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ABSTRACT 

In this paper, we study a real hypersurface M in a non-at 2-dimensional complex space form M2(c) with η-parallel Ricci 
and shape operators. The characterizations of these real hypersurfaces are obtained. 
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1. Introduction 

A complex -dimensional Kaeherian manifold of con- 
stant holomorphic sectional curvature  is called a  
complex space form, which is denoted by 

n
c

 nM c

P
n

. As is 
well-known, a complete and simply connected complex 
space form is complex analytically isometric to a com- 
plex projective space n , a complex Euclidean 
space  or a complex hyperbolic space 


  n 

0c 
H , 

according to  or .   0,c 0c 
In this paper we consider a real hypersurface M  in a 

complex space form . Then  2M c ,c  0 M  has an 
almost contact metric structure  , , ,g    induced 
from the Kaehler metric and complex structure J  on 

 nM c . The structure vector field   is said to be 
principal if A   is satisfied, where A  is the 
shape operator of M  and  A   . In this case, it is 
known that   is locally constant ([1]) and that M  is 
called a Hopf hypersurface.  

Typical examples of Hopf hypersurfaces in 

Theorem 1.1. ([2]) Let M  be a homogeneous real 
hypersurface of  P n . Then M  is tube of radius  
over one of the following Kaeherian submanifolds: 

r

 P n  
are homogeneous ones, R. Takagi [2] and M. Kimura [3] 
completely classified such hypersurfaces as six model 
spaces which are said to be 1 2, , , ,A A B C D

nH 
 and . On 

the other hand, real hypersurfaces in  have been 
investigated by J. Berndt [4], S. Montiel and A. Romero 
[5] and so on. J. Berndt [4] classified all homogeneous 
Hopf hyersurfaces in  as four model spaces 
which are said to be 0 1 2

E


nH 
, ,


A A A  and . Further, Hopf 

hypersurfaces with constant principal curvatures in a 
complex space form have been completely classified as 
follows:  

B

(A1) a hyperplane  1nP   , where 
π

0 r
c

 

  1 2kP k n  

; 

(A2) a totally geodesic , where 

π
0 r

c
 

1n

; 

(B) a complex quadric , where 
π

0
2

r
c

  ; 

  (C) 1 1

2

nP C P C , where 
π

0
2

r
c

 

5n 

2.5G C

 and  

 is odd; 
(D) a complex Grassmann , where  

π
0

2
r

c
  9 and n  ; 

   (E) a Hermitian symmetric space 10 5SO U , 

where 
π

0
2

r
c

  15n  and .  

Theorem 1.2. ([4]) Let M  be a real hypersurface in 
 H n . Then M  has constant principal curvatures 

and   is principal if and only if M  is locally con- 
gruent to one of the followings: 

(A0) a self-tube, that is, a horosphere; 
(A1) a geodesic hypersphere; 
(A2) a tube over a totally geodesic  
  1 1kH k n   ; 
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(B) a tube over a totally real hyperbolic space 
.   H n

A real hypersurface of type 1A  or 2A  in  P 
,

n  or 
type 0 1A A  or 2A  in n , then  H  M  is said to be 
of type A  for simplicity. As a typical characterization 
of real hypersurfaces of type A , in a complex space 
form  nM c  was given under the condition  

  , 0A X Y  g A ,         (1.1) 

for any tangent vector fields X  and  on Y M  by M. 
Okumura [5] for  and S. Montiel and A. Romero 
[6] for . Namely  

0
0

c
c 

Theorem 1.3. ([5,6]) Let M  be a real hypersurface 
in n . It satisfies (1.1) on  M c , 0,n 2c  M  if and 
only if M  is locally congruent to one of the model 
spaces of type A.  

The holomorphic distribution 0  of a real hypersur- 
face 

T
M  in n M c  is defined by  

      , 0 .
p

X  

 

0 pT p X T M g       (1.2) 

The following theorem characterizes ruled real hyper- 
surfaces in nM c .  

Theorem 1.4. ([7]) Let M  be a real hypersurface in 

n . Then  M c , 0,n 2c  M  is a ruled real hypersur- 
faces if and only if 0,A  

0,
 or equivalently 

 for any g A  0,,X Y  X Y T .  
A (1,1) type tensor field T  of M  is said to be 

 -parallel if  

  , 0Xg T Y Z 

,

             (1.3) 

for any vector fields X Y  and Z  in 0T . Real hyper- 
surfaces with  -parallel shape operator or Ricci ope- 
rator have been studied by many authors (see [13]). 
Nevertheless, the classification of real hypersurfaces with 
 -parallel shape operator or Ricci operator in  nM c  
remains open up to this point. Recently, S.H. Kon and 
T.H. Loo ([9]) investigated the conditions  -parallel 
shape operator.  

Theorem 1.5. ([9]) Let M  be a real hypersurface 
of n . Then the shape operator   3c , 0,nM c A  is 
 -parallel if and only if M  is locally congruent to a 
ruled real hypersurface, or a real hypersurface of type 
A  or . B

Also, M. Kimura and S. Maeda ([10]) and Y.J. Suh 
([11]) investigated the conditions  -parallel Ricci 
operator.  

