (28) 

since from the definition of flag density we have (see [9])  

 ( ) ( )2 2
0

, d 2π , .sin f
π

α ξ ξΦ = Ω∫  (29) 

Note that one can obtain (29) using the cosine theorem of spherical geometry. 
It follows from (28) if H  is a smooth projective Finsler metric in 3R  and ρ  is a flag density such that  

 ( ) ( ) ( )2 3 2
0

1, , , d for , .
π

H x x x S
π
ρΩ = Ω Φ Φ Ω ∈ ×∫ R  (30) 

then Equations (7) and (8) have the same unique solution. Thus the problem of finding the solution of (7) we 
reduce to find flag density ρ  which satisfy (30) for a given smooth projective Finsler metric H . 

Note that for a fixed 3x∈R  the restriction ( ),H x ⋅  of a smooth projective Finsler metric H  onto 2S  is 
uniquely determined by the restriction ( )xh ⋅  of the unique solution h  of (7) onto the bundle [ ]x . The 
restriction ( )xh ⋅  can be found by solution of the zonoid Equation (5) for ( ) ( ),H H x⋅ = ⋅ . 

Also, note that for a fixed 3x∈R  the restriction ( ), ,xρ ⋅ ⋅  of the flag density ρ  of the signed measure 
( ) ( )d de h e eµ =  (where h is the unique solution of (7)) is uniquely determined by the restriction ( )xh ⋅ . 
Hence for every fixed 3x∈R , we solve the zonoid equation for the function ( ),H x ⋅ . Since ( ),H x ⋅  is a 

smooth function, there exists a smooth even solution ( ),h x ⋅  on 2S . Then we put the function ( ),h x ⋅  into 
Equation (8) instead of )(⋅xh  and find the flag density ( ), ,xρ ⋅ ⋅  which depends on 3x∈R . Thus we find the 
flag density ρ  which satisfy (30). Substituting the flag density ρ  into (18) we get the solution of (8) which 
coincides with the solution of (7). Theorem 2 is proved. 
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