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ABSTRACT

We find that a bounded linear operator 7 on a complex Hilbert space H satisfies the norm relation “|T |” aH:2q ,

n=1,2,---, for any vector a in H such that ¢ < ("T a||—4'1 ||T a||2)£l . A partial converse to Theorem 1 by Haagerup

and Harpe in [1] is suggested. We establish an upper bound for the numerical radius of nilpotent operators.
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1. Introduction

The motivation for this note is provided by the results
obtained in [1-4]. Let 7 be a bounded linear operator on a
complex Hilbert space H. The numerical range of 7,
denoted by W(T), is the subset of the complex plane and

W(T) = {(Tx,x) xeH, ||x|| = 1}.
The numerical radius of 7 is defined as,
w(T)= sup{|z| ze W(T)}.

The following lemma is known and is an easy conse-
quence of the definitions involved.

*Lemma 1.1 W(T) = sup{||zT+ZT*|| : |z| = 1} , where
T is the adjoint operator of T and z is the complex
conjugate of z .

Berger and Stampfli in [2] have proved that if
w(T)<1 and |72 =2
Also, they gave an example of an operator 7 and an ele-
ment xeH such that w(7)=1 implies that ||T”x|£k||x||
and k>+/2 . In Theorem 2.1, we present a different
proof of their result in [2] and show that J2 s indeed
the best constant.

Theorem 2.1 also generalizes the result in [4] and pro-
vides a partial converse to Theorem 1 in [1, p. 372].

Our next main result in Theorem 2.3 gives an alterna-
tive and shorter proof of Theorem 1 in [1].

Applying Lemma 2 and Proposition 2 of [1], a new
result on the numerical range of nilpotent operators on H
is obtained in Theorem 2.4. This gives a restricted ver-
sion of Theorem 1 in [3].

Finally, two examples are discussed. Example 3.1
deals with the operator 7, , where 1 is not the eigenvalue

Copyright © 2012 SciRes.

, for some n, then 7""'x=0.

of T if 1<g< V2. Example 3.3 justifies why W(T:])
fails to increase until and unless ¢ — V2.

2. Main Results

Theorem 2.1. The following statements are true for a
bounded linear operator T on a Hilbert space H with

W(T) =1.
1) ”T"a”2 =2¢q,ac H,n=1,2,---, such that
g< ||Ta||2 -4, "Ta"4 <1.

2)If |T "a|=2 for some integer n, then

[T =-|7aff =2 and T"a=0.

3) The set {a,Ta,---,T"a; forms a nontrivial sub-
space of 7 so that its orthogonal complement is invariant.

Proof. 1) For each real number « and a postive in-
teger, n, let b=aya+---+a,I"a . Then the inner prod-
uct relation |(T b,b)| <(b,b) implies that

Rt > oy (Tj”a,Tka)

Jk=0;j#k-1

Sa§+~~+2a/.ak(Tja,Tka)

|7,

That is,
a4, _[Ozn (eigTa, eigTa) oo

+ ), (_[;n(e(j”)igT(j”)a,ek’kaa))
< Ioznag +o ka0 (fjn(e’i‘gT"a,ekinga))

Hence,
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oy |1l ([ a0 -
+ Zajak (Tma,Tka)(Ij“e(/”)iﬂe—kiade)

< aéfOanHJr et z oo (Tja,Tka)(J‘oznejige—kiGde)

Jok=0;j#k—1

Since

IZnemige—ning _ { O, m+#n
' 27[9 m=n

it follows that

2 2
2na,o, ||Ta|| +-+21a, 0, T"a"

2
<2na +-+2na) T"a"

Dividing the above inequality by 2w, we have
oy, ||T0t||2 +ta, "T"a"2

2 2 |||
Sao+---+an|Ta

Let I' be the following block-diagonal matix of or-
der n and

1 -27'|Ta|’ 0
|2
0 —2’1|T"a2 |T"012

If y, denotes the determinant of I' such that y, =1
then the value of y, is positive because all principal mi-
nors of I" are nonnegative. Suppose that y, >0

2\2 2
T'a ) —}/"71(||T"a|| )+7/":0 @.1)

4 Vna (|

We consider the following cases:
Case 1. If y, > 0 for the least m then

2
Y 477, ("T’””a"z) =0 and |T"a converges to
Zero.
Case2.Let y, >0 forall n.Then
P 2
(;/1 -2 |T"a ) >0 and by induction
2 2
-1 n
(}/n_1 -2 |T a 7n-2) >0
Further, the inequality
J/nfl _LZO
yn—Z 711—1
implies that Y converges to g as n goes to infinity for
7}1—1
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some ¢ > 0. Therefore from Equation (2.1), (7"« ’ —2q

as n—o. Thus ¢ S|T”a gy ||Ta||4 . Obviously, g =

1 only if ||Ta||2 == =2,

2) By the assumption, ||T a||2 =4 for some positive
integer n. Now fom Equation (2.1), we obtain:

4_17/}172 (4)2_7/}171(4)-}_7/}1 :0

and 7, >0 so that 2l 51 The equality,

}/n72
l=y,,=-=y,=y now follows from (a) and thus
il - A 109 s s

Tn+la

3) To prove this case, we assume that if the vector v
is orthogonal to the spanning set {a,T a,--,T ”a} then
(a,7v)=---=(Ta,Tv)=0. Let
b=Ia+Ta+---+T"" +T"a+yv,for y>0.Then

|2:0 since y,=0.

Re((7,b)) < (b,b)
= 7Re((a+Ta+-~+T"a+Tv))
+ 72 Re((n,1v)) < M- r?

:>Re((a+Ta+---+T”a,Tv))SO.

Hence, (a,Tv)="- :(T"a,Tv):O for T=¢eT and
the spanning set {a,T a, -, T "a} is a non-trivial invari-
ant subspace on 7.

In [2, p. 1052], an example of an operator 7 on H
and an element x in H with w(T)=1, is given where

|T "x|| = \/5 . Theorem 2.1 above establishes that JE is

the best constant in this case.
Remark 2.2. An operator A on H is hyponormal if

AA-AA)>0. Let M, =A% then M, =(M,)",
(M)

if A is a hyponormal operator. Hence, M,=M}",
n=12,---, and the set of vectors a,Aa,---,A"a forms
a reducing subspace of A.

A natural connection between Feijer’s inequality and the
numerical radius of a nilpotent operator was estaplished
by Haagerup and Harpe in [1]. They proved, using posi-
tive definite kernals, that for a bounded linear operator T’
on a Hilbert space H such that 7' =0 and ||T||=l,

then w(T )<cos dn 5 The external operator is shown
+

to be a truncated shift with a suitable choice of the vector
in H. The inequality is related to a result from Feijer
about trigonometric polynomials of the form

7(0)=Y f,e" with f, eC. Such a polynomial is
positive if y(6)>0 for all #eR . Here, we present a
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simplified proof of Theorem 1 in [1].
Theorem 2.3. For an operator N on H with ||N|| <1

and N" =0, we have W(N)SCOSL.
n+1

Proof. We will follow the notations of Theorem 1 in
[1]. Let S be the operator on C" and {e,}, k=1,---,n
be the basis in C . We define the operator S as follows:

S, =0 and S, =¢_, for k=23,--,n

The matrix for S gives a dialation for 7. Let 4 be the
matrix for S and

010 0
0 0 1 0
A=|: ¢ 1 T
000 -1
000 --0

If U is a unitary operator on C" with diagonal
A={l,z,z"") then ||S+S*||=HU*(S+S*)UH. By
Lemma 1, we have:

|s+s7= “U (S+S*)U“ =[5+

This helps to define the characteristic function of a
contraction.

For the operator N on H, let ¥ = (I—N*N)l/2 then

Y is a positive operator and ¥ depends on N. Let the
range of W be denoted by R(W¥). Then the tensor
product, H, = R(4) ®C", is a Hilbert space. We define
themap F:H — H, so that F is an isometry.

For 2, let F(NA)=)"' YN'A®e¢ =(I®S)F(4)
where F (/1)= Z:I‘I—’Nk’%@ek, I is the identity op-
erator, and (/®S) isan operator on H,, .

Therefore w(N)<w(/®S) and F*(I®S)F =N.

Now, we claim that w(S)=w(/®S), for we hope
that 2w(I®S)=sup{|z/ ®S+Z1 ®5"|:|z|=1} By Lem-
ma 1.1

=sup {”zS +ES*|| : |z| = 1}
= ZW(S)
:>W(N):w(1®S)=w(S)
Thatis, w(N)<w(S).
Since "S + S*” = "zS +ES*|| , we have:

2w(S)=[s+5

and

2w(S)=f(S+S")
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where ,o(S +S*) is the spectral radius of (S +S*) . By
the definition of the spectral radius, we have the charac-
teristic polynomial f such that f(x)=0 by [5, p. 179,
Example 9], the roots of f'(x) are given by

—ZCos(ﬂJ,kzl,Z,m,n and w(N)<w(S) and

n+
—2cos(£j :COS(LJ.
n+l1 n+1

Karaev in [3] has proved, using Theorem 1 in [1] and
the Sz.-Nagy-Foias model in [6] that the numerical range
W(N ) of an arbitrary nilpotent operator N on a com-
plex Hilbert space H is an open or closed disc centered at