Theorem 1.6. ([10,11]) Let M  be a real hypersur- 
face in a complex space form n . Then the 
Ricci operator of 

  , 0M c c 
M  is  -parallel and the structure 

vector field   is princial if and only if M  is locally 
congruent to one of the model spaces of type A  or type 

.  B
A  

and  -parallel, I.-B. Kim, K. H. Kim and one of the 
present authors ([12]) have proved the following.  

As for the structure tensor field 

Theorem 1.7. ([12]) Let M  be a real hypersurface 
in a complex space form n . If   , 0, 3M c c n  M  has 
the cyclic  -parallel shape operator (resp. Ricci opera- 
tor) and satisfies  

  , 0g A A X Y            (1.4)  

X  and Y  in 0T , then for any M  is locally congru- 
ent to either a real hypersurface of type A  or a ruled 
real hypersurface (resp. M  is locally congruent to a 
real hypersurface of type A ).  

The purpose of this paper is to give some charac- 
terizations of real hypersurface satisfying (1.4) and 
having the  -parallel shape operator or Ricci operator in 

 

 , shape operator 

2M c . We shall prove the following.  
Theorem 1.8. Let M  be a real hypersurface in a 

complex space form  2 c 0.c ,  If M  has the M  - 
parallel shape operator and satisfies (1.4), then M  is 
locally congruent a ruled real hypersurface.  

Theorem 1.9. Let M  be a real hypersurface in a 
complex space form  2 c 0.c ,  If M  has the M  - 
parallel Ricci operator and satisfies (1.4), then M  is 
locally congruent to a real hypersurface of type A .  

All manifolds in the present paper are assumed to be 
connected and of class C  and the real hypersurfaces 
are supposed to be orientable. 

2. Preliminaries 

Let M  be a real hypersurface immersed in a complex 
space form  2M c N, and  be a unit normal vector 
field of M . By   we denote the Levi-Civita con- 
nection with respect to the Fubini-Study metric tensor g  
of  2M c . Then the Gauss and Weingarten formulas are 
given respectively by  

 , ,X X XY Y g AX Y N N AX         

X  and Y  tangent to M , where for any vector fields 
g  denotes the Riemannian metric tensor of M  in- 
duced from g A  is the shape operator of M  in  , and 

 2 X  on M  we put  M c . For any vector field 

  , ,JX X X N JN       

 2J  is the almost complex structure of Mwhere c . 
Then we see that M  induces an almost contact metric 
structure  , , ,g   , that is,  

   
           

2 , 0, 1,

, , , ,

X X X

g X Y g X Y X Y X g X

     

    

    

  
 

(2.1) 



X  and  on Yfor any vector fields M . Since the 
almost complex structure J  is parallel, we can verify 
from the Gauss and Weingarten formulas the followings:  
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,X AX  

 , .X g AX Y

             (2.2) 

   X Y Y A  

c

        (2.3) 

Since the ambient manifold is of constant holomorphic 
sectional curvature , we have the following Gauss and 
Codazzi equations respectively:  

 

   
  
  

,

, ,
4

, 2

, ,

R X Y Z

c  

 


,

,

,

g Y Z X g X Z Y

g X Z Y g X

g AY Z AX g AX Z

g Y Z X

Y Z

AY

 





   

  

 

 

 

   (2.4) 

   
4

X YA Y A X

c
X Y Y X   2 ,g X Y      

  



,

  (2.5) 

for any vector fields X Y  and Z  on M , where  
denotes the Riemannian curvature tensor of 

R
M . From 

(1.3), the Ricci operator  of S M  is expressed by  

    2 1 3
4

 2 ,SX n X X mAX A X     

tracem A

c
  (2.6) 

where  is the mean curvature of M , and 
the covariant derivative of (2.5) is given by  

 

   

   

3
,

4

X

X X

S Y

c    

  .X

g AX Y Y AX

m A Y A AY

  



  

    

Xm AY

A A Y

 



  (2.7) 

Let U be a unit vector field on M  with the same 
direction of the vector field    , and let   be the 
length of the vector field   

,

 if it does not vanish, 
and zero (constant function) if it vanishes. Then it is 
easily seen from (1.1) that  

A U                (2.8) 

where  A   . We notice here that U  is ortho- 
gonal to  . We put  

  0 .p p M  



         (2.9) 

Then  is an open subset of M .  

3. Some Lemmas 

In this section, we assume that  is not empty, then 
there are sclar fields 


,   and   and a unit vector 

field  and U U  orthogonal to   such that  

,AU U U A U U U         

tracem A

   (3.1) 

and  

     

2

         (3.2) 

in  .M c  We shall prove the following Lemmas.  

Lemma 3.1. Let M  be a real hypersurface in a 
complex space form  If  2 , 0.M c c  M  satisfies 
(1.4), then we have ,AU U   A U U 

.
 and 

    
Proof. If we put X Y U  , or X U  and 

Y U  into (1.4) and make use of (3.1), then we have  

0 and .           (3.3)     

ATherefore, it follows that U  is expressed in terms 
of   and U  only and A U U . □   given by 

It follows from (2.6), (2.8) and Lemma 3.1 that  

2

2 2

2

2 ,
2

5
,

4

5
.

