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ABSTRACT 

It is given in Weil and Rosenlicht ([1], p. 15) that  2 21, 1 1
m n

c cG.C.D.     (resp. 2) for all non-negative integers m 

and n with  if c is any even (resp. odd) integer. In the present paper we generalize this. Our purpose is to give 

other integral sequences 

m n

  1nny



 such that  G.C.D. , 1m ny y   for all positive integers m and n with . Roughly 

speaking we show the following 1) and 2). 1) There are infinitely many polynomial sequences 

m

 n

n

   
1n

f X X



 Z

  ,m n

 

such that  for all positive integers m and n with   1a G.C.D. f a f m n  and infinitely many rational inte-

gers a. 2) There are polynomial sequences   
1

,n n
 ,g X Y




 Z X Y  such that      1bG.C.D. , ,m nb g a,g a   for all 

positive integers m and n with  and arbitrary (rational or odd) integers a and b with m n  G.C.D. , 1a b  . Main 

results of the present paper are Theorems 1 and 2, and Corollaries 3, 4 and 5. 
 
Keywords: Relatively Prime; Integral Sequences of Infinite Length; Sets of Infinitely Many Prime Numbers 

1. Introduction 

The numbers  are called Fer- 
mat numbers. Fermat conjectured that Fn were all prime 
numbers. One has , 

 0,1, 2,3, 22 1
n

nF n 

0 3F  1F 5 , 2 , 317 257FF   , 

4  and 5 . By now, no Fer- 
mat prime has been found except for j . 
In Euclid’s books was given the proof of existence of 
infinitely many prime numbers. By proving G.C.D. 

 if , Pólya gave another proof of that, 
cf. ([2], Theorem 16, p. 14) and ([3], exercise (viii), p. 7). 
Weil and Rosenlicht ([1], p. 15) considered not only 

65537F  641F  

 , 1m nF F  m n

6700417
F j 0,1, 2,3, 4

nF  
but also  for any rational integer c. 2 1

n

c 
Let n be any positive integer, and let n  be any 

primitive n-th root of unity. Let  
   is a primitive -th rS n n  C oot of unity

  S n n
. Then 

the number of  where    denotes the 
Euler function. Let n  denote the n-th cyclotomic 
polynomial over Q. Namely, n  denotes the polyno- 
mial

 T
 T

 TQ  of the minimum degree whose roots con-
tain n  and whose leading coefficient is 1. One has that 

 n nT  does not depend on choice of   in  n

  
S , that  

n T  Z  ,T TT  n and that 
 S n




  

 

 (see  

 . 

We let G.C.D. denote “greatest common divisor” as 
usual. One has   12

.2 , 1
nn T T


   Then exercise IV.3  

    G.C.D. 2 , , 2 , 1n mc c  

m n

 (resp. 2)  

e.g. [4-8]). Below in this paper we write 

in [1] asserts 

for all positive integers m and n with  if c is even 
(resp. odd).  

We generalize this. Let p denote any odd prime num-
ber, and let v denote any rational integer. In Theorem 2 in 
Section 3 below we show that  

    G.C.D. , , , 1n mp v p v  
m n

 (resp. p) for all posi-
tive integers m and n with  if v is not congruent 
modulo p to 1 (resp. if v is congruent modulo p to 1). Our 
first proof of Theorem 2 uses Elementary Number The-
ory. Our second proof of Theorem 2 uses Algebraic 
Number Theory and Theory of Cyclotomic Fields. In 
Corollary 5 in Section 4 we also show that  

    G.C.D. 2 , , 2 , 1n mp v p v 
m n

 for all positive inte- 
gers m and n with   and all rational integers v. In 
Corollary 4 in Section 3 we study also  

    G.C.D. , , ,n mp q v p q v 
p q
 where p and q are arbi-

trary odd prime numbers with . The case of  

    G.C.D. 2 , , 2 ,n mp v p v   is reduced to Theorem 2 

   2 , ,u up v p vsince      for any non-negative in- 
teger u. Cf. Corollary 3 in Section 3.  , nn T T  
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In Section 2 (resp. 4) we consider 

 

 

2 2,

resp. ,

n

n

h X Y X X

H X Y

 

 
1 1

1 1

2 2

2 2 .

n n n n

n n

Y Y

X Y

 

 



 

 , 1h a b 
n

 , 1H a b 
m n

0 m  1 mod 2ab 

 n = 1,2,3,
2n

Y

.D.  x




 

In Theorem 1 in Section 2 we show 

n m  for all positive integers m 
and n with  and all rational integers a and b with 

. In Theorem 3 in Section 4 we show 

n m  (resp. 2) for all positive 
integers m and n with  and all rational integers a 
and b with ab  (resp. ) and 

. The case  of Theorem 3 gives 
a proof of Exercise IV.3 in [1].  

