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ABSTRACT 

This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infini- 
ty” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos 
differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical 
points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence re- 
spectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model 
and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the 
Painlevé property and to questions of integrability of dynamical systems. 
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1. Introduction 

The projection of the real line on a circle is a form of 
compactification that was known to Greek mathematic- 
cians before the commeon era. In 1881 Poincaré [1], stu- 
died limit cycles “at infinity” of two dimensional poly- 
nomial differential equations via compactification. Al- 
though the paper contained errors that were addressed 
more than a hundred years later by Roeder [2], the origi- 
nnal ideas had lasting impact. An early study of differ- 
ential equations via compactification was carried out by 
Bendixson [3]; see Andronov et al. ([4], p. 216). Ben- 
dixson used the stereographic projection that does not 
account for all directions at infinity. See e.g. Ahlfors [5] 
and Hille [6], for versions of the stereographic projection. 
The Poincaré compactification is adopted in various 
textbooks on differential equations. See also [7-10]. It is 
widely used to study critical points at infinity. Compare 
e.g. with the studies of Chicone and Sotomayor [11], 
Cima and Llibre [12], Schlomiuk and Vulpe [13], and 
their references. It is noteworthy that the stereographic 
projection is obtained by Y. Gingold and H. Gingold [14] 
as a degenerate limit of a family of compactifications that 
account for all directions at infinity. However, that com- 
pactification is akin to the Poincaré compactification [1], 
and possesses radicals that prevent it being a tool for 
rational approximations. Compactification is an excellent 
mean to obtain global phase portraits of vector fields of  

dynamical systems, that include the neigborhood of in-
finity. [12] is a welcome global analysis and supplement 
to the analysis of Chen, Guang Qing and Liang, Zhao Jun 
[15]. 

This article is dedicated to the review to the exposition 
and to the promotion of the study of solutions of diffe- 
rential systems and dynamical systems in the “neighbor- 
hood of infinity”. This study promotes and utilizes a cer- 
tain non traditional compactification. The treatment is 
based on a series of papers published in the span of the 
years 2004 to 2012. We describe the theoretical back- 
ground necessary to define neighborhoods and critical 
points at infinity of solutions of differential systems. We 
develop an explicit formula for the leading asymptotic 
term of diverging solutions to critical points at infinity. 
Applications to problems of completeness and incom- 
pleteness of dynamical systems are also brought to the 
fore. In particular quadratic systems and the Lorentz eq- 
uations are being used as examples where new and old 
results are obtained. The quadratic system of competing 
species is utilized as an example of an incomplete system 
to which a main result, Theorem 14, applies. Theorem 14 
is also related to the Painleve property and consequently 
is related to issues of integrability. The Lorenz system is 
used as a prototype of a nonlinear quadratic system that 
is complete for a much larger set of parameters known  

before. A simple bijection, , , 

that has a rich geometrical interpretation, plays a major 

  1†1y x x


  x , kx y
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role in our study. 
Details are provided when new results are derived or 

an important point of view is stressed. Otherwise, we 
defer for details to the original papers. Traditionally, 
various aspects of an article and comparisons with refer- 
ences are provided in an introduction section. However, 
we prefer to postpone such comparisons and comments 
to subsequent sections with the hope that the delay will 
make the ideas more tangible. We are happy to ac- 
knowledge the influence of the article by Elias and Gin- 
gold [14] on the application of compactification methods 
to the study of differential systems of equations. 

We could not find in the text books on discrete dy- 
namical systems the utilization of compactification tech- 
niques. A modest attempt to fill up this large gap is given 
in H. Gingold [16-18]. 

The order of presentation in this article runs as fol- 
lows. 

In Section 2 we define what divergence to infinity 
means in  and we extend  to a larger set to be 
called the Ultra Extended . 

k k
k

In Section 3 we discuss properties of the compactifica- 
tion , some of its geometrical interpreta- 
tions and the metric induced by it in the Ultra Extended 

. 

  1†1y x x


  x

k
In Section 4 we discuss the new equations resulting 

from the transformation of an initial value problems of a 
polynomial differential system  y f y 

x
 under the 

compactification .   1†1y x x


 
In Section 5 we define what a critical point p  of 

 y f y   is, and we prove a theorem that a polynomial 
differential system has at least one critical point in the 
Ultra Extended . k

In Section 6 we derive an explicit formula for a Jaco- 
bian associated with a critical point  of p  y f y  . 
We obtain an explicit leading asymptotic term of solu- 
tions of  y f y   that diverge to . From this ex- 
plicit formula old and new results follow. 

p

In Section 7 we discuss the ramification of the pre- 
vious sections on a large family of quadratic systems. 

In Section 8 we show how the compactification tech- 
niques shed new light on the completeness of the cele- 
brated Lorenz system. We also identify an extension of 
the attractor. The utility of ideal solutions  y t    is 
brought to the fore. 

In Section 9 we study fields of Lorentz like systems 
near infinity. 

2. Divergence in the Ultra Extended  k
Denote by y a column vector in . Let  

 denote a row vector that is the trans- 
pose of y. In particular let  be the trans- 
pose of the zero vector. Let  

k

0 0
†

1 2, , , ky y y y  
†ˆ , ,0

        †

1 2
: , , ,

k
f y f y f y f y 

k
 be a vector field in 

 where   j
f y 1, 2, ,j, k   are scalar polynomial 

functions. Denote by  min max,t t  the maximal interval of 
existence of a solution of a differential equation  

 d

d

y
y f y

t
   . We say that  yd

d
f y

t
  is a polyno-  

mial differential system of degree L if the vector function 
 f y  is given by 

         1 ,L L0 1f y f y  f y  f y f y     (1) 

where  jf y , 0,1,2, ,j L   are homogeneous poly- 
nomials column vectors of degree j and  Lf y  0  for 
some . [Note the difference between ky   j

f y  and 
 jf y ]. 
What does it mean that a sequence of points  z n k

 , t

, 
n = 1, 2, ··· converges to infinity in k? What does it mean 
that a continuous vector function min max  di- 
verges in the direction p to infinity in . There are at 
least two different definitions.  


y t  C t

k

Definition 1. We say that the sequence   kz n  , 
0,1, 2,n    diverges to infinity if  

 †
z n z n   .n  lim           (2) 

However, This definition is too restrictive for various 
purposes; e.g., mathematical physics. It blurs the distinc- 
tion between the different directions at infinity. A defini- 
tion that distinguishes between all directions at infinity 
requires the following.  

