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ABSTRACT

It is given in Weil and Rosenlicht ([1], p. 15) that G.C.D.(c2m +1,¢% +1) =1 (resp. 2) for all non-negative integers m

and n with m=n if c is any even (resp. odd) integer. In the present paper we generalize this. Our purpose is to give

other integral sequences {y,}  suchthat G.C.D.(y,,y,)=1 forall positive integers m and n with m = n. Roughly

speaking we show the following 1) and 2). 1) There are infinitely many polynomial sequences {fn (X)}:D:l cZ [X]
such that G.C.D.(f, (a)

T n

f (a))=1 for all positive integers m and n with m=n and infinitely many rational inte-
gers a. 2) There are polynomial sequences {gn (X ,Y)}::1 < Z[X,Y] such that G.C.D.(gm (a,b).g, (a,b)) =1 forall

positive integers m and n with m=n and arbitrary (rational or odd) integers a and b with G.C.D.(a,b):l. Main

results of the present paper are Theorems 1 and 2, and Corollaries 3, 4 and 5.
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1. Introduction

The numbers F, =2% +1(n=0,1,2,3,---) are called Fer-
mat numbers. Fermat conjectured that F, were all prime
numbers. One has F, =3, F =5, F, =17, K =257,
F, =65537 and F, =641x6700417. By now, no Fer-
mat prime has been found except for F;(j=0,1,2,34).
In Euclid’s books was given the proof of existence of
infinitely many prime numbers. By proving G.C.D.
(F,.F,)=1 if m=n,Pélya gave another proof of that,
cf. ([2], Theorem 16, p. 14) and ([3], exercise (viii), p. 7).
Weil and Rosenlicht ([1], p. 15) considered not only F,
butalso ¢ +1 for any rational integer c.

Let n be any positive integer, and let ¢, be any
primitive n-th root of unity. Let
S(n)={¢ eCJ¢ is a primitive n-th root of unity| . Then
the number of S(n)=¢(n) where ¢ denotes the
Euler function. Let @ (T) denote the n-th cyclotomic
polynomial over Q. Namely, @ (T) denotes the polyno-
miale Q[T] of the minimum degree whose roots con-
tain ¢, and whose leading coefficient is 1. One has that
®,(T) does not depend on choice of ¢, in S(n), that
@, (T)eZ[T] and that @ (T)= [] (T-¢), (see

¢es(n)

e.g. [4-8]). Below in this paper we write ®(n,T)=®,(T).
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We let G.C.D. denote “greaEst common divisor” as
usual. One has (I)(2“,T)=T2 +1. Then exercise 1V.3

in [1] asserts G.C.D.((D(Z”,c),(l)(zm,c))=1 (resp. 2)

for all positive integers m and n with m=n if c is even
(resp. odd).

We generalize this. Let p denote any odd prime num-
ber, and let v denote any rational integer. In Theorem 2 in
Section 3 below we show that
G.C.D.(d)( p”,v),@( pm,v)) =1 (resp. p) for all posi-
tive integers m and n with ‘'m=n if v is not congruent
modulo p to 1 (resp. if v is congruent modulo p to 1). Our
first proof of Theorem 2 uses Elementary Number The-
ory. Our second proof of Theorem 2 uses Algebraic
Number Theory and Theory of Cyclotomic Fields. In
Corollary 5 in Section 4 we also show that
G.CD. CD(Z” p,v),cD(Zm p,v) =1 for all positive inte-
gers m and n with m=n and all rational integers v. In
Corollary 4 in Section 3 we study also
G.CD. CD( p”q,v),d)( p”‘q,v)) where p and q are arbi-
trary odd prime numbers with * p = q. The case of
G.C.D.((D(Z p”,v),<l>(2 pm,v)) is reduced to Theorem 2

since CD(Zp“,v =0 p”,—v) for any non-negative in-
teger u. Cf. Corollary 3 in Section 3.
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In Section 2 (resp. 4) we consider
h (X,Y)=XZ —XxZ"y? 1y?
(resp. H, (X, Y) = X7 4¥ ),