 G.C.D. , ,h a b
m 

 G.C.D. , 1a b 
 G.C.D. ,H a b

 G.C.D. , 1a b 

 ,

  od 2
 1b 

2. On  
n n n n

a a b b
1 12 2 2 2 

 

  1 12 2 2,
n n n

h X Y X X Y
 

 Recall . We show first  n

Theorem 1. Let a and b be arbitrary rational integers 
with . Let 

1n n
 denote the sequence 

given by 
 , 1a b 

 ,n n

G.C
x h a b

.D. ,x x
m n

 for all positive integers n. Then 
we have m n  for all positive integers m 
and n with .  

 1

 1 12 2 2n n n

a b b
 



 1 12 2 2 .
j j

b b
 



G.C

Proof. We have 

 
1 1

1 1

2 2 2 2

2 2 2 2 2

n n n n

n n n n n

a a b b

a a b b a

 

 

 

   
 

and  

 

1 12 2 2 2

2 2 2

1

n n n n

j jn

j

a a b b

a ab b a a

 



 

    
 

Hence 
1n

mx a
 12 2 2 2n n n

a b b
   

 
1 m n 

 
 

1 1

1 1

2 2 2

2 .

n n n

n

a b b
 
 



 for all integers  

. We have also 

1 12 2 2 2 2

2 2 2 2 2

G.C.D. ,

G.C.D. 2 ,

n n n n n

n n n n n

a a b b a

a b a a b b

 

 

 

 
 

From  G.C.D. , 1a b 

 1 12 2
.1

n n

b
 

, factoring a and b into products 
of prime numbers, we have  

2 2 2 2G.C.D. 2 ,
n n n n

a b a a b  

 12 2 1
n n

b b


  

1  1, 1m nx x 

  

Hence  for all ra-  
12 2G.C.D. ,

n n

mx a a


tional integers . Namely m n G.C.D.   
for all rational integers .  1 m n 

In Euclid’s books was given the proof of the classical 
well known theorem that there are infinitely many prime 
numbers. Theorem 1 above gives another proof of this 
theorem. For each positive integer m, let  denote a 

prime number dividing 

mp

mx  in Theorem 1. 
Corollary 1. We have m  if . There are 

infinitely many prime numbers.  
np p m n

   Φ , = 1,2,3,np v n 

n

 3. On 

Let p be any odd prime number and let n be any positive 
integer. Let 

p
  denote a primitive -th root of unity  np

C    , Irr , ,n
n

p
p T T  Q . It is a polyno-  in . Recall 

 TZ  whose leading coefficient is 1. One has  mial in 

    , n
n

S p
p T T





 

1 .m n 


, (see e.g. [4-8]). Let m and  

n be arbitrary positive integers with  Since 
there are no common roots of  ,mp T  and ,np T

C

  

    G.C.D. , , ,m np T p T   in  1Tin , Q

   

.  

We have  
 G.C.D. , , ,m np T p T   in  Proposition 1. 

  1,T Z 1 m n if  .  
Proof. We have ,mp T  ,np T and  are poly- 

nomials in  TZ  whose leading coefficients are 1, (see 
e.g. [4-8]). Use Gauss Lemma for polynomials over the 
quotient ring of a factorial ring, (see e.g. ([5], pp. 181-182)). 
By applying it to  TZ  and T Q , TZ

      , G.C.D. , , ,m n
m nd T p T p T  

 is factorial.  