Definition 2. We say that the unbounded sequence 
  , 0n  ,1, 2,

p p
z n  diverges in the direction p to infinity 
or diverges to †, 1p 

  

, if (2) holds and  

  
1

†
z n z nlimn .         (3) z n p





The continuous analog of the definition above is given 
by  

Definition 3. We say that the vector function  
   min max, t

p
y t C t  diverges in the direction p to infinity, 

or diverges to   and we denote  

  
max

lim ,
t t

y t p  


mint t
y t , or limp     

if we have  

   

       

†

max

max

y t

1

lim

lim l ,

t t

t t

†

max

, and

im
t t

y t

x t y  

 

t y t y t p






 (4) 


or  

   

       

†

min

min

y t

1
†

lim

lim .

t t

t t min

, and

lim
t t

y t

x t y  

 

t y t y t p








 (5) 



Definition 1 is compatible with a common one in 
complex analysis that is associated with the extended 
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complex plane. Just one geometrical point corresponding 
to the symbol  augments . It is compatible with 
the compactification that is given by the stereographic 
projection. See e.g. [5,6].  

 2

Definition 4. Denote by  the union of  and 
an ideal point 

kE k
IP  and call it the extended  where k

 : , :k k .IP E     IP            (6) 

However, compatible with Definition 3 we need a 
larger ideal set ID. Analogous to Y. Gingold and H. 
Gingold [14], we define below an Ultra Extended  
and produce an induced metric in Section 3.  

k

Definition 5. Denote by  the union of  
and a certain ideal set ID and call it the Ultra extended 

 where 

kUE k

k

 †: 1, , :k k k .ID p p p p UE I        D    (7) 

As seen in the sequel there is good reason to introduce 
nonlinear transformations that will allow us to reduce the 
investigation of differential systems with unbounded 
solutions to the investigation of differential systems with 
a-priori bounded solutions. 

3. Compactification and a Metric 

In preparation to transforming the equation  y f y 

  1,0 k
ky

 
we need a diffeomorphism that will facilitate computa- 
tions and will take the space  into a bounded set. 
We sketch the main ideas. For more details see H. Gin- 
gold [19]. We project the point 1

k

, ,y y  



   
through the point  on the surface (8) 0, ,0,1 

 1 222
1 1k kx x x   


            (8) 

and single out  as one of the two 
points of intersection of the parabolic surface (8) and the 
straight line connecting  and   . 
The determination of Z will be done by the determination 
of a certain branch of a multi valued function as given 
below. Then, all the points  map onto a  

 1 2 1, , , ,k kZ x x x x  

 1, , ,0ky y

 1, ,y y 

0, ,0,1

,0ky

parabolicbowl with coordinate  1 22 2
1 1 1k kx x x    



, 

 and all the points , 

map onto the “circle” with 

  1
1 1, , , k

k kx x x 
  †, 1p p p 

 1 22 2
1 1 1k kx x x     .  

Denote by U the unit ball and by  its boundary.  U

 
 

2

2

: |

: |

U x x x

U x x x

  

   





†

†

1 ,

1 .
            (9) 

Denote 
† , :r y y y x x x R   † .         (10) 

The transformation 

  12
21

1

R
y R x r

R


   


         (11) 

is shown in [19] to be a bijection from  onto the 
interior of U . It is also a bijection from the ideal set 

k

 : |ID p †p p 1    onto .U  The inverse of  

†1

x
y  in 1R   is defined by the branch 

x x




† 2

2
, .

1 1 4 1 1 4

y
x R

y y r
 

   

2r
      (12) 

The compactification (12) induces a metric in kUE  
in a natural manner. We consider two points y, . 
Denote their images under the above bijection by Z, 


ky UE

ˆ
ˆ

Z  
respectively. Let  denote the Euclidean norm. Define 
a positive definite function  ˆ, M y y  by  

  ˆˆ, : .M y y Z Z              (13) 

Put,  

 † †
1, , or , 1,ky y y y p p p     

 † †
1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , or , 1ky y y y p p p     

†

2 2

2 2ˆˆ ˆ ˆ ˆ , ,
ˆ1 1 4 1 1 4

r y y y
r r

    
   

,  

The next theorem borrowed from H. Gingold [19] 
shows how to make the  a complete metric space. 
Then, divergence of solutions of dynamical systems is 
dealt with by convergence in the induced metric.  

kUE

Theorem 6. The Ultra Extended  is a complete 
metric space with respect to the chordal metric  

k

  ˆˆ, :M y y Z Z  . It is given by the following.  

 
   

 

2

2

2

ˆ ˆ1
ˆˆ ˆ, i

ˆ
kM y y y y y y

  




       
  

ˆf ,



, 

     2
† 2 2 2 2

†

ˆ ˆ ˆˆ ˆ ˆ ˆ, 1 2 1

ˆif , 1, ,k

M y y p y r r

y p p p y

      

   
 

   †

† †

ˆ ˆ, 2 1

ˆ ˆ ˆ ˆif , 1, , 1,

M y y p p

y p p p y p p p

 

     
 

Proof. See [19] for details.  □
See e.g. Willard [20] for topics of compactification in 

general topolgy. 
We turn now to a set of new differential equations re- 

sulting from compactifying the differential system  

 d

d

y
f y

t
 . 