In Theorem 1 in Section 2 we show

G.C.D.(h,(a,b),h, (a,b))=1 for all positive integers m
and n with m=n and all rational integers a and b with
G.C.D.(a,b)=1. In Theorem 3 in Section 4 we show
G.C.D.EHn (a,b),H, (a,b))=1 (resp. 2) for all positive
integers m and n with m=n and all rational integers a
and b with ab=0(mod2) (resp. ab=1(mod2)) and
G.C.D.(a,b)=1. The case (b=1) of Theorem 3 gives
a proof of Exercise IV.3 in [1].

2.0n a?' —a?" b +b?" (n=1,2,3,)

Recall h, (X,Y)=X? -XZ"v2" 4+Y?  We show first
Theorem 1. Let a and b be arbitrary rational integers
with G.C.D.(a,b)=1.Let {x,}  denote the sequence
given by x, =h, (a,b) for all positive integers n. Then
we have G.C.D.(x,,x,)=1 for all positive integers m
and nwith m=n.
Proof. We have

2n+1

n n n+l
a® +a’b® +b’

n n-1 n-1 n n n-1 n-1 n
:(a2 +a® b +b’ )(a2 -a? b’ +b2)

zn—l

and
1 1
a2n+ + azn bzn +b2n+
2 2\ T7( A2 2i 2l ) 2l
=(a +ab+b)-H(a -a® b* +b )
j=1
n+l 1 )
Hence x, (az +a?b? +b?" ) for all integers

1<m<n.We have also
G.C.D.(azml +a?b? +b?" a”" —a”'b? +b7" )
= G.C.D.(Zaznbzn a?" —a?b? +p? )

From G.C.D.(a,b):l, factoring a and b into products
of prime numbers, we have

n+l

G.C.D.(Zazn b? a2 —a?'b? +p?" ) -1

Hence G.C.D.(xm,azm—azﬁbZn +b2m)=1 for all ra-

tional integers 1<m<n. Namely G.C.D.(X,,%,,)=1
for all rational integers 1<m<n.

In Euclid’s books was given the proof of the classical
well known theorem that there are infinitely many prime
numbers. Theorem 1 above gives another proof of this
theorem. For each positive integer m, let p, denote a
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prime number dividing x,, in Theorem 1.
Corollary 1. We have p, = p, if m=n. There are
infinitely many prime numbers.

3.0n fl)(p”,v)(n=1,2,3,-~-)
Let p be any odd prime number and let n be any positive
integer. Let g“pn denote a primitive p" -th root of unity
in C.Recall ®(p".T)= Irr(g“pn,Q,T). It is a polyno-
mial in Z[T] whose leading coefficient is 1. One has
®(p",T)= H,:Es(pn)(T ~ 1), (see e.g. [4-8]). Let m and
n be arbitrary positive integers with 1<m<n. Since
there are no common roots of @(p",T) and ®(p",T)
in C, GCD.(o(p",T),@(p",T)) in Q[T]=1.

We have

Proposition 1. G.C.D.(CD( pm,T),CD( p”,T)) in
Z[T]=1, if 1<m<n.

Proof. We have ®(p",T) and cD(p”,T) are poly-
nomials in Z [T] whose leading coefficients are 1, (see
e.g. [4-8]). Use Gauss Lemma for polynomials over the

quotient ring of a factorial ring, (see e.g. ([5], pp. 181-182)).
By applying itto Z[T] and Q[T], Z[T] is factorial.

