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ABSTRACT

This paper studies the global behavior defocusing nonlinear Schrédinger equation in dimension d = 2, and we will dis-

cuss the case p = i,d =2. This means that the solutions u € C, ([O,T ],Li_)ﬂ L, ([0, T]x Rz) , and called critical solu-

d

tion. We show that u scatters forward and backward to a free solution and the solution is globally well posed.

Keywords: NLS; Well Posed

1. Introduction

We consider the Cauchy problem for the nonlinear Schro-
dinger equation in dimension d = 2.

iu, +Au = pF (u)

u (O,x) =u, (x)
where F(u)=|u|pu , u=t1, and u(t,x):R'>C,
When g =+1 (1.1) is called defocusing when u=-1
(1.1) is called focusing. In this paper we discuss the case
when p=2 and u=+1 (defocusing case).

If u(t,x) is a solution to (1.1) on a time interval
[O,T ], then

(1.1)

u, (t,x)leu(ﬂzt,/lx) (1.2)

is a solution to (1.1) on [O,IZTJ with u(0,¢)=Au,(Ax).
This scaling saves the I’ (Rz) norm of u,
[z (ﬂx)”Lz(Rz) =1ty (%) s2) (1.3)
Thus (1.1) under previous hypotheses is called L-cri-
tical or mass critical.
Proposition 1.1. Suppose that 0< p S%, and d2>1

then, for any initial data u, € I*, there exist 7>0 such

that there exists a unique solution
2(d+2)

ueC ([0.7.2)NL, ¢ ([0.T]xR)

of the nonlinear Schrédinger Equation (1.1). If p S%
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then T>T (||u0||L2) for some non-increasing, and if

||u0 || » 1s sufficiently small u exists globally.

In this paper we will discuss the case, p =S,d =2.

This means that a solution u
ueC ([0.7.2)NL,([0.T]xR*),

and called critical solution.
Definition 1.1. Let u:KxR*—>C, KcR is a so-
lution to (1.1) if for any compact

JcKueCL(JxR)NL, (/xR

and for all t,7, e K
fy
u(t,x)= e[('_'o)Au,0 —ij ei(t_r)AF(u (r)) dr. (1.4)
t

The space Lf’x(J XRZ) caused from strichartz esti-
mates. This norm is invariant under the scaling (1.2).

Definition 1.2. If there exist #, € K a solution u to
(1.1) defined on K < R blows up forward in time, such
that

[ (e, )] dede = oo (1.5)

)

And u blows up backward in time, such that

f_"’( )_Hu(t,x)r dedx = o0 (1.6)

inf(K
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Definition 1.3. If there exist u, € I’ (Rz) we say
that a solution u to (1.1) scatter forward in time such that,

lim||e"Au+ —u(t,x) =0 (1.7)

=0 LZ(RZ)
A solution is said to scatter backward in time if there
exist u_ e I*(R?
Such that,

lim "e”Au_ —u(t,x) =0 (1.8)

(>0 LZ(RZ)

We note that the Equation (1.1) has preserved quanti-
ties, the mass

M (u(t)) = [|u(t.x)] dr=M(u(0))  (1.9)
And energy
E(u(t))zéﬂvu(t,x)rdx%”u(t,x)rdx o)

~E(u(0),

For more see [1].
Proposition 1.2. let p be the L -critical exponent

ng, then the NLS (1.1) is locally well posed in

L (Rd) in the critical case. More precisely, given any
R >0, there exists &, =¢,(R?)>0, such that when-
ever u, el Rd) has norm at most R, and K is a time
interval containing O such that

||eitA/2u* 2(d+2)

1.4 (kxR

)350

Then for any u, in the ball

B= {uo el (Rd) ety — 2(ad) 50}

there exists a unique strong L. solution u € S° (K X Rd)
to (1.1), and moreover the map u, — u, is Lipschitz
from B to S° (KXR”’ ) , where S° (KXR") defined in
Equation (2.5).