4. Compactifyng a Polynomial Differential 
System 

Put 
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       
       

         

12 2 2

12 2
0 1

2 12 2
2 1

, 1 : 1 1

1 1

1 1

L

L L

L L

f f x R R f R x

R f x R f x

R f x R f x f x





 

    

    

    

 



.L

 (14) 

Then the following proposition holds.  
Proposition 7. The compactification (11) takes the 

differential system  y f y   into the differential system 

    
  

2

12 2

1 2 , 1d
,

d 1 1
L

R I xx f x Rx

t R R


    
 

† 2

    (15) 

with  

     
  

† 22

22 2

2 , 1d 1
.

d 1 1
L

x f x RR

t R R



 

 


      (16) 

Moreover, consider x  and  as functions of a new 
independent variable  where 

t
 ,  

        
 

2 2 2

0

d
1 , 1 2 , 1

d
0 ,

x
R f x R x f x R

x x

    



 † ,x
 (17) 

     
12 2

0 min max

d
1 1 , 0 ,

d

Lt
R R t t t t




      ,   (18) 

      
  

2

† 2

2
0 0

d 1
2 , 1 1

d

1 0 1 .

R
2 ,x f x R R

R x x




   

  



†

    (19) 

If  then the initial value problems (17)-(19), 
possess unique solutions on 

†
0 0 1x x 

     such that  
.    R x †  2 1x  

Furthermore the Equation (18) generates a one to one 
mapping between the variable   on      and 
the variable t on . We have then,   min max,t t 

,   12 2
0 0

1 1 d
L

t t R R





           (20) 

  
  

12 2
max 0 0

10 2 2
0 min

1 1 d

1 1 d

L

L

t t R R

t t R R

,

.











   

   




†

     (21) 

Furthermore, if 0 0 , then the initial value prob- 
lems (17)-(19), possess unique solutions on 

1x x 
   

 2
1 0 

 
such that , such that  and 
such that .  

 †x x
  0t t 

  1    R

Proof. The proof is left as an exercise. Compare with 
derivations in Elias and Gingold and Gingold and Solo- 
mon [21,22].  □

Also note: 
Remark 8. The compactified equations above, contain 

useful information that will become apparent in the se- 

quel. The formulas (21), contains the following qualita-  

tive information. The larger L the smaller   121
L

R


   

could become and therefore the smaller  
may become.  

max 0 0 min,t t t t 

5. Critical Points of the Compactified  
Equation  

The purpose of this section is to discuss a rigorous foot- 
ing to the notion of a critical point  of a dynamical 
system using the proposed compactification. If  

p

 lim y p f y  q            (22) 

holds, then p  could be a candidate for a critical point 
of  y f  y  at infinity. Thanks to the definitions and 
the compactification above, we declare  to be a 
critical point of 

p
 y f y   if p is a critical point of (17) 

as follows.  
Definition 9. We say that  is a critical (equilib-  p

rium) point of  d

d

y
y f y

t
    at infinity, or that p is a  

critical direction of  y f y   at infinity, if there exist a 
unit vector p such that  

    † .L Lp f p p f p            (23) 

If in addition we have  then   †
2 0p f p   

 
 

 
   

† †

L L

L L L

f p
p

p f p

f p

f p f p
 

   
 

and we call p  a generic critical point at infinity and 
we call p a generic direction at infinity. 

The set of initial points 0  such that the un- 
bounded solutions of the initial value problem 

ky 
 y f y  , 

 0 0y t y , satisfies (4) or (5), is called the basin of di- 
vergence of p  or the basin of divergence in the p di- 
rection. Notice that by this definition at least one value of 

0x p  must be included in the basin of convergence of 
p.  

This is a natural definition for a critical point at infini- 
ty because of 

Proposition 10. If (4) or (5) holds then p must be a 
finite critical point of (17).  

Proof. Notice the identity  

    
        

2 2

2 2 2

1 2 , 1

1 , 1 2 , 1

R I xx f x R

R f x R x f x R x

   

    



 

†

† .
 (24) 

By virtue of (24), the relation  
    †,0 ,0f p p f p p   0  then implies the nonlinear 

eigenvalue problem (23).  
Remark 11. Let  † 0Lp f p    then  

       
max max

1
†lim lim

t t t t
x t y t y t y 



 
t p   
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is impossible. Let  then   † 0Lp f p  

       
min min

1
†lim lim

t t t t
x t y t y t y 



 
 t p  

is impossible. Hence, for (4) to hold we must have 
 in forward time and we also must have 
 in order for (5) to hold in backward time.  

 † 0Lp f p 
 † 0Lp f p 

Also notice: 
Remark 12. The set of critical points at infinity of a 

compactified and parametrized equation are not well de- 
fined without a certain normalization that needs to be 
introduced or is implicitly assumed. In the above treat- 
ment we “naturally” but arbitrarily defined a parametri- 
zation (17). This determination causes the remaining 
Equations (17) and (19) to be uniquely determined. 
However, one may introduce spurious critical points as 
follows. Consider  

     
   

2 2

† 2

d
1 , 1

d

2 , 1

x
g x R f x R

s

x f x R x

  

  







1.

       (25) 

with  

   2 2
,0 ,0

11

, ,
j

k km

j j j j
jj

g x x x m x


      

Then the equation pertaining to t would be  

    12 2d
1 1

d

Lt
g x R R .

s


           (26) 

The point  1,0 2,0 ,0, , , k x x x  can be made to be a spu- 
rious critical point at infinity. It is noteworthy that the 
case  differs from the case . For 1k  1k  1k   we 
have (17) become  

   
    

2 2

2 2

d
1 2 , 1

d

2 1 , 1 .

x
R I xx f x R

R f x R


     

  





† 
    (27) 

Then,  are the only two critical points of (17) 
so that  are the only two critical points at infinity 
of a scalar polynomial differential equation. However, it 
seems desirable to choose for  a different parame- 
trization with  

 1x  
 1 

1k 

      
  

12 2

22 2

d
1 , 2 , 1

d
d

1 1 .
d

L

x
g x R f x R

s
t

R R

,

s





   

  


 

This will eliminate the common factor of the right 
hand sides of  

   2 2d
2 , 1 1

d

x
f x R R


    

and  

   12 2d
1 1

d

Lt
R R




   .  

Then, if ,0L   1x    will not be critical points of  

  2d
2 , 1

d

x
f x R

s
  . 