We may put dm,n(T)zG.C.D.(CD(pm,T),QD(p”,T)) in
Z[T].Ifdegd,,(T)>1, this contradicts
G.C.D.(cl)(pm,T),GD(p”,T))in Q[T]=1. We have
d,.(T)e Z . Since the leading coefficient of
®(p",T)eZ[T] is 1, d,,(T)==+1. Proposition 1 is

proven.
Note

(" 1) {(T o )p —1]=(T " -a),
(D(pm,T)‘(T " —1)‘(T ")

in Z[T] if n>m>1. We have cD(pm,v)‘(vp" —1) in
Z if veZ and n>m>1.0ne has

and

<D(p”,T):d)(p,Tp"71)

p-1
and ®(p,T)=>.T',seee.qg.[4-8]. We give
=0
Theorem 2. Let p be any odd prime number, and let v
be any rational integer. Then we have the following.
Case 1 that v is not congruent modulo p to 1:

G.C.D.(d)( p’",v),d)(p",v)) =1

for all rational integers mand n with 1<m<n.
Case 2 that v is congruent modulo p to 1:
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G.C.D.((p",v),@(p"v))=p

for all rational integers m and n with 1<m<n.

We give two proofs. The first one uses Elementary
Number Theory. The second one uses (local and global)
Algebraic Number Theory and Theory of Cyclotomic
Fields for which cf. [4-9].

Proof 1. We have 1<m<n-1.Put r=v" —1. We

have

v () (et = (mod )
and

®(p",v)= (p ve" ) ®(p,1)(modz)= p(modz).
There is a rational integer y with <I>(p”,v +7y=p.
We have G.C.D.(cb(p”,v ,r):G.C.D.(p,T =1 or p
Since d)(p"‘,v)‘r,G.C.D. @(p”,v),d)(p"‘,v)) divides

G.C.D.(CD( p”,v),r). Hence
G.C.D.(cb(p”,v),cb(p’“,v)):l or p. (1)
In Case 2: We have
(p"v)=(p"
=0(mod

p)-
We have also <I>(p v)— (mod p). Hence
G.C.D.( (p v )
is proven.

m Case 1. Let 6>1 be any divisor of 7.
vP =1(modz)=1(mods). We have

cD(p”,v) (p v )

We shall show & does not divide p. Assume it were
true that 5| p. Then we would have &= p. We have
vP' —1=0(mod&). Therefore

)(mod p)= p(mod p)

p . Case 2 of Theorem 2

Then

@(p,1)(mods) = p(mods).

(v(mod p))p =1(mod p) and p would not divide v.
It follows that (v(mod p))"" =1(mod p). The order of
v(mod p) divides p™ and p-1.Hence

v(mod p) =1(mod p), which is a contradiction. Hence
we have 6= p and ¢ does not divide p. Hence &
does not divide ®(p".v). Hence we get

G.C.D.(d)( p”,v),vpm —l) =1. Since

q)(pm,v)‘(v"
G.C.D.((D(p",v),q)(pm,v))zl if 1<m<n.Case1of

Theorem 2 is proven.
We give another proof of Theorem 2.
Proof2.Let 1<m<n. Recall

—1) , we have
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(D( pm’T):Hks(pm)(T _/1)
and
CD( p”,T) :Hﬂes(p")(T _/”) :

Take /’LeS(p ) (resp. ,ueS(p )) arbitrarily. Let B
denote the ring of the algebraic integers in Q((; ) Let
veZ.

In Case 1: Now assume that there is such a prime ideal
P of B that satisfies v—1eP and v—ueP. Write
v-A=(v-1)+(1-2) and v—pu=(v-1)+(1-u). We
have 1-ueP and A(l-A"u)eP. Let aeZ. We
have .{pngsnpnfm :gll):apnfm which is a primitive p"-th

root of unity since p does not divide 1+ap"™™. So
A7'u is a primitive p" -th root of unity. By the theory
of cyclotomic fields (cf. [4-8]), A(1-47x)B is a
unique prime ideal P’ of B lying above pZ, and

pB = P"®Y""" \We have 2(1—/1‘1;1)8 =P’ c P. Hence
P'=P and P|pZ. Wehave 1-ueP since

peS(p"). From v—ueP , wehave 1-veP. Since
veZ, we have 1-vepZ, namely, v=1(modp).
This result implies the following. If v is not congruent

modulo p to 1, there is no prime ideal J with v—A1¢€J
and v—ueJ. Since

q)( pm’v) = Hzes(p"‘)(v_’i)
and
@(p"V) = [T esfor) (V= #)

the greatest common divisor ideal of @(p”,v)B and
®(p",v)B is B if v is not congruent modulo p to 1.
Therefore Case 1 of Theorem 2 is proven.

