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ABSTRACT 

In this paper, we consider dynamical system, in the presence of parameter uncertainties. We apply max-min principles 
to determine the saddle point solution for the class of differential game arising from the associated dynamical system. 
We also provide sufficient condition for the existence of this saddle point. 
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1. Introduction 

The central goal of a manager is to seek ways of control-
ling his environment, so that he can have a considerable 
degree of influence on the system in which he operates. 
He does this for the following reasons: 
• He wants to maximize the system to his own benefit. 
• He wants the system to remain stable in state, and 

does not drift to undesirable steady state. 
• He wants to enjoy continually a steady state of maxi- 

mum benefit, even in the presence of arbitrary envi- 
ronmental disturbances. 

A Lot of research work has been devoted to control-
ling uncertainties see e.g. [1-4]. 

In dynamical system, three types of uncertainties are 
normally encountered namely: 

1) Uncertainty in the model (parameter); 
2) Uncertainty in the input (disturbance); and 
3) Uncertainty in the state. 
This paper deals with the first type of the uncertainty 

while the other types have been dealt with by the author 
and other researchers in [1,3,4], etc. We also assume here 
that the state of the system under consideration is per-
fectly available for measurement. 

The classical method of studying perturbation in a 
nonlinear system is to approximate its behaviour by lin-
earizing the system in the neighbourhood of a steady 
state. Such analysis proves suitable for many systems, 
but only for small initial perturbation. In this paper we 
are considering systems with parameter uncertainties, 
and therefore a different approach is required. We use 

zero-sum game approach. We introduce appropriate cost 
functional which is required to be minimised by the con-
trol and maximised by the uncertainty. The zero-sum 
game allow us for consideration of saddle point solution, 
which leads to “Worst case design concept”. 

2. Problem Formulation 

Consider the following dynamical system in the presence 
of parameter uncertainty defined by: 

( ) ( )( ) ( ) ( )( ) ( ), ,x t F t v t x t G t v t u t′ = +


     (1) 

( ) [ ]0 0 0, ,x t x t t T= ∈                     (2) 

where 

( )( ) ( )0
0

, i i
i

F t v t F t v F
=

= +


               (3) 

is  matrix. ,n n×
( )0 .F  is continuous on [ ]0 ,t T , also iF    1.2, ,i =  

are constant  matrices  n n× ( )1 2 1, , ,v v v V IR∈ ⊆ T

( ){ }1

T

1 1 2, , , ; i vV v v v v ρ=  ≤           (4) 

( )( ) ( )1,G t v t v G t+= 


 is an  matrix.  is  n n× ( ).G

continuous on [ ]0 ,t T  [ ]1
1 2 2, 1,v V IR V q+ ∈ ⊆ = , q is a 

given scalar. 
( ) nx t IR∈  (state vector),  (control vector). ( ) mu t IR∈

We shall be interested in determining a stable control 
of (1) under some parameter uncertainties  ( ).v t
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In order to achieve this, we introduced the cost func-
tional defined by 

( ) ( ) ( ) ( ) ( )( )
0

. d
T T T

t
J u v x t Qx t u t Ru t t= +      (5) 

where Q is a positive semi-definite symmetric  
constant matrix; R is a positive definite symmetric  
constant matrix. 

n n×
n m×

We need to find the least value of the functional 
( , )J u v  in (5) over a stable trajectory of the system de-

fined in (1). 
In order to achieve this goal, the disturbance  

will be taken as strategy, and the approach will be the 
consideration of the saddle point strategy for the system. 

( )v t

3. Saddle Point 

Let ( ) [ ]0. : , nx t T IR→  denotes corresponding solution 
to (1). We shall find candidates for saddle point strategy 
pair: ( )( ) ( )( ){ }. , .x xγ α  

We now consider the Hamiltonian function defined by: 
1: n m n 1H IR IR IR IR IR+× × × → , such that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 1
0

, , ,
T T

i i
i

H x u v x t Qx t u t Ru t

t F t v F x t v G t u t

λ

λ +
=

= +

  + + +  
  






   (6) 

A necessary condition for existence of saddle point 
solution implies the following equations: 

( ) ( ) ( ) ( ) ( )0 1
0

i i
i

x t F t v F x t v G t u t+
=

 ′ = + + 
 




     (7) 

( ) ( ) ( ) ( )0
1

2
T

i i
i

t Qx t t F t v Fλ λ
=

 ′ = − − + 
 




      (8) 

( )
( ) ( ) ( )1

0

0 2
T

T

Ru t v G t t

λ

λ+

=

= + 

                 (9) 

From (9) the optimal control ( )u t  as a function of 
the adjoint vector is given by 

( ) ( ) ( )1
1

1

2
u t R v G t tλ−

+= −          (10) 

Substitute (10) in (6) to get 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )1
0

1

, , ,

1

2

T

T T

T
i i

i

H x u v x t Qx t

u t Ru t t

1F t v F x t R v G t t

λ

λ

λ−
+

=

=

+ +

 + − 
 









  (11) 

From (11) we therefore take  1 1v + =

Thus (10) takes the form: 

( ) ( ) ( )11

2
u t R G t tλ−= −            (12) 

We determine by considering the following 
transformation defined by 

( ) ,tλ

( ) ( ) ( )2t P t x tλ =               (13) 

where  is a symmetric positive definite operator, 
and from (13) 