Must every polynomial differential system possess at 
least one critical point in the Ultra Extended ? The 
positive answer is given in: 

k

Proposition 13. A polynomial differential system with 
L > 0 possesses at least one critical point in the . kUE

Proof. If   0̂f y   for some  then we are 
done. Assume now without loss of generality that there 
does not exist  such that . Consider 
the relation  

ky

 f y ky 0̂

       
   

12 2 2

2

, 1 1 1

1 .

L

L

f x R R f R x

R f y


   

 


 

It implies that for  21 0R   also   2, 1 0f x R 
r some x such

. 
Two possibilities may occur. Ei  that ther fo
 21 R 0   we have that  then the 
right hand side of  

 , 1 2 0R f x

 2d
1

d

x
R I


 

†2xx    2, 1f x R       (28) 

vanishes and the result follows. If  for   2, 1 0f x R 
x U  then the mapping  

          
1

†
2 2: , 1 , 1 , 1w x f x R f x R f x R



      2  

is a continuous mapping from U into U. By Brower’s 
fixed point theorem there exists x U  such that  

          
1

†
2 2 2, 1 , 1 , 1w x f x R f x R f x R x



      . 

By the definition of  w x  we have for all x U  
that    †

1w x w x   and therefore  or that  2 1R x x †

     †ˆ ˆ ˆ,0 ,0 ,0 .f x f x f x x
 

  
 

           (29) 

Substitute (29) in the right hand side of (28) to obtain  

   

     

†
†

†
†

d ˆ ˆ2 ,0 ,0
d

ˆ ˆ ˆ2 ,0 ,0

x
f x f x I xx x

f x f x x x x x


        
    0      

 

 
 

and the result follows.  

6. The Explicit Leading Asymptotic Term 

The purpose of this section is to produce conditions that 
guarantee the existence of solutions  y t  that satisfy  
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,x p  and  x p  and is such that   
max

lim
t t

y t
 p  or  

min
lim

t t
y t

 p  and to de-  

 2
, as 0V x p x p  termine explicitly the leading asymptotic term in such 

solutions.  
        (33) 

Let a, b, c be three k dimensional column vectors. 
Then, one can easily verify that the following (non asso- 
ciative and non commutative) relations hold  

Theorem 14. Let  be a critical point of the poly- 
nomial differential system 

p
 y f y   and let  

.  † 0Lp f p 
 †p f p        † † † † .a b c b a c ca b cb a        (34) If , then the polynomial differential sys- 

tem (17) possesses at least one parameter family of solu- 
tions 

0L 

 y t  such that  Notice that 

          
1

† 1
max

max

1 1

as .

L
Ly t L p f p t t p o

t t






 



   

   

†2

1

††

1 1

2

n

i

R x p p x p

p x p x p


p      

      


     (35)    (30) 

If , then the polynomial differential sys- 
tem (17) possesses at least one parameter family of solu- 
tions 

 † 0Lp f p 

 y t  such that  

Hence, as x p  we have  

         
1

† 1
min

min

1 1

as .

L
Ly t L p f p t t p o

t t






  





 
       

     

2

††

0

† 2

1

1 2

.

L

L L jjL L
j

j

L
L

R

C p x p x p x p

x p x p x p







         

      



 

 (36)    (31) 

Proof. We first prove that the differential system (17) 
is equivalent to  

   

     
 

† †
1

†

d
,

d

: 2 2

2

L L

L

x p
A x p V

A I pp Jf p f p p

p f p I






  

    


    (32) 

L
jC  are of course the binomial coefficients. We now 

focus on the expansion of f  into a polynomial that 
depends on the variable  x p . 

Notice that 

        2 ,L L Lf x f p Jf p x p          (37) 

where 2  is a polynomial of degree 2 in the vector 
variable  x p . where I denotes the k by k identity matrix,  LJf p  is 

the Jacobian matrix of  Lf x  evaluated at x p  and 
V is a polynomial vector function of the vector variables  

We focus on the term  in    
12

11 LR f x f . With 
the help of (35) we have  

 

            
       

12
1 1

1 3 1 3

1 ( ) 2

2 2

L L L

L L

R f x p x p x p f p f x f p

p x p f p f p p x p

  

 

 
1 1

,

L          
         

††

† †

 

 

where  2

3 x p    as x p . In sum we have where  

 2

4 2 3: ,x p                 (39) 
  
       

2

†
1 4

, 1

2L L L

f x R

f p Jf p f p p x p



      



,
  (38) as x p  and 4  is a polynomial in the variable 

 x p . Notice that 

 

              2 21 2 1 2 2 2 2R I R I p x p x p I I p x p I x p x p                        
† †† † .  

         xx x p p x p p pp x p p p x p x p x p            † † † † † † † † † †  

              
              
            

2

2

1 2 2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2 .

R I xx I p x p I x p x p I pp x p p p x p x p x p

I pp p x p I x p x p I x p p p x p x p x p

I pp p x p I x p p p x p x p x p x p

                    
                  

              

†† † † † † † †

†† † † † † †

† † † † † † † 

†

†  
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Hence,  

      
          

          
               

         

2 2

2

2

1

2

1

dd
1 2 , 1

d d

2 2 2 2

2

2 0 2 2 2

2 2 .

L L L

L L L

L L

x px
R I xx f x R

I pp p x p I x p p p x p x p

f p Jf p f p p x p x p

LI pp f p x p f p x p p f p p x p f p

I pp Jf p f p p x p x p

 





       

           

       

         

       

†

† † † † †

†

† † † † †

† †







 

 
We analyze the above formula. Observe that by virtue 

of  being a critical point  p

         † † †
L LI pp f p p f p p pp p   0



 

Moreover, by virtue of (34) we have  

       † † †2 2L Lp x p f p p x p f p        0  

       

       

†

† † †

2 2

2 2

L L

L L

p x p f p x p p f p

p x p f p p f p x p

        
      

†

†

†.