We may put  in 

   , 1m nd T  , this contradicts  TZ . If deg

      G.C.D. , , , in 1m np T p T T Q . We have 

 ,m nd T Z . Since the leading coefficient of  

   ,mp T T  Z  , 1m nd T  

   

 is 1, . Proposition 1 is  

proven. 
Note  

  ,1 1 1
n m

m m np
p p pT T T

 
    

 

 

  

and  

   , 1 1
m nm p pp T T T     

 TZ 1n m    if . We have in  , 1
nm pp v v 

Z v
 in 

 if Z 1n m  and . One has  

   1

, ,
nn pp T p T


  

 
1

0

,
p

 

j

j

p T T




   , see e.g. [4-8]. We give  and 

Theorem 2. Let p be any odd prime number, and let v 
be any rational integer. Then we have the following. 

Case 1 that v is not congruent modulo p to 1: 

    G.C.D. , , , 1m np v p v  

1 m n 
p

 

for all rational integers m and n with . 
Case 2 that v is congruent modulo  to 1:  
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 G.C.D. , ,p v   ,m np v p

1 m n 

1
mpv  

 1 1 mod
n m

     , m
m

S p
p T T



for all rational integers m and n with .  
We give two proofs. The first one uses Elementary 

Number Theory. The second one uses (local and global) 
Algebraic Number Theory and Theory of Cyclotomic 
Fields for which cf. [4-9].  

Proof 1. We have . Put .  We 
have 

1 1m n  

   
1

11 1
n m

n m n m m p
pp p p pv v v  

 od mod .p

 
   

     

and  

      1

, , ,1 m
nn pp v p v p  

 , .p v y p  
 , 1p  


      

There is a rational integer  
We have  or p.  

y  with n

  , , G.C.D.np v  G.C.D.

 Since   .D. , ,np v   ,mp v

  , ,np v

,p v ,G.Cm   divides  

G.C.D.  . Hence  

    1m v  p

 od modp p

.
,v p

1

G.C.D. , ,np v  ,p  or .   (1) 

In Case 2: We have 

     
 

, ,1 m

0 mod .

m mp v p p

p

  



  , 0 modnp v p 

 

We have also  Hence 

  G.C.D. , ,n mp v p  . Case 2 of Theorem 2 

is proven.  
In Case 1: Let    be any divisor of  . Then 

. 1

d
npv  1 mod1 mo   

   .d modp


 We have 

      1

, , ,1 mo
nn pp v p v p  


      

We shall show   does not divide . Assume it were 
true that 

p
p . Then we would have p 

 1 0 mod
. We have 

.
mpv  

1 p

 1
1 mod p

1p 

 Therefore  

  d
mp

v p mo

mo

pmo d  and  would not divide v.  

It follows that . The order of 
 divides  and . Hence  

, which is a contradiction. Hence 
we have 

  d
p

v p


 modv p mp
   mod 1 modv p p

p   and   does not divide . Hence p   
does not divide . Hence we get   ,

np v

  G.C.D. , , 1 1
mn pp v v   . Since 

  ,
mm pp v v 1

 m  m n  .

1 .m n 

, we have  

 if 1  Case 1 of 

Theorem 2 is proven.  

 D. , ,np v G.C. , 1p v

We give another proof of Theorem 2.  
Proof 2. Let  Recall  




    

and  

    , n
n

S p
p T T





   .  

Take mS p   nS p  (resp. ) arbitrarily. Let B 
denote the ring of the algebraic integers in  np

Q
v

. Let 
Z

v P

.  
In Case 1: Now assume that there is such a prime ideal 

P of B that satisfies   .P and v    Write 
   1 1v v        1 1 and v v      

P
. We 

have  11 .P    .a Let     and   Z
1n m n m

n n n
ap ap

p p p
  

 We  


have 
 np

n map 
1

 which is a primitive -th  

root of unity since p does not divide 1 .  So 
  np

 11 B  
P

 is a primitive -th root of unity. By the theory 
of cyclotomic fields (cf. [4-8]),  is a 
unique prime ideal   of B lying above pZ, and  

 1 n 1p ppB P   11 B P P     

P P

. We have . Hence  

   and .P pZ P We have 1    since  
 nS p  v P. From    1 .v P 
,v

, we have  Since 
Z 1 ,v p we have  Z  namely,   1 mod .v p

v J

 
This result implies the following. If v is not congruent 
modulo p to 1, there is no prime ideal J with  

.v J
 

and    Since  

    , m
m

S p
p v v





   

and  

    , ,n
n

S p
p v v





  

 ,np v B

 

the greatest common divisor ideal of  and 
 ,mp v B  is B if v is not congruent modulo p to 1. 

