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ABSTRACT 

We find that a bounded linear operator T on a complex Hilbert space H satisfies the norm relation 2
n

T a q

1,2, ,n  

, 

 for any vector a in H such that  214 1Taq Ta   . A partial converse to Theorem 1 by Haagerup 

and Harpe in [1] is suggested. We establish an upper bound for the numerical radius of nilpotent operators. 
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1. Introduction 

The motivation for this note is provided by the results 
obtained in [1-4]. Let T be a bounded linear operator on a 
complex Hilbert space H. The numerical range of T, 
denoted by W(T), is the subset of the complex plane and  

    , = 1 .H x  = , :W T Tx x x  

The numerical radius of T is defined as,  

    : .z W T supw T z  

The following lemma is known and is an easy conse-
quence of the definitions involved.  

Lemma 1.1.    * : = 1zT z= supW T zT  , where 
T* is the adjoint operator of T and z

z
 is the complex 

conjugate of . 
Berger and Stampfli in [2] have proved that if 

 and   1w T  2nT x x 1 0nT x, for some n, then  . 
Also, they gave an example of an operator T and an ele-
ment x H  such that w T  implies that  1 nT x k x  
and 2k  . In Theorem 2.1, we present a different 
proof of their result in [2] and show that 2

qT

T

 is indeed 
the best constant. 

Theorem 2.1 also generalizes the result in [4] and pro-
vides a partial converse to Theorem 1 in [1, p. 372]. 

Our next main result in Theorem 2.3 gives an alterna-
tive and shorter proof of Theorem 1 in [1]. 

Applying Lemma 2 and Proposition 2 of [1], a new 
result on the numerical range of nilpotent operators on H 
is obtained in Theorem 2.4. This gives a restricted ver-
sion of Theorem 1 in [3]. 

Finally, two examples are discussed. Example 3.1 
deals with the operator , where 1 is not the eigenvalue 

of q  if 1 < . Example 3.3 justifies why 2q  qw T  
fails to increase until and unless 2q  . 

2. Main Results 

Theorem 2.1. The following statements are true for a 
bounded linear operator T on a Hilbert space H with 
  = 1w T . 

2
2 , , 1,2, ,nT a q a H n   1)  such that  

2 14q Ta   , 
4

1Ta . 

2nT a2) If  for some integer n, then  
2 21 2nT a Ta  1 0nT a  and . 

3) The set  , , , na Ta T a  forms a nontrivial sub-
space of T so that its orthogonal complement is invariant.  

Proof. 1) For each real number   and a postive in-
teger, n, let n . Then the inner prod-
uct relation 

0
nb a T a   

   , ,Tb b b b  implies that 

 

 

2 1
0 1

, 0; 1

2
0

,

,

j k
a j k

j k j k

j k
j k

T T a T a

T a T a

   

  



  

 

  








 

That is,

  
     

  

2π

0 1 0

2π 1 1

0

2π 2π2
00 0

e ,e

e ,e

e ,e

i i

j i j ki k
j k

ji j ki k
j k

Ta Ta

T a T a

T a T a

 

 

 

 

 

  

 





  


 

 





 

Hence,  
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 
    

 

2π2

0 1 0

2π 11

0

2π2
0 0

, =0; 1

e e d

, e e d

d ,

i i

j ij k ki
j k

j k
j k

j k j k

Ta

T a T a

T a T a

 

 

  

  

2π

0
e e dji ki    



 

 





  



 





 

0,
=

2π, =

m n

m n





 

Since 

2π

0
e e dmi ni    

it follows that 
2

1

2

n
n n

n

T a

T a

 

2π

2

0 1

2 2
0

2π 2π

2π 2π n

Ta 

 

 

  




 

Dividing the above inequality by , we have  
2

1

2

n
n n

n

T a

T a

 



2

0 1

2 2
0 n

Ta 

 

 

  




 

Let  be the following block-diagonal matix of or- 
der n and 

21

2 21

1

1 2

0 2

Ta

Ta Ta

T a










 






 


2 2

0

2 0

n nT a

 
 
 
 
 
  
 

 

1

 

If γn denotes the determinant of  such that 0    
then the value of γn is positive because all principal mi-
nors of  are nonnegative. Suppose that  0n    

  221
2 14 n

n nT a 
  2

= 0n
nT a 

m

  (2.1) 

We consider the following cases: 
Case 1. If > 0 for the least m then  

 2

1 14 = 0m m T a   21 1m   and nT a

> 0

 converges to 

zero. 
Case 2. Let n  for all . Then  n

 1
1

 2
2 0nT a 

2

 and by induction  

 1 nT a 22

1 22 0n n     

Further, the inequality  

1

2 1

0n n

n n

 
 



 

   

implies that  converges to q as n goes to infinity for 

some q ≥ 0. Therefore from Equation (2.1), 
2

2nT a q

n 

 

as . Thus 
2 414nq T a Ta  . Obviously, q = 

1 only if 

1

n

n


 

2
2Ta     . 