 

and the formula (32) follows. 
Next we observe that  is a left eigenvector of A.  †p

      
 
 

† † †
1

† †

† †

2 2

2

2

L L

L

L

p A p I pp Jf p f p p

p f p p I

p f p p

    

   
    

 

because  

    † † † † † † †2 2 2p I pp p p p p p p           0  

Thus,  is an eigenvalue of A. Assume   †2 Lp f p 
that . Then, it is well known, see Hartman 
[25] that the differential system (17) possesses at least a 
one parameter family of solutions such that 

 † 0Lp f p 

 0x p   
is small and, such that  and such that    †

0 0 1x x  
 lim x p  


. Furthermore, because of the negative  

eigenvalue  we have for every fixed   p †2 Lp f 
 †0 2 Lp f p    

     †exp 2 , asLx p p f p          

and consequently  

       † † †, exp 2

as

L Lx f x v p f p p f p , 



    


 
 

and  

     2 ?1 exp 2 , asLR p f p       

The formula  

.

d

 

   12 2
max 0 0

1 1
L

t t R R 


     

guarantees that  is finite because  maxt

   †
max 0 0

exp 2 d .Lt t p f p 


          

Our next aim is to determine the leading term of 
 21 R  as . Put  in  maxt t  21v R  

     
  

      

† 22

22 2

†2
0 0

2 , 1d 1
,

d 1 1

1 0 1 0

L

x f x RR

t R R

R x x 




 

 

   



.

 

Observe then that the numerator and denominator in 

  
 

      
 

†

2

† † †

2

2 ,d

d 2

2 ,

2

L

L L

L

x f x vv

t v v

p f p x f x v p f p

v v










    





  (40) 

preserve sign and establish a one to one correspondence 
among the variables , ,t v  . Notice that  

max 0t t v       . Therefore, there exist sets  

 ,t 
0 max ,  00,v  and  0 ,   such that for  0 max,t t  ,  

 00,v v  and  0 ,  
v t

 the integration of (40) yields  

      max2

0
2 d 2 1L

Lt
v v v p f p o t    † d

.

 

or  

        1 1 1
max2 1 2 1L L

LL v L v t t p f p o
      †  

As maxt t  or 0v   or we obtain from the above  

     

       

1
max

1
2 1

max

1

1 1

L
L

L
L

v L t t p f p

R v L p f p t t



.

 

    





†

†

 

Thus we obtain as maxt t  or  or 0v     
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   

        

12

1

1
max

1

1 ,L
L

y t R x

L p f p t t p x p






 

   † 
 

and the result (30) follows. A similar analysis leads to the 
desired result if .   † 0Lp f p 

Remark 15. Our results are an improvement on Elias 
and Gingold and Gingold and Solomon [21,22] because; 
1) we do not assume that all eigenvalues of A have nega- 
tive real part as in [21], 2) in contrast to [21,22] we ex- 
press explicitly an eigenvalue of A in terms of the critical 
direction p, 3) the coefficient of the leading term in the 
asymptotic formulas (30) and (31) is explicit and does 
not contain an unknown constant. Theorem 14 shows 
how the nonlinearity L of our dynamical system and the 
critical point  determine precisely the asymptotic 
leading term. We could not find in the following sample 
of textbooks on differential equations, [4,7-9,23-28], the 
above explicit asymptotic formulas. Notice that the coef- 
ficient matrix A depends on 

p

 1Lf y


 and not only on 

the highest degree term Lf y  of the vector field  f y . 
This is counter intuitive. 

Corollary 16. Let  be a critical point of the poly- 
nomial differential system 

p
 y f y  . Let  † 0Lp f p   

and let . Then the system 2L   y f y   does not 
have the Painleve property. Namely, not all of its moving 
singularities are simple poles.  

We turn to the completeness issue.  
Definition 17. A differential system  y f y   is 

called complete if the solutions to all initial value prob- 
lems  

   0, ky f y y t w   


 

exist on . Otherwise the system is called incom- 
plete.  

 , 

Studies of “completeness'” questions in nonlinear dy- 
namical systems include [11,29,30] and references 
therein. The fact that compactification is central to un- 
derstanding completeness as well as incompleteness is 
seen from the following theorem. We cannot see how the 
Gronwall lemma can be used to prove incompleteness.  

Theorem 18. Given the polynomial system  y f y 
  0p

, 
let  be a critical point such that Lp †p f   Then, 

 y f y  is incomplete. A necessary condition for a 
polynomial dynamical system to be complete is that the 
real part of the eigenvalues of the Jacobians about all 
critical points  be purely imaginary.  p

Proof. Use Theorem 14.  
Remark 19. It appears that in spite of a voluminous li- 

terature on dynamical systems, at least two important 
outstanding questions remain unresolved. What is the 
actual interval of existence of their solutions as a func- 
tion of the initial conditions? For which range of the pa- 
rameters can we assert that  y f y   possesses solu- 

tions that exist on the semi infinite interval  0 ,t  ? The 
analysis of non isolated critical points also needs more 
illumination.  

Observe: 
Remark 20. A leading asymptotic term of singular so- 

lutions may be written in the form  where  V t  V t  
is an unbounded vector function at a singular point say 

0 . A powerful technique of asymptotic analysis assumes 
a form 
t

   0V t S t t
   where the power   is ob- 

tained first by so called “balancing”. It is only afterwards 
that a constant vector S is determined. S is to be derived 
as a solution of a nonlinear system of algebraic equations 
that could be difficult to solve and is yet to become ex- 
plicit. This technique of asymptotic analysis was ex- 
tended refined and applied by various authors. Compare 
e.g. with [28,31-47]. Applications of this technique to 
partial differential equations may be found in e.g. Ablo- 
witz and Segur, [31]. This article pursues a different or- 
der of operations in the determination of the leading term 
 V t . Compatification coupled with the identification of 

equilibrium points of a dynamical system helps first de- 
termine the constant vector S from a definite explicit 
system of nonlinear algebraic equations. Namely,  

 Lp f p  ,  †
Lp f p  ,  and † 1p p 

 †
L

p

p f
S .  

p

7. An Application to the Competing Species 
Model 

The competing species model  f y
d

d

y
y

t
    is a poly-  

nomial differential system of degree 2 where the vector 
function  f y  is given by 

    1 2 ,f y f y f y              (41) 

where   , 1, 2jf y j  ,  are the following homogeneous 
polynomials column vectors of degree j. 

