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ABSTRACT 

Nonlinear nonstationary heat conduction problem for infinite circular cylinder under a complex heat transfer taking into 
account the temperature dependence of thermophysical characteristics of materials is solved numerically by the method 
of lines. Directing it to the Cauchy’s problem for systems of ordinary differential equations studied feature which takes 
place on the cylinder axis. Taken into account the dependence on the temperature coefficient of heat transfer that the 
different interpretation of its physical content makes it possible to consider both convective and convective-ray or heat 
ray. Using the perturbation method, the corresponding thermoelasticity problem taking into account the temperature 
dependence of mechanical properties of the material is construed. The influence of the temperature dependence of the 
material on the distribution of temperature field and thermoelastic state of infinite circular cylinder made of titanium 
alloy Ti-6Al-4V by radiant heat transfer through the outer surface has been analyzed. 
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1. Introduction 

It is of interest to consider the condition of convective 
heat transfer coefficient depending on the temperature of 
heat transfer 
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Here t —coefficient of thermal conductivity, which 
depends on the temperature; ct —temperature environ- 
ment, which washes the body surface ; -external nor- 
mal to the surface . That kind of heat transfer condi- 
tions also considers heating or cooling the body by ra- 
diation, or heat when carried out simultaneously by con- 
vection and radiation. Thus the physical content of Equ- 
ation (1) is quite different. For radiation heat transfer co- 
efficient t  is called the coefficient of radiation heat 
transfer, it has the same dimension as the coefficient of 
convective heat transfer is: 

    2 2
c ct t t t t    ,         (2) 

 — 

Stefan-Boltzmann constance,  —coefficient of black- 
ness. The coefficient   is the total coefficient of con- 
vective heat transfer k  and coefficient of radiation 
 t

 k t   

r
 , ,r z

 in the case of convective heat transfer beam 

where 

.               (3) 

Transient heat transfer body will be called convective 
heat transfer with temperature depending on the heat 
transfer coefficient. The mechanism of that heat transfer 
is described by the Relation (1). 

In the study of processes of heat conduction in solids, 
which are shaped circular cylinder radius 0  using a cy- 
lindrical coordinate system . If the temperature 
is independent of   and  (the case of axial symme- 
try), the heat equation has the form: 

z

 

 —reduced rate of radiation, 

0

1
,0t v

t t
r c t r r

r r r



            (4)       

 c twhere v

The solution of Equation (4) satisfies the boundary 
condition of the third kind, the described types of heat 
transfer are as follows: 

—volumetric heat capacity. 
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and at  satisfies the condition of boundedness of 
solution, which is equivalent to the condition 
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Besides, the solution of Equation (4) satisfies the ini- 
tial condition 

pt r t ,                 (7) 

where pt

t t
r

—the initial temperature of the cylinder. 
Thus, the mathematical model to determine the tem- 

perature field in a circular cylinder has the form of non- 
linear boundary value Problems (4)-(7). 

For the convenience of calculations in constructing the 
solution to the Problems (4)-(7) we pass to dimensionless 
variables. To do this, take the temperature of the heating 
medium c  by counting the temperature 0 , and radius 

0  for the typical size. We introduce the dimensionless 
temperature 0  and coordinate T t t 0r r  . The 
growth temperature pT  denoted by T T , where 

0tp pT t

   ,t c t

. 

2. Preliminaries 

Specifications of the material t v  and heat 
transfer coefficient  are represented as:  t
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where 0 0 0t v  —basic coefficients that are relevant 
dimension, and,      , ,T c T T   

T

t v —functions that 
describe the dependence of these characteristics on di- 
mensionless temperature , and  

    1v pT c T  t p . 

We introduce the dimensionless time  
 2

0 0 0 0 0tFo a r a c    and Bios criterion’  

0 0 0tBi r  . That Problems (4)-(7) to increase the 
temperature in the dimensionless quantity becomes a 
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where c c pT T T  . 

Nonlinear boundary value Problems (9)-(12) will be 
solved numerically using the method of lines. We intro- 
duce a uniform grid 

 ; 0, , 1h i ih i N hN    

0 1

 

in the interval   . The differential operator 
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has been replaced by the difference operator [1] at the 
points of the grid , 1, 1i i N   

 1 2 , ,

1
i i i i

i

T ,              (14)  
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where  1 2 , 12 ,i i i i ih T T T h      ,  

 , 1i i iT T T h   i, and the value   determined by the 

formula 
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The difference operator (14) approximates the dif- 
ferential operator (13) to the second order in . 

We will approach these functions  ,T T Foi i  by 
using the functions   , 0,y y Fo i N i i , which are based 
on Equation (9) satisfying the system of ordinary differ- 
ential equations 
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i v i

We construct the difference boundary condition for the 
second-order approximation for N

. 