Proposition 1.3. let K be a time interval containing ¢,
and let u,u'eC} (KxR? - C) be two classical solu-
tions to (1.1) with same initial datum u, for some fixed u
and p, assume also that we have the temperate decay hy-
pothesis u,u’ e L7 L{ (K xR") for g =2, 0. Then u=u'.

Proposition 1.4. Let ¢, € R, given u, € I (Rd) there
exists a maximal lifespan solution u to (1.1) define on
k<R, with u(t,)=u,. Furthermore,

1) k is an open neighborhood of ¢, .

2) We say u is a blow up in the contrast direction If
sup(k) or inf(k) is finite.

3) If we have compact time intervals for bounded sets
of initial data, then the map that takes initial data to the
corresponding solution is uniformly continuous in these
intervals.
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4) We say that u scatters forward to a free solution, if
sup(k) =oo and u does not blow up forward in time.
And we say that u scatters backward to a free solution, if
inf (k) =—c0 and u does not blow up backward in time.

To Proof: see [1-3].

2. Strichartz Estimates

In this section we discuss some notation and Strichartz
estimates for critical NLS (1.1) and we turn to prove
Propositions 1.1 and 1.3.

2.1. Some Notation

If X, Y are nonnegative quantities, we use X Y or
X =0(Y), to denote the estimate X <cY for some ¢
and X ~Y todenote the estimate X <YV S X .

We defined the Fourier transform on R* by

7 1 —ix&
f((f)::% 22€ f(x)dx
Weuse LIL (K xR? ) to denote the Banach space for
any space time slab K xR, of function KxR¢ — C

with norm is

1
. 7 4)e
"u”L?L{;(KxR“) i (IK "u(t) s dt) <%,
With the usual amendments when ¢ or r is equal to in-
finity. When ¢g=r wecutshort LIL as L .
Defined the fractional differentiation operators |V|S ,

(V)" by
€)=l T, (V) S(€)=(e) (),

where (5) = (1+|§|2 )5, specially, we will use V to
signify the spatial gradient V_ and define the Sobolev
norms as

\%

S

s

-

my(R?)

(7%

s

”f”H;(RZ) = ”'V Lﬁ(RZ)

Let e™ be the free Schrodinger propagator; in terms
of the Fourier transform, this is given by,

m )= e_‘mzit‘é‘zf (&).

A Gagliardo-Nirenberg type inequality for Schrodinger

equation the generator of the spurious conformal trans-
def
formation J = x—2it0 plays the role of the partial dif-

ferentiation.

2.2. Strichartz Estimates

Let e™ be the free Schrodinger evolution, from the ex-
plicit formula
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. 2
ifx-y]

. 1 =
e f(x)=—rv|,e ¥ d 2.1
f(x)=g—fae () @.1)
Specially, as the free propagator saves the L’ -norm,

”eimf(x) = |t|2(%7%] ”f”Lf;'(Rz)

1(R?)
1
Forall 1#0 and 1< p<oo, where —+—=1.

p p
Proposition 2.1. There holds that

" PR f

1
;(®2) £4_m||'f||Ll(]Rz) (22)
In fact, this follows directly from the formula (2.1).
Definition 2.1. Define an admissible pair to be pair

(p,r) with 1< p<oo, 2<r<ow, With £+i:i
p r 2

Theorem 2.2. If u(¢,x) solves the initial value pro-
blem

iu, +Au=F(1),

u(0,x)=u,,
On an interval K, then
bles) S e IPliey @9
For all admissible pairs (p,q), (7,3). 5 denotes

the Lebesgue dual p.
To prove: see [4,5].
Definition 2.2. Define the norm

"M" 0 2\ = sup
$ (KXR ) (p.g)admissible

"u”L{’Lf{,(KxRZ) : (2.4)

s°( Ksz):{u ;||u||so(mz) < oo}. 2.5)

We also define the space N° (K xR*) to be the
space dual to S° (K sz) with suitable norm. By theo-
rem.2.2,

"u"SO(Kx]RZ) = ||u0||L2(R2) +||F||N0(K><]R2) - (2.0)
Theorem 2.3. If |u, ||L2(Rd) is small, then (1.1) is glo-

bally well posed, for more see [6,7].
Proof: by (2.3) and (2.6)