2) By the assumption, 
2

4Ta 

   21
2 14 4 4 0n n n  

 

 for some positive 
integer n. Now fom Equation (2.1), we obtain:  

  

0n

 

and   so that  1

2

1n

n










1 2 11 n

. The equality,  

       now follows from (a) and thus 
2 21 2nT a Ta   1 0n. Also,    which gives 
21 0nT a  since 0n  . 

3) To prove this case, we assume that if the vector  
is orthogonal to the spanning set    then 

v
, , , na Ta T a

   , , 0a Tv Ta Tv  
1n nb Ia Ta T T a v

. Let  
      0, for  . Then   

    

  
  

  
22 2

Re , ,

Re

Re ,

Re , 0.

n

n

Tb b b b

a Ta T a Tv

v Tv v r

a Ta T a Tv







    

 

    







 

Hence,   , , 0na Tv T a Tv   eiT T for  and 
the spanning set  , , , na Ta T a  is a non-trivial invari-
ant subspace on T. 

In [2, p. 1052], an example of an operator T on H  
and an element x in H with , is given where    1w T 

= 2nT x . Theorem 2.1 above establishes that  is  2

the best constant in this case. 
Remark 2.2. An operator A on H is hyponormal if  

 * * 0A A AA
2n

n A a  1

n

nM M
2n

n

. Let  then ,  M 

if A is a hyponormal operator. Hence, 1M M
1,2, ,n

, 
  , , , na Aa A a

1 0 

 and the set of vectors  forms 
a reducing subspace of A.  

A natural connection between Feijer’s inequality and the 
numerical radius of a nilpotent operator was estaplished 
by Haagerup and Harpe in [1]. They proved, using posi-
tive definite kernals, that for a bounded linear operator T 
on a Hilbert space H such that T  and 1T ,  

 then 
π

cos
2

w T
d

 . The external operator is shown  


to be a truncated shift with a suitable choice of the vector 
in H. The inequality is related to a result from Feijer 
about trigonometric polynomials of the form  
  eik

kf   with kf   C . Such a polynomial is 
positive if   0    for all  R . Here, we present a 
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simplified proof of Theorem 1 in [1]. 
Theorem 2.3. For an operator N on H with 1N   

and , we have
 

0=nN   π

1
cos

n




C

w N .  

Proof. We will follow the notations of Theorem 1 in 
[1]. Let S be the operator on  and n ke , 1, ,k n 

2,3, ,k n 

0 0

1 0

0 0 0 1

0 0 0 0

 
 
 
 
 
 
 
 




    



U nC

= 1, ,A z 

 
be the basis in . We define the operator S as follows:  C

1
0eS   and  for  1ke kS e 

The matrix for S gives a dialation for T. Let A be the 
matrix for S and  

0 1

0 0

A   

If  is a unitary operator on  with diagonal 

 then  1, nz   * * *U S S U=S S . By 

Lemma 1, we have:  

 * * *S S U S S U   *zS zS 

 

 

This helps to define the characteristic function of a 
contraction. 

For the operator N on H, let 
1 2*I N N



   then  

 is a positive operator and   depends on N. Let the 
range of  be denoted by . Then the tensor 
product, , is a Hilbert space. We define 
the map 

  R 
nH R  44

:
C

F H

   I S F

H  so that F is an isometry. 

For λ, let   1

n k
kk

F N N e   


  
  1

1
,

n k
kk

 

where F N e 


    I is the identity op-  

erator, and  I S  is an operator on H

   
. 

Therefore  and  Iw N w S  *F I S F N 


. 
Now, we claim that , for we hope 

that 
  w S w I S 

   * : 1w I zI S z  2 supS zI S    By Lem- 
ma 1.1 

 
 
  

*sup

2

zS zS

w S

w N w I

 



    

: 1z

S w S



 

 

That is,    w N w S . 

Since * *zS zS  

 

S S , we have:  

*S S 2w S  

and  

 

where *S S  *S . B

0  by [

 is the spectral radius of S  y 
the definition of the spectral radius, we have the charac-
teristic polynomial f such that  f x 5, p. 179, 
Example 9], the roots of  f x  given by  are

 *f S S 2w S  

π
2cos

1

k

n
    

1, 2, ,k n,      w S

 

 and w N  and  

π π
2 sup 2cos cos

1 1

k
w S

n n
            

. 