   . The expan- 
sion of these values in series Taylor in neighborhood of 
the point  N  is written as follows:  
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Then considering the differential Equation (9) at the 
point  N  we receive 
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The difference analog of condition is constructed (11). 
The values ,0T  і 1  decompose in the Taylor series: 
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In view of Equation (9) we write 

     t
t

TT T T
T c T

Fo
 


 


  


  

    
.   (20) 

Since 
0

lim 0
T

 






 

, then we have uncertainty  

0

t T T
 










 of type 
0

0
. We now turn to the border  

and reveal uncertainty using the rule of de L’Hospitala, 
we get  

 
0

0

lim t
t

T T T
T







   







    
      

. 
 

Thus from (20) we obtain 

   
0

00

1

2t

T T
T c T

Fo 



 

 




    
      

.   (21) 

Taking into account (21), we write (19) as 
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Since the value of 0  approaches 0 , then from (22) 
we obtain the following differential equation at the point 
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Thus, we obtain the Cauchy problem for systems of 
ordinary differential equations approximating the partial 
derivatives of the space variables with the second-order 
boundary-value Problems (8)-(11) 
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Thus, the dependence forms of the heat transfer co- 
efficient  t  t, thermal conductivity t  and volu- 
metric heat capacity  c tv  of the selected material are 
dependent on temperature, then we solve the system 
numerically (24)-(27). As a result, we obtain the value  
of temperature increase in grid points , 1,i N i  along 
the radius of the cylinder for a given time Fo

, ,rr zz

. 

3. Thermoelastic State of a Cylinder 

The thermoelastic cylinder state with the activity of the 
found axisymmetric temperature field are defined by  
three non-zero components of stress tensor   

   

, 
which in dimensionless form is rewritten as: 
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where  і  —supporting values of the shear mo- 
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dulus and coefficient of linear thermal expansion. 
However, they are expressed through the dimension-  

less radial displacement 
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pendence of the Poisson coefficient of the linear thermal 
expansion and modulus of the dimensionless temperature 
increase. If we substitute the dependence (28)-(30) into 
equilibrium Equation (31), we get the differential equa- 
tion 
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The solution of Equation (32), which satisfies the con-
dition of the limited movement of the cylinder axis, 
found by perturbation [1-3] has the form of: 
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According to (33) the thermal stress    

   
0

, , , ,

, is 
found by the formulas: 

p pk k k
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where 
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where  
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The sustainable integration c k  and parts of 
the development of axial strain determine the  

conditions on the outer surface 
1

0k 





1

0

d 0k 

 and relations 

for unmounted ends of the cylinder  , by  

solving system of linear equations  

 , 0k kB k AX ,            (43) 
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Here 
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For fixed ends of the cylinder we have . 
If the thermomechanical properties of the material the 

cylinder does not depend on temperature, then transfer 
and thermal stresses are calculated by the formulas: 
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t r r

300 Kt 
t

i —increase of temperature in the cylinder for 
constant thermophysical characteristics; i —steel 
coefficient of linear thermal expansion and modulus ta- 
ken at the initial or maximum temperature, or mean inte- 
gral value of the selected temperature range. 

4. Numerical Study 

This section investigated the temperature field and ther- 
moelastic state of thermosensitive infinite circular cylin- 
der. Radiant heat exchange with the environment at a 
temperature c  is due to the surface 0  of the cylin- 
der, which is free from power loads. In that case, the ra- 
diant heat exchange has been formed to convective heat 
transfer coefficient in the form of (2). The initial tem- 
perature of the cylinder is p . The medium tem- 
perature c  is equal to 1100 K and it is selected by sup- 
porting. Titanium alloy Ti-6Al-4V taken by the material. 
Temperature dependence of thermal and mechanical 
properties of the alloy are the form [4] in the temperature 
range from 300 K to 1100 K. 
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 12 210 1 К ,t t6 97.43 10 5.56 10 2.69

t
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  

t
  (51) 

122.7 0.0565 GE t t  Pa

688 32.0 10t t  

,         (52) 

  0.28 .       (53) 

For the purpose of comparison, we studied the tem- 
perature field and caused it thermoelastic stable in the 
same noetherian sensitive cylinder under constant ther- 
mal and mechanical characteristics of titanium alloy. 

This steel coefficient of thermal conductivity  t
 c t  G t

300 K

t , 
volumetric heat capacity v , modulus , coeffi- 
cient of linear thermal expansion  and coefficient 
of Poisson , we take as: a) the initial temperature 

p , and b) the maximum temperature of tc = 
1100 K, c) mean-integral temperature range from 300 - 
1100 K, under 

 t t
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c t t

    



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The results of numerical studies of the temperature T

0.1Fo 

1

 
growth, which were obtained in dimensionless form, are 
presented in graphs in Figures 1-2. 