2w(S) =sup

. . T
zero with radius less than or equal to ||N||cos(—lj,
n+

n=12--.
Using Theorem 2 and the assumption that
w(N)= cos(ilj , ||N|| =1, we have W(N) as a
n+
closed or an open disc centered at zero with radius equal

to cos (Llj . In fact, we have the following theorem.
n+

Theorem 2.4. For a nilpotent operator N on H with

N"=0, n=>1 and W(N)ZCOS( nlj,the numerical
n+

range W(N) is a disc centered at zero with radius

L
cos| — |.
[n+lj

Proof. For any 6 we must claim that Ae” e W (N),
for A=(NZ,Z) and Z isavectorin C".

From [1, p. 374, Proposition 2], we have a = £ . Also,
for some ¢,

ay =(8zy,2) = cos(ﬁj = (ef‘gNz,z) =3, - Now by [1]

[P.375, Lemma 2], we obtain:
n—1
Dzy = ¢St k=0,1,---,n-1
k=0

and

n=1n-1 2

> > G, (NzNz)=1= ||DZO
i=0

k=0

Let p= ZZ:) ¢,N*z . Then:
n-1n-1

(N pt)=2.3 G, (N*'2,N'z)

k=0j=0
=" (Szy,2,) =" (Nz,2)
and the theorem follows from above since @ is arbitrar-

ily chosen.
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3. An Application

An operator A4 is a unilateral weghted shift if there is an
orthonormal basis {e,:n>0} and a sequence of scalers
{a,} suchthat Ae,=a,e,+1 forall n>0. 1t is easy
to see that 4=SD where S is the unilateral shift and D
is the diagonal operator with De, = +ne,, for all n.
Thus, |4|=|D| and |4|e, =|a,|e, foralln.So {e,} is
the basis of eigenvectors for A|. Also, note that 4 is
bounded if {e,} isbounded.

If A4 is a unilateral shift then 4’¢, =0 and
Ae =a, e , for n>1. Consequently, for a hypo-
normal operator A4, QA*A - AA*)eO =age, >0 and
(4°4-44")e, =(a; —a] )e, for n=1. A wighted
shift is hyponormal if and only if its weight sequence is
increasing.

Example 3.1. Let 7, be an operator on H =/* such
that T e, =e,, and T =ge, for n>1 and ¢=>0.

q-n n+l
Here, we show that 1 is not an eigenvalue of 7, if

ai‘l

qe (1,\/5 J . We prove our claim by contradiction

Let 1 be an eigenvalue of 7, . Then, there exists

feH with 2f =qf, and f,+f,.,=2f,n=2,3,"
It is not hard to see that:

p B R A7)
’ /> q
For 1<q£\/§, we have f, <f,<--- and thus
Jfoi2 2 frn1» Which shows that f e H, contrary to our
assumption. Thus, 1 isnot an eigenvalue of T, if

qe (1,\/5] .
Remark 3.2. Following [2], if h<+2-1=0414
then

(1+h)2

lim ————
11J£}|42 /h(h+2)

Therefore, the numerical radius, w(Tq) is equal to 1.

The example below shows that there exists an operator
® such that w<<Dq)S1 for OSqu/E.

Example 3.3. Let 4 be a unilateral shift. If E is
the orthogonal projection of H =1I° onto the spanning
set of vectors e,e,,---,e,, then A=FEAE and A4 has

the usual matrix representation. Let

0 V2 0 0
NCI 0
B=lo 1 o0 0
S (|

0 0 1 0
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Then the characteristic polynomial of B is given by
a Chebyshev polynomial ‘¥, (x) of the first kind. Let
¥, (x)=cos(nf) where x=cos6.Then:

Y . (x) =2x¥, (x)—‘I’,F1 (x), n>1

(casily proven by trigonometric identities) and ¥, (x)
for n=0,1,2,--- is a linear combination of powers of x~.
Also, det (B - xI) =x¥, (x)— 2¥, (x) If

det(B —xI ) =0 then the roots are given by the Cheby-
shev polynomial of the first kind. The roots can be found
by finding the eigenvalues of matrix B. By [2, p. 179,
Example 9], the eigenvalues of B are given by

1+2
COS{M} ,for ¢=0,1,2,---,n.

2(n+1)
Suppose that
I = cos (1+2q9)=n
2(n+1)
then lim,, [/ =1.Hence, w(CDq)Sl if qe[O,\/E]
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