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ABSTRACT

In this paper we introduce Humbert matrix polynomials of two variables. Some hypergeometric matrix representations
of the Humbert matrix polynomials of two variables, the double generating matrix functions and expansions of the
Humbert matrix polynomials of two variables in series of Hermite polynomials are given. Results of Gegenbauer matrix

polynomials of two variables follow as particular cases of Humbert matrix polynomials of two variables.
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1. Introduction

The special matrix functions appear in statistics, lie group
theory and number theory [1-4] and the matrix polyno-
mials have become more important and some results in
the theory of classical orthogonal polynomials have been
extended to orthogonal matrix polynomials see for in-
stance [5-9].

If D, is the complex plane cut along the negative,
real axis and log(z) denotes the principal logarithm of z
(Saks, S. and A. Zygmund, [10]), then z¥? represents
exp(1/2log)(z) if Ais a matrix in C"*" the set of all
the eigenvalues of is denoted by the set of all the eigen-
values of A is denoted by o(A). If f(z) and g(z)
are holomorphic functions of the complex variable z,
which are defined in an open set Q of the complex
plane, and A is a matrix in C™" such that o(A)cQ.
Then from the properties of the matrix functional calcu-
lus, (Dunford N. and J. Schwartz J. [11]), it follows that
f(A)g(A)=g(A) f]SA). If A is a matrix with
o(A)c Dy, then A¥?=+A denotes the a image by
72 of the matrix functional calculus acting on the ma-
trix A. we say that A is a positive stable matrix if
Re(z)>0 forall zeo(A).

For any matrix P in C™" we will exploit the fol-
lowing relation due to [12]

n

(17 =3 LBk

e | x| <1 (1)
n=0 .

Khammash [12], define the Gegenbauer matrix poly-
nomials of two variables by
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C:k (X, y) _ [ZZJ‘% (—1)”] (A)n+k—r—j (ZX)H—Zr (Zy)k—ZJ

= riji(n—-2r)i(k—2j)!

O]

From which it follows that C7, (x,y) is a matrix
polynomial in two variables x and y of degree precisely n
inxandkiny.

Also we recall that if A(k,n) are matrix in C""
for n>0 and k>0 that it follows that (Defez and
Jodar [14])

igA(k,n):igA(k,n—k) 3)
) 0 [“/2]
Z;A(k,n):zkz A(k,n—k) 4)

and, for m is a positive integer such that n>m, then

) w [n/m]
ZogA(k,n)zz()k_oA(k,n—k) (5)
o n o [n/m]
D> Ak N)=>> A(k,n—mk +k) (6)

We define Humbert matrix polynomials of two vari-
ables and discuss its special cases. Some hypergeometric
matrix representations of the Humbert matrix polynomi-
als of two variables, the double generating matrix func-
tions and expansions of the Humbert matrix polynomials
of two variables in series of Hermite polynomials are
given. Some particular cases are also discussed.
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2. Definition of Humbert Matrix
Polynomials of Two Variables

Let A be a positive stable matrix in CV™ for a positive
integer m, we define Humbert matrix polynomials by

(1—(mxt—tm)—(mys—sm))fA
o (7)
=22 Poicm (XY, A"

n=0k=0

Now (7) it can be written in the form

(1—(mxt —t")—(mys —sm))_A

(A), . (mxt—t" )n (mys - s’“)k

n=0k=0 nlk!

and by (3) and (6) respectively, one gets

( )n+k (mX)n (my)” (=)™

—2};};; i(n—r)i(k—)!
th+(m l)rsk+(m*1)l
ii%m:][k/m]( ) . |)(r+j)(_l)”j
e e R SR (n mr)!(k —mj)!

X

(mx)n mr (my)k—mj tnS

[n/m][k/m] (A)(mk) (1)) (—:L)PrJ
nookoo r=0 =0 1j! (n ml‘) (k—mj)!