   

   

21 1 2

22
, ,

cy y

y

 
 
     

1

1 22
1 2

1 2

d
.

d

b yay
f y f y

gy my y q

y
f y f y

t

        
  

 

  (42) 

In this section I denotes the 2 by 2 identity matrix. 
The competing species model has attracted much at- 

tention. Coppel, [48], attests to the large number of qua- 
dratic differential systems that model various natural 
phenomenon, from fluid mechanics to stellar constella- 
tions. They share similar features with the competing 
species model. Compare e.g. with [7,38,44,48,49]. For a 
partial glimpse into the immense literature on quadratic 
systems see Artes et al., Dumortier et al., Hua et al., Ince, 
Rein [48-52]. 
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The reader should have no difficulty recognizing (43) 
below as a special case of formula (30) with 2L  . The 
theorem below is part of a detailed analysis that can be 
found in H. Gingold [53]. The theorem reads  

Theorem 21. Given (42). Assume that a, b, c, g, m, q 
. Then, 1) With one exception all critical points 

 are generic, namely, ; 2) The basin of 
divergence of every generic critical point , contains 
at least a one dimensional manifold; 3) A solution of 


p  †

2 0p f p 
p

 y f y  , diverges to  where  is generic if 
and only if  

p p

      max†
2 max

as .
p

y t t t
p f p t t




      (43) 

4) In the exceptional case where , the real 
valued solutions may exist on the entire real line or may 
possess singularities with an asymptotic leading term 
similar to the leading asymptotic term in a Laurent series 
expansions with a pole of order one or two.  

0mc qb 

It is interesting to compare the results obtained by 
Hille, [39,40], where psi series representations for solu- 
tions of (42) are obtained for a special range of the para- 
meters. Naturally, these psi series provide explicitly the 
desired leading asymptotic terms of singular solutions of 
(42). However, our approach covers numerous cases 
where the results in [39,40] do not apply. 

A detailed analysis of the competing species model of 
complex valued solutions of x being the independent 
complex variable, was undertaken by Garnier, [38]. It is 
not impossible to derive the leading asymptotic terms of 
singular solutions by the methods presented in [38]. 
However, this would entails the extraction of the leading 
asymptotic term of singular solutions of (42) from a my- 
riad of transformations. Another indirect method that 
could lead to (43) requires the reduction of (42) to a cer- 
tain pair of second order differential equations satisfied 
by each component of the vector y. The techniques of 
Bureau, [33,34], may be then applied. It is noteworthy 
that a more general quadratic system than (42) is not 
amenable to the results of [34]. This is so because then 
each component of y could satisfy a second order diffe- 
rential equation  where  , ,u h u u x    , ,h u u x  is 
not a rational function of u and . The references men- 
tioned in this paragraph are part of a voluminous litera- 
ture that deals with an outstanding question that origi- 
nated with Fuchs, (1884). It stimulated a large amount of 
work on nonlinear differential equations of the form 

, where 

u

 , ,h u u x



 , ,u h u u x     is a scalar rational 
function of u and  that possesses coefficients that are 
analytic functions of the independent variable x. The out- 
standing question is: which equations of the form 

 possess solutions that have fixed singu- 
larities at certain fixed values of x. Thus, mimicking a 
property of linear non autonomous differential equations. 

(These singularities also called by a large school of au- 
thors critical points and are not to be confused with the 
critical points of dynamical systems that are synonymous 
with equilibrium points of dynamical systems). Other 
related works include [34-36,43]. A detailed account that 
lead to the Painleve transcendentals can be found in [26]. 
Applications to soliton theory may be found in [31]. It is 
noteworthy that a successful application of the technique 
in [32] that pursues “closed form” solutions of (42), re- 
quires knowledge of the properties of one non constant 
vector solution of (42). 

u

 , ,u h u u x 

8. The Lorenz Completeness, a New Repeller, 
and an Extension of the Attractor  

In this section we discuss a result whose corollary shows 
that the Lorenz system is complete for all its real parame- 
ters. This completeness property is shared by a larger fam- 
ily of non-autonomous quadratic systems that is denoted 
below by  . Then we show that the Lorenz system 
has a repeller at  , a corollary of which is the existence 
of an attractor for the Lorenz system for 0  . 

By a Lorenz system [54] we mean a system satisfying  

 1 2 1

2 1 2 1

3 3 1 2 ,

y y y

y y y y

y y y y





 

  

  





3y             (44) 

with 0  , 0  ,  

0

. Note that most authors 
deal only with Lorenz systems with positive parameters, 
in which realm there is a global attractor. The existence 
of an attractor for    is a corollary of our first result.  

Definition 22. Let  CB 
d boun

 be the family of scalar 
functions continuous an ded on  . Let  2 ,f t y  
be a column vector in k  whose comp ents a  
dratic forms: 

on re qua-
    †

2 2, nn
f t y f t y , with each y  2nf t  

a lower trian es in gular ma  entritrix with   . LetCB   
   1 1, ,f t y f t y  where  1f t  is a k k  with matrix 

entries in   0CB , and let  0f f t   column vec- 
tor in k tries in 

 be a
 with en  CB  . Then  (Non- 

Autonom us Lorenz-like) is the class of systeo ms  

       †, , , with ,y f t y f t y f t y f t y2 1 0 2 0.     (45) 

The completeness of   
descr

is given in [22], 
in

which 
cludes a more detailed iption of the structure of 
  (autonomous Lorenz-like systems) that could explain 

 orthogonality property in (45) as a source of the 
completeness. Obviously, the Lorenz system is in 
the

  
for all real values of its parameters.  