Karaev in [3] has proved, using Theorem 1 in [1] and 
the Sz.-Nagy-Foias model in [6] that the numerical range 

 W N  of an arbitrary nilpotent operator N on a com-
plex Hilbert space H is an open or closed disc centered at  

zero with radius less than or equal to 
π

cos
1

N
n

 
  

1, 2, .n

, 

 

 

 
Using Theorem 2 and the assumption that  

cos
1

w N
n

    
 

, 1N , we have  W N  as a 

closed or an open disc centered at zero with radius equal 

to 
π

cos
1n

 
  

= 0nN 1n  

. In fact, we have the following theorem. 

Theorem 2.4. For a nilpotent operator N on H with 

,  and 
π

= cos
1

w N
n

 
  

, the numerical 

range  W N  is a disc centered at zero with radius 

π
cos

1n
 
  

. 

Proof. For any   we must claim that ei W N  , 
for  = ,NZ Z  and Z  is a vector in . nC

From [1, p. 374, Proposition 2], we have   . Also, 
for some  ,  

   
1 12 0 0 2

π
, cos e ,

1
iSz z Nz z

n
       

0

1

0
0

, 0,1, , 1
n

k
k z

k

Dz c S k n




 . Now by [1] 

[P.375, Lemma 2], we obtain:  

    

and  

 
0

1 1 2

0 0

, 1
n n

k j
k j z

k j

c c N z N z D
 

 

 

1

0

n k
kk

c N z 


 

 

 

Let . Then:  

 

     

1 1
1

0 0

0 0

, ,

e , e ,

n n
k j

k j
k j

ii

N c c N z N z

Sz z Nz z 

 
 



 





 


 

and the theorem follows from above since   is arbitrar-
ily chosen.  
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 : 0ne n 


3. An Application Then the characteristic polynomial of B  is given by 
a Chebyshev polynomial  n x  of the first kind. Let 

An operator A is a unilateral weghted shift if there is an 
orthonormal basis  and a sequence of scalers 

n
   = cosn x n

Copyright © .     2012 SciRes

  such that n n n 1Ae e  0n  for all . It is easy 
to see that A SD  where S is the unilateral shift and D 
is the diagonal operator with n nDe ne  , for all n.  
Thus, A D  and n n nA e e  for all n. So  ne  is  

the basis of eigenvectors for A . Also, note that A is 
bounded if  n  is bounded. 

If A is a unilateral shift then 0  and  

1 1n n n

* 0A e 
*A e e

 * * 2
0 0AA e e  


   for . Consequently, for a hypo-

normal operator A, 0 0  and  

n n

1n 
A A

 2
1n n * * 2A A AA e e      for . A wighted 

shift is hyponormal if and only if its weight sequence is 
increasing. 

1n 

qT 2Example 3.1. Let  be an operator on H l  such 
that 1q n n  and 21Tq  for  and . 
Here, we show that 1  is not an eigenvalue of  if  

= e =e 1>n 0q

qT
T e qe

1,

1 q

Hf 

2q 
 . We prove our claim by contradiction  

Let  be an eigenvalue of T . Then, there exists 
 with 1 22 f qf 2 12n n n and f f f  

 

, n = 2, 3, ···. 
It is not hard to see that:  

 2 2 2
12 4

= =
2 1

3
2

f f f q

f q

 
f

 
For 2<1 q 1 2f f , we have  and thus 

2 1n nf f Hf 
qT

  , which shows that , contrary to our 
assumption. Thus,  is not an eigenvalue of  if  1

q 1, 2 . 

Remark 3.2. Following [2], if 2 1 = 0.414h  

 
 

 
then  

2
1

1
2 2

h

h h






 w T

 w 

0.414
lim

h
 

Therefore, the numerical radius,  is equal to 1. q

The example below shows that there exists an operator 
 such that  for   1q 0 2 .  q 
Example 3.3. Let A  be a unilateral shift. If E  is 

the orthogonal projection of 2H l
, ,e

 onto the spanning 
set of vectors 1 2 n  then , ,e e  A EA E A and  has 
the usual matrix representation. Let  

0 2

2 0

0 1

0 0

B 

 

0 0

1 0

0 0

0 1

1 0

 
 
 
 
 
 
 
 









 

 = cosx where  . Then:  

     1 12 , 1n n nx x x x n       

 n(easily proven by trigonometric identities) and x
0,1, 2,n

 
for    is a linear combination of powers of xk. 
Also, det      2B xI x x x     1n n . If  

 det 0B xI   then the roots are given by the Cheby-
shev polynomial of the first kind. The roots can be found 
by finding the eigenvalues of matrix B. By [2, p. 179, 
Example 9], the eigenvalues of B are given by  

 
 

1 2 π
cos

2 1

q

n

 
  

0,1, 2, ,q n, for  . 


Suppose that  

 
 

1 2 π
cos

2 1n

q
l

n

 
    

lim 1n nlthen  . Hence,  if   1qw   0, 2 q  . 
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