[l (2.7)

/x((*oo,oo)xRZ) < "uO"Lz(]RZ) +||Ll ’

I,X((AOO,OO)X]RZ)

If ||u0|| is small enough and by the continuity

L2 R”’
method, then we have global well-posedness. Further-
more, forany & >0 there exist T(¢) such that

i

1 (72 <&,
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Then
t
u (t) _ ei(t—T)A T) _ l.J' ei(t—r)A
T
So by (2.6), when >T,

“u (1)- Ay (T)

Thus, the limit

u (r)|2 u (r)dr (2.8)

<&, (2.9)

Li(RZ)

u, =lime 'T(T/()Au(T(z-")) (2.10)
Exists, and,
tim| (1)<, ey =0 @2.11)

A conformable argument can be made for ¢ — —o0 .
indeed, if U, T <C, then (—w0,0) can be divi-

sion into ~ C* subintervals K with ||u||L;; <g,

((K,oo)x]RZ)

on each subinterval. Using the Duhamel formula on each
interval individually, we obtain global well-posedness
and scattering. (]
Now we return to prove Proposition 1.1 and Proposi-
tion 1.3.
Proof proposition 1.1:

. 4
We suppose in what follows that p = 7 Let

L:2||uo||L2 and for some 6 >0 to be chosen,7 >0
be such that

2 <5. (2.12)

eltAu (O)

We deem the space

o o ([0.T]xR?)

Sia :{“ eC ([o.7).22)N L ([0.7]xR?),

o=

1,%

<5}

”u"Lf([o,T],Li) <

And the mapping,
t
O (v)(t)=e"u, + iJ. elon (|v|p v)(s)ds. (2.13)
0
We want to prove that the J small adequate,

®:S, ;>S5 is contraction. We use first Strichartz
estimates, to compute that

t
Jei('_S)A (|v|p v)(s)ds
s Sl

1 9(p+1)
< (2T2LJ 5(1—9)(1’+1)

7200

| |p+1 1:9 p+1
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where H:M— d+4

2 2 ( p+ 1)
Then, distinctly,

”(I)(u

1 O p+1)
Ny <t (2| gt

o(p+1)
Jo @), <[e (o), +(2T;LJ SO0

1,x

So that for 7,6 is small enough, §, ; is settled un-
der @ . In addition,

"CI)(u)—(D(v)

LPERNL

t

J.ei(H)A (|u|p u—|v|” v)(s)ds
0
Al + 1),
Lt.\’
(. b
o I

1 0
§2||u—v||L4_[2T2J 5?

2
“2fu,, 6
LI.X

<

024
LPLNL

Again, decreasing may be 7,5 , we get a contraction.
If p :3, then @=1, and from Strichartz estimates,

we see that if |u],, is small enough, then (2.12) is satis-
fied for T =+o . [

Proof Proposition 1.3: By time translation symmetry
we can take 7, = 0. By time reversal symmetry we may
assume that K lies in the upper time axis [0,+o]. Let
w'=u+v, and then, veC (KxR?—>C), v(0)=0
and v obey the variance equation

i0, +Av:(|u+v|p (u+v)—|u|pu).

Since v and |u + v| u + v |u|p u lies in the
L’L (K xR? ) we may calling Duhamel’s and conclude

t i(tfs)A

v(t):—i-([e 2 (|u+v|p (u+v)—|u|pu)(s)ds

for all. By Minkowski’s inequality, and the unitarity of
i(1-s)A
e , conclude that,

LZ () j:(|u+v|p (u+v)—|u|pu)(s)Li(Rd)ds .

Since u and v are in L'L, (K xR?), and the function
z—|z|” z is locally Lipeshitz, we have the bound

Copyright © 2013 SciRes.