Theorem 23. All systems in   are complete.  
al 

va
It is shown in [21] that given initial data, the initi
lue problems (17)-(19) possess unique solutions on 

     such that   1x   . In particular, it is easy 
 (19) that the y sphere 1R   is inva- 

riant. Thus we may consider the flow on oundary. 
to see from


 boundar

the b
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Setting 1R   in (17) reduces it to  
†

2 1 3 1 22 2 0, , x f x x x x    , which 
t  †

1,0,0  and the entire 
circle 1 0x  . The non-constan  are circles in x2 
and x3, with x1 fixed: 

is readily solved. 
There ical points a

 

 are crit
t solutions

 


os 2

in 2

a

a

a a

 

 


 

  

2

2

1 c ,

1 s

x a 



 



        (46) 

where 

ˆ



1a  , and   is related to the starting point  

 2 a2, 1 s , 1 sina a co   
†

. Note that the critical  

poi iting cases of tnts are lim he circles as 1a   or 0. 
For ease of visualization let us orient the a hat x1 
“points up”. Then the periodic orbits on the unit sphere 
may be viewed as circles of constant latitude. Note that 
the period is 

xes so t

π a  so the motion is very slow near the 
equator, and th quator full of critical points is a limit- 
ing case. If viewed looking down (that is, in along the 
positive x1-axis), orbits in the upper hemisphere rotate 
counter-clockwise, and those in the lower hemisphere 
rotate clockwise. 

Since  

e e

x̂  1 , x̂  
y

to c

does ond under the 
co fication to

 not corresp
mpacti  an thing known in the Lorenz system. 

However, these orbits could be interpreted to correspond 
to ideal solutions  y t    that belong to the ultra ex- 
tended 3 . In fac ider large t, ons y  as ,y   
we restr our attention to the highest order te  
solve the approximate Lorenz system  

0y 

ict rms and

3               (47) 

whose solution is easily seen to be (large) circles in y2 






         (48) 

where C , C  and 

1

2 1

3 1 2 ,

y y y

y y y

 






 

and y3, with y1 constant:  



   
 

1

2 1

2 1

ˆ cos ,

sin

C

y t C C t

C C t




   
 

 

1 2   define the starting point  
   †

1 2 2ˆ 0 , cos sin .y C C C,   The limits of these cir- 
cles as y   do not exist in 3,  but they can be 
understo bits in the ideal s D, which bounds 

3.  Let 2 2
1 2C C  be large. Then these periodic vector 

tions p certain enigma. They cannot be inter- 
preted as natural approximations to solutions of the Lo- 
renz system on an infinite time interval, because all solu- 
tions must enter a certain ellipsoid in forward time [63]. 
We choose 1C ra  and 

od as or

ose a 

et I

solu

2
2 1C r a   for 0 1a  . 

Then as r   trans compactification 
to a circle it sphere with constant first coordi- 

nate. Choosing instead any finite C1 leads to a family of 
circles, all of which transform to the equator. Similarly, 
choosing a finite C2 leads to a family of circles which 
transform to the poles.  

Definition 24. We say

,
 on the u

 ŷ
n

forms un

 that a surface in  is a peri- 
od

der 

3
icity surface for the system  y f y  i  is the un- 

ion of periodic orbits including critical points, and it is 
the maximal such object in some neighborhood of itself. 

The discussion above may be summarized by:  

f it

Proposition 25. The ideal set ID is the pre-image of 
the boundary sphere ,U  which is a periodicity surface 
of the compactified Lorenz system (17). The periodic 
orbits are circles that are limit cycles when restricted to 
any of the planes with x1 fixed, 10 1x  .  

Remark 26. There is great  Hilinterest in bert’s 16th 
pr

 the boundary sphere can be shown to 
at

oblem asking for the number of limit cycles in planar 
polynomial differential systems [55-62]. Poincaré is cre- 
dited with the discovery of limit cycles at infinity of pla- 
nar polynomial systems [1,2], which are not part of the 
official count of total limit cycles in the original Hilbert’s 
16th problem. It is natural now to view the set ID as a 
periodicity surface of the Lorenz system at infinity and to 
ask which dynamical systems possess a periodicity sur- 
face at infinity.  

If the circles on
tract nearby orbits (from inside the unit ball) in back- 

wards time  , it should be possible to say something 
about asymptotic behavior (in backwards time t) of the 
Lorenz equation. This suggests limit cycles at infinity. It 
is easy enough to show; see e.g., [63], that all trajectories 
eventually enter a compact set and do not leave it. So it 
seems plausible that in some sense   is a global repel- 
ler. On the other hand,  

 2 21 d 2 2
1 2 3 1 22 d

y y y   y y y
t

      

takes both positive and negative values even for large 
y . Similarly, if the invariant circles on the boundary 

ere are to be seen as repelling, we might hope that R 
decreases along orbits, at least near the boundary sphere. 
It does not in general since S takes both positive and 
negative values. 

However, we h

sph

ave in [64] proven via a Poincaré map 
ar

 
gument on the compactified system  
Theorem 27. The ideal set at infinity ID  is a global 

repeller in the following sense: If    1 1r t t  is large 
enough, then there exists a 2 1t t  suc

y
h that  

   1 2r t r t . 
. EvRemark 28 en thou y eigenvalue of the Ja- 

co

hat 
th

gh ever
bian at every critical point on the boundary sphere of 

the compactified Lorenz system has real part equal to 
zero, we showed that the sphere repels nearby orbits. 

Corollary 29. The Lorenz system has an attractor. 
Proof. In the proof of the theorem, we established t
e boundary sphere repels. Thus the boundary sphere is 

Copyright © 2013 SciRes.                                                                                 APM 



H. GINGOLD, D. SOLOMON 

Copyright © 2013 SciRes.                                                                                 APM 

200 

the  -limit set of some neighborhood of itself. The - 
limit closure of the complement of that neighborhood s 
an attractor for the compactified system. Perforce that set 
is compact, and its uncompactification is the attractor for 
the Lorenz system, extending the known attractor to the 
case of 0.

 i

   
Rema . Nrk 30 umerous research articles were written 

on

9. Fields of Lorenz-Like Systems near 

 the sensitivity of the Lorenz attractor system. It was 
labeled as a strange attractor. Its geometrical, analytical 
topological and probablistic nature has been a subject of 
numerous investigations. The interested reader may want 
to consult [65,66] and their references.  