( )P t

( ) ( ) ( ) ( ) ( )2 2t P t x t P t x tλ′ ′ ′= +           (14) 

From (8), (14) can be expressed as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )0
1

i i
i

P t x t P t x t

Qx t F t v F P t x t
=

′ +

 = − − + 
 


      (15) 

Taking ( )x t  as a solution of (7) and substituting (7) 
into (15) we get 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 1
1

0
1

i i
i

T

i i
i

P t x t

P t F t v F x t v Gu t

F t v F P t x t

+
=

−

′

  + + +  
  

 = − + 
 











     (16) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

0
1

1
1 0

1

0

T

i i
i

TT T

T

i i
i

P t P t F t P t v F

P t v GR G P t F t P t

v F P t Q

=

−
+

=

 ′ + +

− +

+ + =











        (17) 

The optimal control which is the optimal strategy for 
the system under consideration is given as: 

( )( ) ( ) ( ) ( ) ( )1x t u t R G t P t x tγ −= = −       (18) 

where  is calculated by solving (17) with the 
boundary condition . 

( )P t
( ) 0P T =

Remark: If the system under consideration is time-in- 
variant, we determine P from an algebraic Riccati equa-
tion of the for 

( ) ( )( )0 0
1

1
1 0

TT T T
i i i i

i

T T T

P F F P P v F v F P

P v G R G P Q

=

−
+

 + + +  
− + =






    (19) 

An algorithm to solve for P in Equation (19) was at-
tempted in [2]. The existing work on Riccati equations 
from differential games originate from deterministic 
games or stochastic games with noise independent of the 
state controls. As such these papers usually consider the 
special cases of (19) where for example . 
For these cases, see [5, Chapter 3, section 3.5]. 

1 1iv v += =

To deduce optimal candidate for , we appeal to 
condition (a) of the mini-max theorem given in [2]. If we 
consider Equation (1) as a game with saddle point, then 

( )v t
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we may let: 

( ) ( )( ) ( )v t x t u tα= = −           (20) 

Such that 

( ) ( ) Vu t v t ρ= ≤             (21) 

Then, 

( )
( ) ( ) ( )

( ) ( ) ( )1

1

Vv t R G t P t x t
R G t P t x t

ρ −
−

=    (22) 

4. Sufficient Condition for Optimality 

In this section, we show that ( )u t  given in (18) is in-
deed an optimal strategy under the conditions and as-
sumptions of Equations (1) and (2). We shall apply the 
sufficiency theorem given in [1]. 

Define 

( ) 1 1, : nV x t IR IR+ → , 

by 

( ) ( ) ( ) ( ), TV x t x t P t x t=         (23) 

where  is calculated from (19). Now let ( )P t

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0 1

0
1

, , ,

,

2

T T

i i
i i

T T T

i i
i

L x u v t

1

x t Qx t u t Ru t gradV x t

F t v F x t Gu t

x t Qx t u t Ru t x t P t

F t v F x t Gu t

x t P t x t

ν

ν

+
=

+
=

= + +

 + +

= + +

 + + 
 

′+




















    (24) 

Substituting for  in (24), 
we get 

( ) ( ) ( ) ( )1u t R G t P t x t−= −

( )
( ) ( ) ( ) ( ) ( )

{ ( )

( ) ( ) } ( )

1

0 0
0

1
1

, , ,
T T

TT T
i i

i

T T T
i i

L x u v t

x t Qx t x t P GR Px t x t

P F F P v F P

P F P t GR G P Q x tν ν

−

=

−
+

= + +

+ +

+ − +






    (25) 

( ){ } ( )1 1
1

T T T Tx t P GR G P P GR G P x tν− −
+= −     (26) 

This is by virtue of (19), and there fore we conclude 
from (26) that: 

( ), , , 0,L x u v t ≤  

for all values of [ ]1 1, 1,qν ν+ + ∈  . This shows that 

( ) ( )( )u t x tγ=  

is an optimal strategy. 
We can summarize all our findings in the following 

theorem: 
Theorem (1): The optimal solution of the control 

problem with parameter uncertainty where parameter are 
chosen according to (1) and (2) consist of choosing the 
input: 

( ) ( ) ( )0 ,u t K t x t= −  

where 

( ) ( ) ( )0 1K t R G t P t−=  

( )P t  is the solution of Matrix Riccati equation de-
fined by 

( ) ( ) ( )( )0 0
0

1
1 0

T T T
i i i i

i

T

P t P F F P P v F v F

P GR G P Qν
=

−
+

′ + + + +

− + =






 

( )i tν  is chosen optimally according to 

( )
( ) ( )

( ) ( )0

0

, 1, 2, ,

V
i t K

K t x t

i

ρν =

∀ =  

t x t
 

5. Conclusions 

In this article, we have attempted a solution methodology 
to the class of problem under consideration. 

However, it must be noted that this problem belongs to 
those classes of problems usually be classified as a hy-
brid system. This is a class of problem whose dynamics 
may evolve with the time and contain discrete variables. 
Such problem includes the global launcher problem in 
which the dynamics change whenever modules fall down. 
Some other theoretical results do exist with application 
of Pontryagin Maximum Principle in the hybrid case [see, 
7-9], but the question of an efficient numerical imple-
mentation is still open in general [see 7], indeed when 
one implements a version of hybrid maximum principle, 
one is then immediately faced with a combinatorial ex-
plosion. An efficient method to handle this class of prob-
lem needs to be developed. 
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