0u+vV(u+v}ﬂﬂpuMs)dmﬂ

el ) M7 [v(s
Np 55 KxJR" v 12 KxJR“ v

Apply Gronwall’s inequality to conclude that
"v(t)"Lz(Rd) =0 forall reK and hence u=u'. [J

LZ R{[

3. Decay Estimates

Consider the defocusing nonlinear Schrodinger Equation
(1.1), in R"xR’, where u=u(t,x), and p=2, for
d =1,2 . We suppose that at =0,

u(0,)=u, e H'(R*) 3.1
First we have the following result.

Theorem 3.1. Suppose that p e (0,+x), if d=1,2,
and let u be a solution to (1.1), identical to an initial data

uoeH1<R2) such that ( -2)%uoeL2(R2).lfd:2,

let 7 be such that, 2 <r <o, then there exists a constant
¢ > 0 such that if R is the solution of, RR=R """ , with

cpzmin[‘%’,zjz(z,z), R(0)=1, R(0)=0 then

() oy <R w0,
Furthermore, ¢ depends only on d, p, r and,
1 1
By =31Vl + gz ol

The method made up in rescheduling, by the average
of a time dependent rescheduling the equation, and to use
the energy of the equation, to get by interpolation decay
estimates in suitable norms. The asymptotically average,
is normally obtained directly by using the pseudo con-
formal law, the above result was in fact partially proved
in [8], under a bit different point of view: look for a time
dependent change of coordinates, which maintain the
Galilean invariance, and the construction directly a Lya-
punov functional by a suitable ansatz. This Lyapunov
functional is surely the energy of the rescaled equation.
Our aim here is to study with further details the rescaled
wave function and its energy. Found to be the method
provides rates which are seems completely new in the
limiting case of the logarithmic nonlinear Schrodinger
equation. Because of the reversibility of the Schrodinger
equation and standard results of scattering theory, one
cannot foresee the convergence of the rescaled wave
function to some a intuition given limiting wave function,
but found to be some convexity properties of the energy
can be used to state an asymptotically stabilization result.
From the general theory of Schrédinger equations, it is
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well known that the Cauchy problems (1.1)-(3.1) is well
posed for any initial data in H' (RZ) when 0< p<ow,
and that the solution u belongs to

C(R*,Hl(R2))nL°°(R*,H1(R2))
nc' (v, 17 (R?)).
As usual for Schrodinger equations is critical when
p=—.

d
Let ¢ be such that

u(t,x)=R‘leis(t)x;gé(r(t),ﬁ}

where and 7 are positive derivable real functions of the
time.

It is simple to check that with this change of coordi-
nates, ¢ satisfies the following equation,

i, :—%A¢+%|¢|2 ¢+R7<S+2S2)|§|2¢

+i(§—25j(¢+§v¢),

where z"=i, with the choice § :%, which means
t

that S = %— 25%,¢ and u are linked by,

iR

() =re o .2 p(rg)

.

= RejRRm

(3.2)

2

u(t,RE)

where 7=7(r) and £=x/R(r), and ¢ has to satisfy
the following time-dependent defocusing nonlinear Schro-
dinger equation,

.. 1 1, 1. 2
itg, :—FA¢+F|¢| ¢+ZRR|§| ¢ (33)
We note that |u (t,x)| =R ‘¢[r,%}‘, so that

u(t’.)Lz = ¢(T(t)’.)L2 Uy

forall £>0.
Also we note that if R(0)=7(0)=0 and R(0)=1,
then

¢(09') =U,

To extract the controlling impacts as ¢ — +o, we fix
7 and R such that,

3.4

Copyright © 2013 SciRes.
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i :%RR =R =R?

where

c, =min[d7p,2j=2 3.5)

Because p is critical, this ansatz is actually the only
one that sets to 1 at least three of the four coefficients in

the equation for ¢, with lim R(7)=+c. and ¢ solves

t—+0

the equation,

i =—A¢+|¢|2¢+%|§|2¢ (3.6)