  

This section contains results that have not been published 
elsewhere. A main purpose of our analysis is to show 
how the behavior of the compactified system on the 
boundary sphere indicates behavior of solutions and their 
derivatives of the original system for large y . This is 
helpful since the compactified system near R 1 is usu-
ally much simpler than the original system. The asymp-
totic behavior of the order of growth of the higher 

derivatives; 

 = 

 

dl y
, 0,1, 2,l   follows, under appro-  

d lt
bonus from

er sys- 
te



priate conditions, as a  a formula that pro- 
vides the asymptotic directions of the derivatives. 

We first exhibit the relevance of the highest-ord
m  2y f y  to the original system through analysis 

of the m triple T, N, B of unit tangent, normal, and 
binormal vectors. We can show that Ty, Ny, By, for tra- 
jectories in  3  and those of the compactified tra- 
jectories Tx, N pproach those of 2y f  as 1R  . 
The continuity properties of the compa  differential 
equation on the compact unit ball then imply that for 
large 

oving 

x, Bx a
ctified

y , y looks a lot like the solutions of  2y f y . 
In fact, the relevance of the compactified syste  
to all orders of derivatives. We stress that we do not ex- 
pect such correspondence of vector fields for systems not 
in  . In this section and the next section we denote 

m extends

 
d

d

y
y . 

t


For t e strictly second degree polynomial system h
 2y f y  in  3 , a direct calculation shows that  

    
    
  
  

2
2

2

2 †
2 2 2 2 2 2 2

2 2 †
2 2 2 2 2 2 2

2 2 2
2

2 2 2

,

,

,

f
T

f

f Df f f Df f f
N

f Df f f Df f f

f Df f
B

f Df f













    (49) 

where we use the notation for the Jacobian of the 

vector function if . The ex ions in (49) are given as 
functions of the riable y; however, it is easy to see that 
the values of the expressions are not changed if they are 
expressed in terms of x. Unless otherwise indicated, all 
subsequent occurrences of i

press
va

f  and  iDf  are to be un-  

derstood as  if x  and  D xif   .  

 iDf  

Theorem 31. t  Le  
ncide wi  

3
th

. Then the triples Ty y, Ny, 
By  

order 

 and Tx, Nx, Bx coi T2, N2, B2, plus terms of 
21 R  2

2

O
f

 as  

Proof. The calculation required t  that both Ty 
an

  
 

1R . 

o show
d Tx approach T2, and both Ny and Nx approach N2 as 

 21 0R   is omitted. Assuming it, and since B = T × 
ve that By and Bx approach B2.  

We develop an interesting relationship bet
N, we also ha

ween t-de- 
rivatives of y for large y  and  -derivatives of x near 
the boundary sphere, bu way from critical points and 
zeros of higher derivatives. We show that for systems in 
 , the vector fields of higher derivatives of y with re- 

ct to t have the same direction as the corresponding 
derivatives of x with respect to 

t a

spe
  for y  large enough. 

We stress that this property need not ld for general 
quadratic systems.  

Proposition 32. 

ho

Let . Then, for all integers y
0,  as n y   or 1 ,  we have  2 R

     12 n 2 21 1 d d d 1 .
n

d ny t

 gr

n nR R x R     (50) 

Moreover, the rder of owth of the derivative

n


 

 o s 
d dn ny t  is given by  

1
d dn ny t  , 0,1, 2, ,

n

nM y n
        (51) 

where Mn are certain constants. Furthermore, for each n, 
 let Sn be the set of points in the boundary where 

d d 0.n nx    Then 0,   there is a neighborhood Un 

closed un , with   ,nm U    (of Sn in the it ball  nm U  

being the measure of Un), such that 

 

for x the - com
plement of Un and y   or 2 1R   we have  

 2d d d d
1 .

d d d d

n n ny t n

n n n n

x
R

y t x 
        (52) 

Proof. (50) can be shown by induction. The conclu- 
sions in (51) and (52) follow from (50). The key to the 
induction is the useful result that  

    12d
1 2 1

n
R nS  2 .

d

n
R




        (53) 

From that, we can prove two interesting formulas: 
First, for 0n  , we have 

     2 2 2
1

dn x xd
1 1 1 ,

d d

n
n n

nn n
R R R D x

t         (54) 
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where Dn is an  degree polynomial in thn
d

d
, with  

rational (in x) continuous coefficients in the unit ball. 
Second, for ,  1n 

     
 

2
2 2 12 2

d 1
1 1

d

n
n n

nn

R
R R P

t

  
   ,x    (55) 

where  is a polynomial in x.   nP x
The reason that Lorenz-like systems distinguish them- 

selves from other nonlinear systems so that the vector  

fields 
d

d

l

l

x


 and 

d

d

l

l

y

t
,  are asymptotically  0,1, 2,l  

parallel for large y  can be traced back to the relation 
(53) which again is a result of the orthogonality in (45). 
Recall that orthogonality featured also in the complete- 
ness result. It basically says that in a Lorenz-Like system  

 †y f y  does not grow faster than 
2

y  as .y    

We now specialize Theorem 31 to the Lorenz system. 
For the Lorenz system or any system with x  propor-  

tional to  †

3 20, , x x , it is easy to see that 

ˆ 32 2
2 3

2

ˆ ˆ22 2
2 3

3

0
1

,

0 1
1

, 0

0

x

x x

T x
x x x

N x B
x x x

 
     
 
   
              

.

ˆ

       (56) 

Specializing Theorem 31 to Lorenz systems, the triple 
T, N, B for an orbit of the Lorenz system and of its 
compactified version approach those of (56) as   2 1:R 

Corollary 33. The moving triple T, N, B for the Lorenz 
system and the compactified version coincide with those  

of the circle x , plus terms of order 
 2

2 2
1 2 3

1 R
O

x x x

 






 


 

as . 2 1R 
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