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ABSTRACT 

The periodic S1-equivariant hypersurfaces of constant mean curvature can be obtained by using the Lagrangians with 
suitable potential functions in the Berger spheres. In the corresponding Hamiltonian system, the conservation law is 
effectively applied to the construction of periodic S1-equivariant surfaces of arbitrary positive constant mean curvature. 
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1. Introduction 

W.-Y. Hsiang [1] investigated the rotation hypersurfaces 
of constant mean curvature in the hyperbolic or spherical 

-space. In [2], Eells and Ratto have constructed the 
rotation ( S -equivariant) minimal hypersurfaces in the 
unit 3-sphere with standard metric by using a certain first 
integral, which is invariant with respect to the rotation 
angle of generating curves on the orbit space. In [3], a 
family of S -equivariant periodic CMC surfaces was 
constructed in the Berger spheres when the constant 
mean curvature (CMC) is a sufficiently small positive 
number, and it was cleared that the conserved quantity 
can be obtained by using the Lagrangian equipped with 
suitable potential function of the corresponding dyna- 
mical system with respect to the Hsiang-Lawson metric 
[1,4] on the orbit space via the Hamilton equation, where 
the rotation angle of generating curves can be regarded as 
“time”. We should remark that the corresponding La- 
grangian has the vanishing potential when we construct 
the -equivariant minimal hypersurfaces. However, in 
case that we construct the -equivariant non-minimal 
CMC-hypersurface in the Berger sphere, the potential of 
the Lagrangian is a nonvanishing function. In Theorem 
4.3, we determine the potential function of the La- 
grangian which corresponds to the -equivariant CMC- 
surfaces immersed in the Berger sphere. As a result we 
can obtain a family of periodic -equivariant CMC 
surfaces in the Berger spheres when the constant mean 
curvature is an arbitrary positive number (Theorem 
5.2). 



3S  C C

 on the unit 3- 

sphere  was defined by  

   g

n
1

1

1S
1S

1S

1S

,

2. Preliminaries 
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special case. In particular 
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Throughout the paper we consider the Berger spheres 
  3 , 1S g    . Here we summarize the notations 
which are used in the paper. 
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J X h  R  denotes a curve parametrized 
by arclength s . And also   :      and  
  ˆˆ :        stand for the tension fields of   with 

respect to the metrics h  and ĥ , respectively. The 
geodesic curvature  at     s  is defined by 

  h    : ,     where   denotes the unit 
normal vector field to  . 

3. S1-Equivariant CMC-Immersion 

For a curve : J X  1S

 
, we consider an -equivariant 

map    3 ,1 3: ,M S g S g   such that     
π    , where π : M J  and 

 are Riemannian submersions. Thr- 
oughout the paper, we assume that 

 3: ,S g X 
  is an S -equi- 

variant constant mean curvature 
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Then using the formula (1) we have the following 
differential Equation (4) of generating curves which 
corresponds to the CMC-rotation hypersurfaces immer- 
sed in  3 ,S g , since using Lemma 3.1 the geodesic 
curvature   
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4. Conservation Laws  

  ,s s s    on We consider a generating curve 
     0s  and . Then we can    such that X 

consider the space  #,   of motion with # d

d
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. Via the Legendre transformation we have the 
Hamiltonian  on the phase space :  
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 #,Proposition 4.1. Let the Lagrangian  on  
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ĥ

, 

  and Xwhere   is the Hsiang-Lawson metric on 
 G   is a potential function on the configuration space. 
Then we have  
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where the conserved quantity in the formula represents 
the Hamiltonian of our system. 

By means of the Hamilton Equation (5), we shall 
determine the potential  G   which corresponds to the 

-equivariant CMC surfaces immersed in 1S 3 ,S g  
via the differential Equation (4) of generating curves on 
the orbit space  . X

The direct computation yields the following  
Lemma 4.2. Assume that   and   are functions of  
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As a consequence, we have the following  
Theorem 4.3. On our system, the Lagrangian  and 

the Hamiltonian  which correspond to the -equi- 
variant CMC-H hypersurface immersed in   can 
be determined as follows:  
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Proof. Using Lemma 4.2 and the differential equation 
of generating curves (4) we have  
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5. Generating Curves for S1-Equivariant  
CMC Surfaces 

Let  s s s    be a generating curve on X   
such that      and  with the arc length   0s 
s . Then we set the following initial conditions:  
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Consequently we have the following  
Lemma 5.1. Under the initial conditions for gene- 

rating curves which correspond to the CMC-H rotation 
hypersurfaces, we have 
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H  is an arbitrary positive number. In Assume that 
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Lemma 5.1 we now choose 0  such that 
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Consequently we have the following  
Theorem 5.2. Let H  be an arbitrary positive number 

and choose 0  such that 0 2H H   . If ,π H   is 
a rational number, then the corresponding -equi- 
variant hypersurface is an immersed CMC-H torus in the 
Berger sphere 
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Corollary 5.4. There exists an embedded minimal 
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