With the choice R(0)=1 and R(0)=0, integration
of (3.5) with respect to ¢ gives R’ :2(1—R(t)72) and

this is possible if, and only if, R>1. forall >0 thus
the function ¢ — R(r) is globally defined on R" in-

creasing, lim R(r)= 242 and R(t)~t as t—+o0.
(—>+o0
Supposing that 7(0)=0, 7z is an increasing positive

function such that, lim z'(t) =7,>0, where 7, <+o0

t—>+00
2
if p>—.
P>y
Consider now the energy functional linked to Equation
(3.6)

1 2 1 21,2
E6) L[ vd s o]l ez

1
o el dg

where R has to be understood as a function of.
Lemma 3.2. Suppose that pe(0,+0), if d=1,2,
and let u be a solution to (1.1), identical to an initial data,

1
2)2 u, el’ (Rz).

With the above notations, £ is a decreasing positive
functional. Thus E(7) is bounded by E(0)=E,, with

the notations of Theorem 3.1.
Proof: The proof follows by a direct computation.

Because of (3.6), only the coefficients of jR2|V¢|2d§,

uoeHl(Rz) such that (1+

and ij |¢|4 d& contribute to the decay of the energy.

For more see [9]. L]
Proof of Theorem 3.1: Suppose that p is critical. By

Lemma 3.2 and pursuant to the time-dependent rescaling

(3.2),

2

dx

Vu—iux

RZIRZ 2R

L esc=-50
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Thus
2 SR
fR2|V|u|| dx:.f]Rz Vie2®R" u| dx
. 2
) Vu—iux dx
R 2R

Is bounded by 2E (O)R(z)fz, the remainder of the
proof follows the same lines that in Theorem 7.2.1 of
[10], see also [11,12], using maintain the L*norm and
the Sobolev-Gagliardo-Nirenberg inequality. U]

Proposition 3.3. Consider the two-dimensional defo-
cusing cubic NLS (1.1), (is L -critical). Let u, € H'

then there exists a global L’ -well posed solution to (1.1),

and moreover the L‘:’X (R x Rz) norm of u is finite.

Proof: By time reflection symmetry and adhesion ar-
guments we may heed attention to the time interval
[0 +oo). Since u, lies in H>', it lies in L. Apply the
L> well posedness theory (Proposmon 1 2) we can find
an L-well posed solution u e S°([0,T]xR’ ) on some
time interval [0,7],with 7>0 depending on the pro-
file of uy.

Specially the I ([O,T]X]Rz) norm of u is finite.
Next we apply the pseudoconformal law to deduce that,

E,[u(T).T]=E

Since u, € H', we got a solution fromt=0to¢t=T.
To go to all the way to #=+00. We apply the pseu-
doconformal transformation at time ¢ = 7, obtaining an

1
[uo, :EIRZ |xu0|2 dx <0

initial datum v(%) at time % by the formula

1 1 7= i)
V[?’xj =Z/—Tu(T Tx) H/.

From E[v(t),t]=E, {u Gjl
1

t
7 ) Vv(%,xj

=E, [u(T),T]<.

we see that v has

finite energy:
2

dx+l )
2 YR

<
—
N =
=
~

And, the pseudoconformal transformation saves mass
2
= R2|u(T,x)| dx

and hence
()
vl —,x
T
=J 2|u0(x

So we see that v(1/T) has a finite H, norm. Thus,
we can use the global H!-well posedness theory, back-

Joo

)|2dx <0

Copyright © 2013 SciRes.
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wards in time to obtain an H! -well posed solution

ves' ([O,%:IXRZJ, to the equation i0,v+Av= |v|2 v,

particularly, ve L ({0,%} xR? )

We reverse the pseudoconformal transformation,
which defines the original field # on the new slab

|:l,ooj>< R?.
T
We see that the L}, ([%,ooj x RZJ ,and

Cc'L H%,ooijzj norm of u are finite. This is suffi-

cient to make u an L -well posed solution to NLS on

the time interval {%,ooj; for v classical. And for gen-

eral ues' [[0,%}&[{2] , the claim follows by a limit-

ing argument using the L. -well posedness theory. Ad-
hesion together the two intervals [0,1/T] and (1/T,),
we have obtained a global L ([0, +00) x Rz) solution u
to (1.1).