Therefore Case 1 of Theorem 2 is proven.  
In Case 2: Let 1 modv p  nS p . Let . Let P 

denote the unique prime ideal in B lying above pZ, and 
let PB ˆ denote the localization of B at P. Let PB  de-
note the completion of PB  with respect to the P-adic 
(non-Archimedean) absolute value. We use local and 
global Algebraic Number Theory, cf. [5,9]. We have 

 1P B   and    1 1 1v   in B. We have     

   1 1 1v      ˆ in PB  since 
1

d 0
1P

v







or . Hence  

we get    ˆ ˆ1P P  using  v B B   
1 1 .v v      Then we have  

    

   11

ˆ ˆ,

ˆ ˆ1 .

n

n

n
P PS p

p p

P P

p v B v B

B pB











  

  


 

In the same way we have  

    

   11

ˆ ˆ,

ˆ ˆ1

m

m

m
P PS p

p p

P P

p v B v B

B pB











  

  


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using  Here we use (1) in Proof 1     .m np p
  Q

 1 modv p

m q


nq

Q  1 modp q  and 

above. Therefore we get  

 G.C.D. , ,p v   ,n mp v p  if .  

Case 2 of Theorem 2 is proven.  
For each positive integer , let m  denote a prime 

number dividing  in Case 1 of Theorem 2.    ,mp v
Corollary 2. We have mq   if . There are 

infinitely many prime numbers.  
m n

5 v

3 5 4 5m m

v v   

m n 

601 1801, 

68879506001,

251 4051, 

36288303251

p
v

p 1

EXAMPLE of Theorem 2. Let  and let  be a 
rational integer which is not congruent modulo 5 to 1. 
Then we have that 1  and 

 are relatively prime for all 
rational integers  and  with .   

p 

5m m

0

5 2v v 
5 2 5 3 5n n n

v v v  
m

5 4n

v
n

1 

We give some computations.  

   25, 2 31, 5 , 2    

 35 , 2 269089806001 47108831    

   25, 2 11, 5 , 2      

 35 , 2 229668251 55194854183    .  

(We used “Scientific WorkPlace”, Version 5.5, MacKi-
chan Software, 19307 8th Avenue NE, Suite C, Poulsbo, 
WA 98370, USA, for the computations). 

Corollary 3 of Theorem 2. Let  be any odd prime 
number, and let  be any rational integer. Then we 
have the following. 

Case 1 that v is not congruent modulo  to  :  

 G.C.D. 2 , ,p v   2 , 1m np v 

m 1 m n 
p 1

  2 ,m np v p

1 m n 

 

for all rational integers  and  with . n
Case 2 that v is congruent modulo  to :  

 G.C.D. 2 , ,p v   

for all rational integers m and n with . 
Proof. By ([6], p. 280),    ,u up T 

q v

qv p

  , 1np q v 

1 m n 
q   1 mod

 , 1np q v 

1 m n 
 1 modqv p

2 ,p T   for 
any positive integer u. Then by Theorem 2, Corollary 3 
follows.   

Corollary 4 of Theorem 2. Let p and q be arbitrary 
odd prime numbers with , and let  be any ra-
tional integer. Then we have the following. 

p 

Case 1 that  is not congruent modulo  to 1:  

 G.C.D. , ,mp q v   

for all rational integers m and n with . 
Case 2 that  and v p :   1 modv p

 G.C.D. , ,mp q v   

for all rational integers m and n with .  
Case 3 that  and that v is not congru-

ent modulo p to 1:  

We have 

    G.C.D. , , , 1m np q v p q v  

1 m n 

 or p 

for all rational integers m and n with .  
Proof. From ([6], p. 280) we have   

     , , ,u u q up q T p T p T      

for any positive integer u. Hence  

     , , , .u u q up q v p v p v    Z  

In Case 1, we have  

    ,G.C.D. , , 1m q n qp v p v     

from Theorem 2.  
In Case 2: We have  

    ,G.C.D. , ,m q n qp v p v p     

and  

    ,G.C.D. , ,m np v p v p     

from Theorem 2. Hence it follows that  

    G.C.D. , , , 1m np q v p q v  

    mod 1 mod
q

v p p

.  