The distribution rates of temperature along the radial 
coordinate cylinder for values  of the Fourier 
criterion are shown in Figure 1. The dependence of the 
temperature growth on the criterion of Fourier on the 
surface    of the cylinder is illustrated in Figure 2. 
Here curve 1 correspond to the results of calculations 
taking into account the temperature dependence of ther- 
 

 

Figure 1. Temperature dependence of the radial coordinate. 

mophysical characteristics of titanium alloy (48)-(51), 
curve 2—at   maxt tt t     v vc t c t, max ; curve 3 
—at   t t  maxt t ,    c t c t maxv v ; curve 4—for 
sustainable medium-integer values of material from a 
selected range of temperature. The analysis of the re- 
search shows that the largest discrepancy between the 
temperature growth in the cylinder taking into account 
the temperature dependence of thermophysical charac- 
teristics of materials and for stable values of characteris- 
tics is in the case        ,t t c t c t  max maxt t v v

As it is visible from the graphs in Figure 2 the ma- 
ximum difference between the increases of temperature 

. 

T 1 on the surface    of the cylinder by taking into 
account the temperature dependence of thermophysical 
of characteristics material (curve 1) and stable medium- 
integer values of thermal conductivity and volumetric 
heat capacity (curve 4) does not exceed 10% (for 

). 0.1Fo 
Figures 3-9 show graphs of distributions of displace- 

ment and stress tensor component along the radial coor- 
dinate   for the Fourier criterion  and on the 
surface of the cylinder 

0.1Fo 
1 Fo .    depending on 

Here curve 1 correspond to the results of calculations 
taking into account the temperature dependence of ther- 
mal and mechanical characteristics of titanium alloy 
(48)-(53).  
 

 

Figure 2. Temperature dependence of the criterion of the 
Fourier. 
 

 

Figure 3. Temperature dependence of the radial coordinate. 
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Figure 4. Temperature dependence of the criterion of the 
Fourier. 
 

 

Figure 5. Temperature dependence of the radial coordinate. 
 

 

Figure 6. Temperature dependence of the criterion of the 
Fourier. 
 

The curves 2 - 4 correspond to displacement or stress, 
found by constant values of thermal and mechanical 
properties of the material: curve 2—initially under the 
temperature curve 3—the maximum temperature curve 
4—for sustainable medium-integer values of titanium 
alloy with a temperature range 300 - 1100 K in Figures 
3-9. In the form of curves 5 - 7 there are the data distri- 
butions for the temperature-dependent thermal properties 
shown t v , and constant values of mechanical 
properties (which are taken for the initial (curve 5), and 
the maximum temperature (curve 6)) and sustainable me-  

 

Figure 7. Temperature dependence of the radial coordinate. 
 

 

Figure 8. Temperature dependence of the criterion of the 
Fourier. 
 

 

Figure 9. Temperature dependence of the radial coordinate. 
 
dium integer values of mechanical characteristics of tita- 
nium alloy with temperature range 300 - 1100 K (curve 
7). 

The analysis of differences between the values of both 
displacements and stresses, which are calculated for all 
dependent on the temperature characteristics of the mate- 
rial (heat-sensitive body), and their values calculated by 
the constant characteristics (not heat-sensitive body) in- 
dicates that: 
 they exceed 60%, if the properties take non heat-sen- 

sitive value for thermo-sensitive characteristics at ma- 
ximum temperature; 

   ,t c t

 within 12% - 40% when take on characteristics non 
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heat-sensitive body thermo-sensitive properties at the 
initial temperature; 

 they are within 4% - 20%, when the characteristics 
non heat-sensitive body take mid-integral values of 
thermal and mechanical characteristics. Then the ma- 
ximum difference between them exceeds 60%. 

Thus, studies show that by ignoring the temperature 
dependence of thermal and mechanical characteristics of 
the material, the distribution of temperature field and de- 
fined by its thermo-elastic state of the body that differ 
significantly from the true can be achieved. 

The likely thermoelastic state of structural elements of 
modern technology, which in the process of their manu- 
facture and operation exposed to high heat or cooled to 
low temperatures, preferably determined, based on the 
model of thermosensitive bodies [5,6]. In that model we 
consider the temperature dependence of thermal and 
mechanical properties of the material. That mathematical 
model to determine the thermoelastic parameters is sig- 
nificantly more complicated in comparison with the same 
model by neglecting thermo-sensitive material. The tem- 
perature is determined from the nonlinear problem, which 
is not only nonlinear heat equation and boundary condi- 
tions and in case of default on the body surface heat flux, 
convective or convective-radiation heat transfer [7,8]. 
The corresponding thermoelasticity problem is the same 
boundary value problem for differential equations with 
variable coefficients [5]. For these mathematical models 
the construction of solution is usually carried out by nu-
merical methods [9]. 
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