In Case 2: Let v=1(mod p). Let ,ueS(p” . LetP
denote the unique prime ideal in B lying above pZ, and
let B, denote the localization of B at P. Let B, de-
note the completion of B, with respect to the P-adic
(non-Archimedean) absolute value. We use local and
global Algebraic Number Theory, cf. [5,9]. We have
P=(1-x)B and (1—y)|(v—1+1—y) in B. We have
(v—l+1—y)|(1—y) in B, since ord, % >0. Hence
we get (v—u)B, =(1-u)B, using
V—pu=v-1+1- . Then we have

O(P"V) By =TT,,cq(r) (V= 20) By

~(1-)" " B, = pB,.
In the same way we have

o (p"v)8, :Hles(pm)(v_z)ép

= (1-2)"M""" B, = pB
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using Q({pm)cQ(gpn). Here we use (1) in Proof 1
above. Therefore we get
G.C.D.((D(p”,v),d)(pm,v)): p if v=1(modp).

Case 2 of Theorem 2 is proven.

For each positive integer m, let g, denote a prime
number dividing @ p"‘,v) in Case 1 of Theorem 2.

Corollary 2. We have g, #0q, if m=n. There are
infinitely many prime numbers.

EXAMPLE of Theorem 2. Let p=5 andlet v bea
rational integer which is not congruent modulo 5 to 1.
Then we have that 1+v® +v?® +v¥" +v**"  and
1+V® +v¥ v v are relatively prime for all
rational integers m and n with 0<m<n.

We give some computations.
®(5,2) =31, ®(5%,2) = 601x1801,

@ (53, 2) = 269089806001 4710883168879506001,
®(5,-2) =11, d(5?,-2) = 251 4051,
® (53 , —2) = 229668251 x 5519485418336288303251.

(We used “Scientific WorkPlace”, Version 5.5, MacKi-
chan Software, 19307 8th Avenue NE, Suite C, Poulsbo,
WA 98370, USA, for the computations).

Corollary 3 of Theorem 2. Let p be any odd prime
number, and let v be any rational integer. Then we
have the following.

Case 1 that v is not congruent modulo p to -1:

G.C.D.(CD(Z p".v),®(2 p”,v)) =1

for all rational integers m and n with 1<m<n.
Case 2 that v is congruent modulo p to -1:

G.C.D(®(2p",v),(2p",v))= p

for all rational integers m and nwith 1<m<n.

Proof. By ([6], p. 280), CD(Zp“,T):CD(p”,—TR for
any positive integer u. Then by Theorem 2, Corollary 3
follows.

Corollary 4 of Theorem 2. Let p and g be arbitrary
odd prime numbers with p=q, and let v be any ra-
tional integer. Then we have the following.

Case 1 that v® is not congruent modulo p to 1:

G.C.D.((D( pmq,v),d>( p”q,v)) =1

for all rational integers m and n with 1<m<n.
Case 2 that v®=1(mod p) and v=1(modp):

G.C.D.((D( p"q.v),®( p”q,v)) =1

for all rational integers m and n with 1<m<n.
Case 3 that v® =1(mod p) and that v is not congru-
ent modulo p to 1:
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We have p=1(modq) and
G.C.D.((D(pmq,v),d)(p“q,v)):l orp

for all rational integers m and n with 1<m<n.
Proof. From ([6], p. 280) we have

o(p'0T)=0(p %) /0 (p T)
for any positive integer u. Hence
d)(p“q,v) =d)(p“,vq)/CD<p“,v) eZ.
In Case 1, we have
G.C.D.((D( pm,vq),d)(p”,vq)) =1

from Theorem 2.
In Case 2: We have

G.C.D.(<D<p"‘,v”‘),q)(p”,vq))z p
and

G.C.D.((D(pm,v),dD(p”,v)): p
from Theorem 2. Hence it follows that

G.C.D.((D( pmq,v),q)(p”q,v)):l.