4

c
S U

c
SU U

c
S U U

    

   

   

     
 

      
 

    
 

    (3.4) 

Lemma 3.2. Under the assumptions of Lemma 3.1. If 
M  has the  -parallel Ricci operator  then we have S

0U   2U  and    .   
Proof. Differentiating the second of (3.4) covariantly 

along vector field X  in , we obtain  0T

 

 

2 2

2 2

5

4

5
.

4

X

X

S U

c
I S U AX

c
X X U

   

    



          
  

      
 

U U

 (3.5) 

Taking inner product of (3.5) with  and   and 
making use of (3.5) and Lemma 3.1, we have  

 2 2 25
2 ,

4

c
g U X X         

 
   (3.6) 

and  

   2, , .Xg U U g U X            (3.7) 

If we put X U  and Y U  into (3.6) then we 
have  

 2 2 0U U U                 (3.8) 

and  

      22 2 2 .U U U             (3.9)    

X U Y U  and Putting   into (3.7), then we 
obtain  

   2, and , 0.U Ug U U g U U          (3.10) 

If we differentiate the third of (3.4) covariantly along 
vector field X  in T , we obtain  0
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X  on 
  25

4

5
                 

4

X

c
S U

c 2 .

XI S U

X U

   

 

     
 

  


 


    

  

U

 (3.11) 

If we take inner product of   and using (3.4), then 
we have  

2 0.U  
 

5

4

c
X          (3.12) 

Substituting X U U  and   into (3.12), we obtain  

 
   

U U   

   

 

   
2 0 and

2 0.U U



  




    (3.13) 

By comparing (3.8) and (3.9) with (3.13), we have 
0U   and   2 .U     □  

Lemma 3.3. Under the assumptions of Lemma 3.2, we  

have    , ,g U X U
2

XU g U X
   


   .  

Proof. Since we have A U U 

 

 and using (3.7), 
we get  

   

     
2

, , and

, , .

U X

g U X





X

X

a X g U

c X g U U

 



  

  
  (3.14) 

Thus, it follows from (3.14) that  

   , , .g U X U
2

XU g U X
   


    □ 

Lemma 3.4. Under the assumptions of Lemma 3.2, we 
have 0   0.   and U U  

 ,g A

  
Proof. Differentiating the smooth function  

    along any vector field X  on   and 
using (2.2) and (2.5) and Lemma 3.1, we have  

  2 , .X g A   U X

U A

      (3.15) 

Since we have   A          , we 
see from this equation above that the gradient vector field 
  of   is given by  

    U U 3 .U            

X

 

If we put 
0.U 

3 .U U

 into Lemma 3.3, then we have  

                 (3.16) 

Thus, the above equation is reduced to  

              

U

   (3.17) 

Taking inner product of this equation with U  and 
  respectively, we obtain  

 andU U 3 .            (3.18) 

If we differentiate the smooth function  ,g AU   

along any vector field M  and using (2.2), (2.5) 
and (2.8) and Lemma 3.2, we have  

     22 .
2U

c
U U U U U                

 
(3.19) 

X U  into Lemma 3.3, then we have  Putting 
2

.UU U


           (3.20) 


 

   

If we substitute (3.20) into (3.19), then we obtain  

22 .
2

c
U U U U             

 

U

  (3.21) 

If we take inner product of this equation with   
and using   2U    in Lemma 3.2, then we have  

0.
4

c              (3.22) 

As a similar argument as the above, we can verify that 
the gradient vector fields of the smooth function  

   , ,g AU U g A U U     is given respectively by  

      3UA I U U U U U                 

(3.23) 

and  

  U U                   (3.24)  

by virtue of (2.3) and Lemma 3.2.  
If we substitute (3.24) into (3.23) and make use of 

(3.20) and Lemma 3.1, then we obtain  

      3 0.U U U U U         

U
U

  (3.25) 

If we take inner product of this equation with  and 
  respectively, then we have  

 0 and 3 .U U    

0U

         (3.26) 

If we substitute (3.26) into (3.14) and take account of 
(3.21), then we have   . Also, if we differentiate 
(3.21) along any vector field  , then we have  

             (3.27) 0.  

Taking inner product of (3.23) with   and using 
(3.18), we get U  . Since U 0 

0, 0
, we see from 

(3.27) and the first of (3.18) that   
0

 and 
 . □  

4. Proofs of Theorems 

Proof Theorem 1.8. If (1.4) is given in M , then we see 
that Lemma 3.1 holds on M . If we differentiate (1.3) 
along any vector field X  in T  and using (2.3) and 
(2.8), then we have  

0
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,

, ,

X

    
,

, ,

Xg A A Z Y g A 5. Acknowledgements A Y Z

g U Z g AX Y g U

  



  

  Y g AX Z

 

,

  (4.1) 
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comments. Z  on 0 . Putting for any vector fields X Y  and T

X Y Z 

0.

U  into (4.1) and using Lemma 3.1 and 3.3, 
then we have  
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