4. SomeLemma

Consider the defocusing case of the NLS (1.1) and if
d=2,p=2, the energy and mass together will control
the H! norm of the solution:

(e, < E[u()]+ M[u(0)]

Conversely, energy and mass are controlled by the
H! norm (the Gagliardo-Nirenberg inequality showed

that)
” (l+||u(t) ji)
" (l+||u(t) p )

(1)22‘_ S ”(1)21_ :

This bound and the energy conservation law and mass
conservation law showed that for any H'-well posed
solution, the H norm of the solution u(¢) at time t is
bounded by a quantity depending only on the /! norm
of the initial data.

Proposition 4.1. The cubic NLS (1.1) with g=+1,d=
2 is globally well posed in H!. Actually, for u, € H.
and any time interval, K the Cauchy problem (1.1) has a
H! well posed solution

ueS'(KxR*)c C'H, (K xR?).

Su(0)

M[u(t)} =u
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de

Lemmad2.If f(1)=¢™u(t) the following holds:

e o <l e (1)
Proof: The proof depends on the noticing that;

efitAx — JefitA .

5 .

With
.X2 _X2
J =2ite “oe ¥

Thus

2 2 2

X WX
||e—itA (xf)"j _ "Jefimf”z — 42 e-lﬁéelﬁe—imf

4
By standard Gagliardo-Nirenberg inequality,

2
x? 2

4t e “oe e f

4
2

WX
2 || L-iea Y4t it
<t "e f "w Ae 4 e f

2

< ||w-ita " " 2 _—ithA "

~ ||e f 0 J © f 2

< ||e—itA " ”e—;m 2 ” ] ]
Sl s, je (1),

Lemmad.3. Let d=>2 . For any spacetime slab
KxR’, t,eK ,and forany &> 0.

”uv”L,zLi(Kde)

< (&) Ju(x)
X ("v(to)

The estimate (4.1) is very helpful when u is high hesi-
tancy and v is low hesitancy, as it moves abundance of
derivatives onto the low hesitancy term. In particular,
this estimate shows that there is little interaction between
high and low hesitancy. This estimate is basically the
repeated Strichartz estimate of Bourgain in [13]. We
make the trivial remark that the L norm of uv is the
same as that of uv, uv,or uv, thus the above estimate
also applies to expressions of the form O(uv)

Proof: We fix &, and permit our tacit constants to
depend on & . We begin by dealing with homogeneous
case, with u(7):=¢"¢ and v(¢):=e¢"y, And consider
the more general problem of proving,

2, Sl

@, v Ay, ) @

F2+0 LE‘H}-#()-

s +|(i0, + A)Y "*hg)

et
2 LH 2

[lev] 4.2)

HA H*2

d S .
where o, +a, :5—1 the scaling invariance of this

estimate, first, our objective is to prove this for

Copyright © 2013 SciRes.

o, :—%+§ and a, :%—5.

May be recast (4.2) using duality and renormalization
as

Je(&+enlal +laf e ™ (@la™ v (&)dgds,
Slelz 161z vz

|2

4.3)
Since «, = ¢, , we may restrict attention to the inter-
actions with |§1| > |§2|.
In fact, in the residual case we can multiply by

4|

-
= >1 to return to the condition under discus-
&
sion. In fact, we may further restrict attention to the case
where |&]>4|&| since, in the other case, we can move
the frequencies between the two factors and reduce the
case where a, =«,, which can be dealt by Lix Stri-
chartz estimates when d >2. Next, we decompose ||
dyadically and |&| in dyadic multiples of the size of
|&| by rewriting the quantity to be controlled as (N, A
dyadic):

DI EYERESEIREEY
& EN(&)|E ™ wAN(&,)dEdE,.