In Case 3: From , the order 
of  modv p 1p 

 modv p
 divides q and . Since v is not con-

gruent modulo p to 1, the order of  is q. 
Hence  1 .q p  From Theorem 2, we have  

    ,G.C.D. , ,m q n qp v p v p     

and  

    ,G.C.D. , , 1m np v p v   .  

Here we use 

     , , , .u u q up q v p v p v    Z  

    G.C.D. , , , 1m np q v p q vIt follows that   

p
p q

 or p.  
From Corollary 4 of Theorem 2 we obtain: 
Let  and q be arbitrary odd prime numbers with 
 , and let  be any rational integer. If p is not 

congruent modulo q to 1,  
v

    G.C.D. , , , 1m np q v p q v  

1 m n 

m n

  

for all rational integers m and n with .   

4. Proof of Exercise IV.3 in [1] 

Let us quote the exercise.  
Exercise IV.3 in [1]. “If a, m, n are positive integers,  

 , show that the G.C.D. of  and 2 1
m

a  2 1
n

a    and 
is 1 or 2 according as a is even or odd. (Hint. use the fact 
that 

n2 1a   is a multiple of 
m

 for ). From 2 1a  n m

Copyright © 2013 SciRes.                                                                                 APM 
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 .D. , 1a b 
1 12 2n n

Y
 
  n

    G.C.D. 2 , , 2 , 1m p n pv vthis deduce the existence of infinitely many primes.” 

Copyright © 2013 SciRes.    

We give a proof of this in somewhat generalized form. 
Namely we show  

Theorem 3. Let a and b be arbitrary positive rational 
integers with . Define  

 for any positive 
G.C

 ,nH X Y X  Z
0 m n

. Let 
m and n be arbitrary rational integers with  

  1

. 
Write  , , n, 1.D. mG.Cm n ,H a b H  a b  . Then we 
have:  

 0 mod 2 ;

 1 mod 2

 1 12 2n n

X Y
 


 1
2 2

0

j j

X Y

, 1 ifm n ab   

, 2 ifm n ab  .  

Proof. We have 

 1 12 2 2 2n n n n

X Y X Y
 

     

and  

 2 2n n n

j

X Y X Y




    . 

Hence    2 2n n

X Y 

 2 2 2, 2 .
n n n

b b



2 2m m

X Y

0 m n 

 for all integers 

. We have also  

 
 

2 2 2 2

2 2 2

G.C.D. ,

G.C.D. 2 , G.C.D.

n n n n

n n n

n a b a b

a a b a

   

  
 

Hence  2 2G.C.D. ,
m m

a b

0 m n 

2 2n n

na b  

a
p 2 2n n

a b

 for all integers 

. Assume that a prime number p divides . 
Then  does not divide  since  

 G.C.D. 2n n n

b

1
2n

 
1

,a b G.C.D. 2n 

1 or 2   

1 . Use .   2 2,a a

Therefore n . We have n  if a  is even; 
 is even and  if a and b are odd; 
 is odd and  if a is odd and b is even. 

Recall 

2n

a b
2n

a b
2n

n 2n

,m n n  .  if  is even.  if  , 1m n 
2m

a 

ab
2m

b
, 2m n 

2 2n n

a bab  is odd, since both  and  are even, 

and ,m n2

 2 , 1n p v 

m 1 m n 

  

.  

Corollary 5 of Theorem 3. Let p be any odd prime 
number, and let v be any rational integer. Then we have  

 G.C.D. 2 , ,m p v    

for all rational integers  and  with . n
Proof. By ([6], p. 280),  

  2 , 2 ,u up T T   2 ,p u T

  12 1
u

T T


 

 

for any positive integer u. We have  
f v is even,  

2 ,u .
I

     

by Theorem 3. If v is odd,  

    G.C.D. 2 , , 2 , 2m p n pv v     

and  

    G.C.D. 2 , , 2 , 2m nv v     

by Theorem 3. Then we have Corollary 5 using 

     2 , 2 , 2 , .u u p up v v v    Z

3,p

 

In the case of   Corollary 5 is derived also from 
Theorem 1. For we have  

     
   1 1

1

3

3 2 2

2 2

2 3, 2 , 2 ,

1 1

1.

u u

u u

u u uT T T

T T

T T

 





    

  

  
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