In Case 3: From (v(mod p))q =1(mod p), the order
of v(mod p) divides g and p-1. Since v is not con-
gruent modulo p to 1, the order of v(modp) is q.
Hence q|(p—1). From Theorem 2, we have

G.C.D.(d)(p”‘,vq),@(p”,v“)): p
and
G.C.D.(CD(pm,v),cD(p“,v)):l.
d)(p“q,v):cb(p“,vq)/cl)(p“,v)e Z.

It follows that G.C.D.(rcD(pmq,v),(b(p”q,v))=1 or p.
From Corollary 4 of Theorem 2 we obtain:
Let p and g be arbitrary odd prime numbers with
p#q, and let v be any rational integer. If p is not
congruent modulo g to 1,

G.C.D.(d)( pmq,v),CD( p”q,v)) =1

for all rational integers m and n with 1<m<n.

4. Proof of Exercise IV.3 in [1]
Let us quote the exercise.
Exercise 1V.3 in [1]. “If a, m, n are positive integers,

and m=n, show that the G.C.D. of a*" +1 and a® +1
islor 2 according as a is even or odd. (Hint. use the fact
that a®> —1 is a multiple of a®> +1 for n>m). From
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this deduce the existence of infinitely many primes.”

We give a proof of this in somewhat generalized form.
Namely we show

Theorem 3. Let a and b be arbitrary positive rational
integers with GnLE:'D'(ﬁib) =1. Define
H,(X,Y)=X* +Y?" for any positive neZ. Let
m and n be arbitrary rational integers with 0<m<n.
Write A, ,=GCD.(H,,(ab),H,,(ab)). Then we
have:

A, =1if ab=0(mod 2);
A, =2if ab=1(mod 2).
Proof. We have
X2n _an :(infl +Y2n71)(x2n71 _anfl)

and

-1 . .
X —Y7 = (X —Y)-i‘[(xz‘ ).

j=0

Hence (sz +Y2m)

(in —YZ") for all integers
0<m<n.We have also
A, = G.C.D.(azn —b?",a? +b? )

- G.C.D.(zaz” a? +b? ) - G.C.D.(azn _p?", 2b7 )

A, for all integers

n

Hence G.C.D.(a2nn +b?" ,a” +bzn)

0<m<n. Assume that a pnrime nnumber p divides a.
Then p does notdivide a®> +b? since

GCD.(ab)=1.Use A,=GCD.(2a” a” +b”).

Therefore A, =lor2. We have A, =1 if a is even;
a® +b® s even and A, =2 if a and b are odd;
a®> +b”> isodd and A, =1 if ais odd and b is even.

Recall A, |A,. A,,=1if ab is even. A =2 if

ab isodd, since both a®” +b* and a? +b® areeven,
and 2|4,

Corollary 5 of Theorem 3. Let p be any odd prime
number, and let v be any rational integer. Then we have

G.C.D.(CD(2’“ p.v),®(2" p,v)) =1

for all rational integers m and n with 1<m<n.
Proof. By ([6], p. 280),

®(2" p,T)z(D(Z“,Tp)/(D(Z“,T)

for any positive integer u. We have ®(2",T) =727 41
If vis even,
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G.CD.(®(2"v?),o(2"v"))=1
by Theorem 3. If v is odd,
G.C.D.(@(2"v"),o(2"v"))=2
and
G.C.D.(@(2"v),®(2"v))=2
by Theorem 3. Then we have Corollary 5 using
(D(Z“ p,v)=®(2“,vp)/®(2”,v)e Z.

In the case of p =3, Corollary 5 is derived also from
Theorem 1. For we have

®(2" x3,T)=CD(2“,T3)/CD(2“,T)

- (T 32+ +1) / (T 2t 1)

=T -7 41,
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