®)

By equating the coefficients of t"s* in (7) and (8),
we obtain an explicit representation of the Humbert ma-
trix polynomials of two variables. In the form

k—mj

rtji(n—mr)!(k —mj)!

r=0 j=0

9)
from which it follows that P, . (x y,A) is a matrix
polynomial in two variables x and y of degree precisely n
in x and k in y. In (9) setting m = 2, we get the
Gegenbauer matrix polynomials of two variables [13] as
particular case of the Humbert matrix polynomials of two

variables.

3. Hypergeometric Matrix Representation
for P, m(Xy,A)

We study here the representation of the hypergeometric
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matrix representation for the Humbert matrix polynomi-
als of two variables. There are some facts and notations
used throughout the development in Sections 3 - 5, which
are listed here.
Fact 1. [15] The reciprocal scalar Gamma Function
1/F , Is an entire functions of the complex
varlable z. Thus, for ceCN*™N, the Riesz-Dunford func-
tional calculus [11] shows that F‘l(z) is well defined
and is indeed, the inverse of I'(z), Hence: if ceC"™
is such that C+nl is invertible for every integer n>0.
Then

(c), =T(c+n)I*(z).

Fact 2. [12] If A, B and C are members of C"™" for
which C+nl is invertible for every integer n>0. The
hypergeometric matrix function F(A,B;C;z) is de-
fined by

F(A,B;C;z):ii
n:On'

(4, (B),[©),]°)

it converges for |z|<1.

Notation 1. [16] For AeC"™", the matrix version of
the pochhammer symbol (the shifted factorial) is

(A), =A(A+1)(A+21)-(A+(n=1)1),

n>1

(10)

with (A), =1.

Note that A=—jl, where j is a positive integer, then
(A), =0 when ever n> j. Also, the product in (10) is
commutative, and then it is easy to see that

(A (A), (A+nl),

(A),, =(-1)(A),[(1-A-n1)]

and

(A =] (A (s-0)1

n

where m is a positive integer.
Notation 2. [17]

1 _(_1)mk - ) )
(n-mk)  n! (=n), ki 0<mk<n

(01, =TT 2s=n-1)1

k

Now, in view of Notation 2, the explicit representation
(9) for m>2, becomes
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Poin (%Y, A) = H%Lﬁ%mﬁﬂw4wwmmwmmﬁm

r=0

xm"‘rﬁ(%(s—n—l)ljrmmjﬁ[%(l—k—l)lj_
mx)" (my)* [HH mi((—A—(n+k)l+s N
JMM<><wXZZgg{ ﬂA( mnlql

nik! i r!j!

XH(S " 1 jg(l_f:_llj{(m—l;mlxm] {(m—limlym]

Thus we get the following hypergeometric representation of Humbert matrix polynomials of two variables.

A n k _ _ _ _ _ _
Pnkm(X.y.A)=( ),.. (Mx)" (my) Xan(]Z)l[_nlln L, omemel ok kel kemed
o nlk! m m m m m m
(11)
—A=((n+k)-1)1 -A—((n+k)-2)1  —A—((n+k)—=(m-1))I 1 1
m-1 w1 m-1 (m-1)" " (mo1)"y"
For m = 2 (11), we gives hypergeometric representation 4, Additional Double Generating Matrix
of Gegenbauer matrix polynomials of two variables [13]. Functions
The above facts and notations will be used throughout
the next two sections. Now, since
. 5 (W ) () () S5 s (R A
e (XY A)= . x (- mx my =
k S5 i (n-mn)i(k—mj)! S5 (M),
8o o
W L (A)(n+k) (m-1)(r+j)

x (_1)”] (mx)n—r (my)k—j tk+mjsn+mr

S 2 (A),., 11t (n-mo)i (k)

= iiii (A)(n+k)+(r+j) % (_l)r+j (mx)n—r (my)kfj tk+mjsn+mr (13)
Liinik!

n=0k=0r=0 j=0 (A)(n+mr)+(k+mj) rtjinik:

By using Notation 1, the following generating matrix functions for Humbert matrix polynomials of two variables
follows
(A+(n+ k) I )(r+j)

n:Ok:Or:Oj:O(A+(n+k)|)m(r+j)r!j!n!k!
® 0 @ (A+(n+k)|)(r+

% (_1)r+j (mx)n—r (my)k—j tk+mjsn+mr

i) % (_1)|’+j (mx)"—f (my)k—j tk+mjsn+mr

‘nOkOroJoruJInlk'm H( ( +k)+(s+1)|)J

(r+i)

> SRy AL(A),, ] st

_aa (mxt) (mys) & (A+(n+k)1),  toms™m ((=sY r Sy j
2 tn!k!y Zﬁﬁ[ (AM (S(”))')j "t [( J M( t) J

(r+§)
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have thus discovered the family of double generating function of the Humbert polynomials of two variables

S 3 e (o A(A),, ] s 33 ) e

n=0 k=0 n=0k=0

o o (14)
(O (A+(n+k)l);A+(n+k)| I’A+((n+k)+1) I,W,A+((n+k)+(m—1))| '?(__S] (__tj }
m m m m m
If B is a positive stable matrix in C"*V | then let us now return to (12) and consider the double sum.
n| k
2 & (B) o Prm (X Y AE'S" & WHH (B (A me- r+ n-r k=i k
ne = x (-1 mx m t's"
B S e ()" () ()
Then in similar manner, we get
0 0 1 n
Zog(B)mk P”vkxm (X’ Y, A)I:(A)n+k:| tks
:ii(th) (mys)" . E) B+(n+k)I ;B+((n+k)+1)l | B+((n+k)+(m-1))I | 15)
n=0k=0 nlk! m m m

A+(n+k)|;A+(n+k)| ;A+((n+k)+1)l 1A+((n+k)+(m—1))| g _gm

5. Expansions of P, ., (x, Y, A) in Series of of x"I in a series of Hermite matrix polynomials was
. o given in the form:
Hermite H_, (x,y,A) T

X_IIZ(“ZA) Zk, 2k \!
Now, we derive expansions of P, . (x,y,A) in series of n: o kl(n—2k)!
Hermite H,_ (x Y, A) Accordlng to [18], the expansion which with the aid of (5) and (9), one gets

Ho o (%, A)  (16)

2 P (XY A" = ZZ[Z]Q S

k=0 n=0k=0r= o;or'J(n mr)(k mJ)

()™ (A)
(n+k)(r+1) % (mx n m ktk+mjs"+mr
n=0k=0r=0j0 r!jintk! (mx) ( y)

% (_1)r+j (mx)n—mr (my)k—mj tkSn

M

]
o

n

From (16), we get
el (VA (A |
_ (D) (1) (m kH mx, y, A g ki
Siommes rik!p(n—2p)! (1) (my) gy (M., A)
-n-2p
A e o yp(\/ﬁ) (A)((n+2p)+k)+(r+j)
n=0k=0r=0j=0p=0 r! J' k! p' n!

n ﬁ} ) -n-2m-2p Kemi
M[m min(r ) (_1)("PFUP) e (V2A my)™"
] ( 1) . y x ( ) i ( y) ><( ) ) . ‘ Hn,mr(mx y A) n+(2- m)pt
n=0k=0r=0 j=0 p=0 (r— p)!(j— p)! (k—mj)!(n—mr)! p! (nk)~(m-1)(r+1)

Now replacing n by n+(m—2)p and equating the coefficients of s" t*, we get

% (_1)f+j (my)k Hn (mX, y' A)Sn+2p+mrtk+mj

[”*(m*2)p/m][ﬂmin(r,j) (—I’)p (—j)p § (_1)(f+i)(m)k*mi (y)kw*mi
= e rtjtp(k-mj)t (n—2p-m(p+r))! 17)
o (\/ﬁ)—n—m(pw)(A)

I:)n k,m (X’ yi A)=

mx, y, A)

(rekys(m2p)(mt)r+) < Tz p—m(r+p)(
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