Note that subscripts on g,{,w, have been inserted to
invoke the localizations to |§1 +§2| ~N , |§l| ~N ,
|§2| ~ AN, consecutive. In the case |§1 | > 4|§2|, we have
that |§, +§2| ~ |§1| and this expound, why g may be so
localized. By renaminf components, we may suppose

that |&|~[&] and [&)]~ |-
Write & =(&),&, ). We change variables by writing

u=_¢ +§23VZ|§1|2 +|§2

And dudv = Jd&dE,.
We show that by calculation

J=lo(&+&)|~ 14l

Thus, upon changing variables in the inner two inte-
grals, we encounter

N (AN)

(.[RH -[R .[_R" gN(u,v) Hy . (u,v,éz)dudvdéz)

where

|2

HN,A (U,V,éz) = gN(gl)y;AN(fz)

Apply the Cauchy-Schwarz on the u, v integration and
change back to the original variables to obtain
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2N eN] 2 X (AN) ™
N A<l

N =

‘§N’é

yAN (&)

d&dé,

fora| fe o

dg,

We recall that J ~N and use Cauchy-Schwarz in the
integration, taking into consideration the localization
&, ~ AN, to get

AN)™

P
ZN 7 eM] X0
N A<l

Choose a]:—%-i-é‘ and azz%—éﬂwith 0>0

to obtain

%:”g]\]"L2 LN 2 ;As y AN 12

This summarizes to get the claimed homogeneous es-
timate. Now we discuss the inhomogeneous estimate
(4.1). For simplicity we set, F:=(i0, +A)u and

G:=(id,+A)v. Then we use Duhamel’s formula to
write
u= i(1—tg)A —lje (e=1"). ¢
V= i(t=ty)A —zje (e-1")
We obtain
"uV"Lz < “ei(t—to)Au (to)ei(t—to)Av(tO) ;
+le i(1—ty)A e i(t-t")
I .
+lle i(1-tg)A e i(tt")
J .
t t
+ J'ei(t—t’)AG(zl)dt/'[ ei(t—t")AG(x’tﬂ)dtﬂ
t fo 12

=L+ +1,+1,

The first term was treated in the first part of the proof.
The second and the third are similar and so we consider
I, only. By the Minkowski inequality,

12 ,S ”J‘R ei(t—tO)Au (to ) ei(t—t’)AG (Il) dr'

2

And in this case the lemma follows from the homoge-
neous estimate proved above. Finally, again by Min-
kowski’s inequality we have
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Lsll “ O (1 dr'de”

And the proof follows by inserting in the integral the
homogeneous estimate above. (]

Lemmad.d. Let ueC,, L. (KXR ) is nearly peri-
odic modulo G. Then there exist functions x:K — R,
&:K—>R? and N:K — (0,+0), and for every 7>0
there exists 0<C(#n) <o, such that we have the spatial
concentration estimate,

i(t= t)AG(tﬂ) ;

2
[ cmlu(tx) de<p 4.3)
x x(t)‘,N(t)
And hesitancy concentration estimate,
[ el (1) dé<n (4.4)
O

Forall tekK .
Remark 4.5. Informally, this lemma confirms that the
mass u (t) is spatially concentrated in the ball

{%:x:xﬁ)+O[R%5J}

And is hesitancy concentrated in the ball
{g:e=¢(t)+0(N (1))} .

Note that we have presently no control about how
x(t), N(z), &(r) vary in time; (for more see [14-
17)).

Proof: By hypothesis, u(¢) lay in GI for some com-
pact subset / in L’ R? ) For every 7 >0, compactness
argument shows that there exists 0<C (77)<oo , (de-
pending on) such that

Jopenl )

And hesitancy concentration estimate

7 (@)ag=<n

|2de77

‘§‘>C n

For all f €. By inspecting what the symmetry group
G does to the spatial and hesitancy distribution of the
mass of a function, then the claim follows. Ol

Corollary 4.6. Fix u and d, and assume that m is
finite. Then there exists a maximal-lifespan solution
ueCy), L. (K x Rd) of mass precisely my which blows
up both forward and backward in time, and functions,
x:K—>R', £&:K—>R? and N:K —(0,+%), with
property 0<C(n)<ow, for every 7>0, (depending
on u,d, mg) such that we have the concentration esti-
mates (4.3), (4.4) Forall teK .
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